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ABSTRACT Current nanometer-scale metal-oxide-semiconductor field-effect transistor (MOSFET)

devices exhibit short-channel, quantum, and self-heating effects, making modeling and analysis very

complex. A few recent works have employed machine-learning (ML) techniques and neural networks

(NN) to model the complex relationships and optimize devices, but a problem with the NN-based device

optimization is that it is data-intensive. Bayesian optimization (BO) can realize ML-based data-efficient

optimization of the MOSFET device, as it finds the global optimum while requiring few training data.

BO stops theoretically when every candidate is explored, so previous works used a fixed number of

iterations for the stopping condition. Such an empirical stopping condition is detrimental to the efficiency

and reliability of BO, because the global optimum can be found at an earlier stage or even after stopping.

Recently, maximum expected improvement (EImax) with a tiny constant has been proposed as a stopping

condition for BO. However, there have not been sufficient works for improving efficiency of BO. By

advancing the EImax scheme, we have systemically investigated the effective stopping condition (ESC)

for BO of MOSFET devices to boost the efficiency and reliability of optimization. We found that EImax

less than a 1% of unit value was an efficient and reliable ESC for optimization, which resulted in up-

to-87.6% and up-to-47% reductions of required training data compared with the fixed iteration method

and the tiny constant method, respectively. Our study provides a novel method to boost efficiency and

reliability of BOs for the optimization of MOSFET design in the semiconductor industry.

INDEX TERMS Design Optimization, Machine Learning, Metal-Oxide-Semiconductor Field-Effect

Transistor, Optimization, Nanosheet FET

I. INTRODUCTION

M
ODERN technology has realized palm-sized comput-

ers that have the power and speed of the supercom-

puters of 1990s, which was enabled by performance boost,

low power consumption, and miniaturization of integrated

circuits (IC). As a building block of ICs, the size of metal-

oxide-semiconductor field-effect transistor (MOSFET) has

been continuously miniaturized and its performance has

improved following the Moore’s law [1]. However, aggres-

sive downscaling has weakened their gate controllability

owing to short-channel effects (SCE). Furthermore, the

requirements for performance and power consumption have

become stricter to meet industrial standards. To minimize

SCE multi-gate structures (e.g., finFETs, nanosheet FETs

(NS FET)) have been proposed [2]–[8].

Nanometer-scale MOSFETs have become more compli-

cated, because, in addition to SCE, they exhibit quantum

mechanical effects (QME), self-heating effects (SHE), and

parasitic capacitance [6], [9]. The correlation between de-

sign variables has thus increased, and their relationships

with device characteristics can be nonlinear [10]–[13], mak-

ing device analysis and optimization much more challenging

than ever.

Recently, machine learning (ML)-based device optimiza-

tion frameworks have been proposed to handle the com-

plexity of the optimization of next-generation MOSFET

devices [13]–[15]. ML can model the relationships between

the design variables and device characteristics based on
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the data. In [13], a neural network (NN) was trained to

model the relationship between seven design parameters,

including oxide thickness (tox), gate length (Lg), and device

characteristics, such as threshold voltage (VTH) and ON-

state current (ION) by utilizing 1,055 technology computer-

aided design (TCAD) simulations of feedback FETs. They

optimized the feedback FETs by analyzing the gradient

of the trained NN. In [14] and [15], the NN was trained

using 1,510 TCAD simulations of lateral double-diffused

MOS. The device was optimized by combining the NN

with a Bayesian optimizer in a 4-dimensional (4D) design

space. These NN-based optimization frameworks were data-

intensive, requiring large training data (≥1,000). As the

optimization dimensions increase, the number of training

data required to build the NN increases rapidly with the

number of independent design variables.

By combining TCAD simulations with Bayesian opti-

mization (BO), device optimization can be conducted in a

data-efficient manner. BO is an ML-based global optimiza-

tion algorithm that models and optimizes expensive black-

box functions by sampling the training data in an efficient

way [16], [17]. Although there are many optimization al-

gorithms for black-box functions, such as COBYLA [18],

ISRES [19], and DIRECT [20], only BO is designed to be

data-efficient, because it samples the next observation point

in an adaptive manner at each optimization step (iteration)

[17]. Each iteration consists of evaluations of the black-box

function and the decision of the next sampling point.

Successful applications of BO in electronics have been

reported for the design of 3D ICs and analog circuits [21],

[22]. The BO showed faster convergence to the global

optimum in 3D IC optimization than other optimization

algorithms, including as pattern search and nonlinear solver

[21], [23]. The BO could optimize the lateral double-

diffused MOS within 90 iterations [14]. These works shed

light on data-efficient optimization in electronics, because

BOs require a small number of training data compared with

the total number of design candidates.

However, previous works used finite numbers of iterations

(Niter) as the BO stopping conditions. In [21], an Niter of 200

was used, and in [22] an Niter of 100 was used as the stop-

ping criterion. Using Niter as the stopping condition is too

empirical, unreliable and inefficient, because an assumption

must be made in which the BO finds the global optimum

within the Niter. It is possible that the global optimum can be

found at an iteration much larger than Niter, which impairs

the reliability of BO. It is also possible that the global

optimum can be found at an earlier iteration much smaller

than Niter, which impairs efficiency. In [14], the squared

error from the target value was set as the stopping condition.

However, if this stopping condition is not feasible in the

design space, the optimization never ends.

To improve the reliability and efficiency of BO, the

stopping condition must be studied, but there have been

insufficient examinations of BO stopping conditions [24]–

[27]. In [24], the maximum expected improvement over

FIGURE1: BO-based MOSFET optimization framework. BO

is directly combined with TCAD simulation. Novelty of

this work is highlighted with red letters. Optimization stops

when EImax is lower than ESC.

the best-observed value (EImax) was proposed. In the work,

the sublinear convergence of EImax was proven, and the

optimization process was completed when EImax< κ, where

κ was a small positive constant (e.g., 10−9). However, this

method can be harmful for the efficiency of BO because

the global optimum can be found when EImax is much larger

than a tiny constant. A recent study used an EImax of 0.0015

as the stopping condition, but there was no justification for

the value [28]. Although there have been some works about

the stopping condition of BO, there have not been sufficient

works for boosting the efficiency of BO while not impairing

the robustness of optimization.

In this work, we investigate the effective stopping con-

dition (ESC) to maximize the BO efficiency and reliability

based on EImax scheme. After constructing an ML-based

MOSFET device optimization framework, we explore the

ESC by calculating 2,800 single-gate (SG) n-type MOSFET

(nMOSFET) devices in a 5D input space. Multi-objective

optimization is then conducted by introducing the target

function. As an application of our BO framework to a

highly-complex, computationally demanding yet practical

problem, we optimized a 3-nm node NS FET considering

QME, SCE, and SHE using a 3D TCAD simulation. NS

FET is one of the most promising devices for the downscal-

ing of silicon-based CMOS technologies and have displayed

performance superior to that of FinFETs [2]–[7].

We organized this paper as follows. In Section II,

we propose our framework with detailed explanations

about Bayeisian optimization, TCAD simulation, and multi-

objective optimization. In Section III, we show the efficiency

and robustness of ESC based on SG nMOSFET optimiza-

tion. Then, we provide optimization results of NS FET as

an application of ESC. We conclude in Section IV.
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II. METHODS

The overall BO-based MOSFET device optimization frame-

work constructed in this study is shown in Fig. 1. The

TCAD simulation is directly combined with the BO. Device

input vector of selected device (xi in Fig. 1) is converted to

an input file of TCAD simulation by our in-house python

script. For SG nMOSFET optimization, input vector consists

of tox, substrate doping density (Nsub), junction depth (xj),

and source/drain doping density (Nsrc/Ndrn). For NS FET

optimization, input vector is composed of spacer length

(Lsp), NS width (WSH), gate thickness (TG), via radius

(rvia), and spacer dielectric constant (ǫsp). Each element

of input vectors is standardized with a buit-in function of

python library [29]. The output of the TCAD simulation

(yi in Fig. 1) is paired with the input vector, i.e., (xi,yi).

For the optimization of SG nMOSFET, output scalar is

ION, subthreshold slope (SS), or target function Z. The

target function Z is utilized to carry our the multi-objective

optimization. In NS FET optimization, output scalar is RC

delay (τRC), SS, ON-state maximum temperature (TON), or

Z. The sampling set, {(x1,y1),..,(xn,yn)}, is constructed with

n pairs of (xi,yi) when n samples are selected by BO. Then,

the training data set at T-1 iteration is augmented with the

sampling data set (DT=DT-1∪{(x1,y1),..,(xn,yn)} in Fig. 1),

where T denotes the iteration index.

The surrogate model of BO is learned using the training

data set, and next simulation points (x1,..,xn in Fig. 1)

are selected in a global-optimum direction by evaluating

the acquisition function. The optimal device can then be

found by repeating this automatic feedback process between

the BO and TCAD simulations. The BO stops when the

stopping condition is met. The novelty of our framework

is highlighted with the red letters. Unlike previous works,

which stop BO when T becomes a fixed number, Niter, or

when EImax is smaller than a tiny positive constant (e.g.,

10-9), our framework stops BO when EImax is lower than

1% of unit value. As illustrated in Section I, Niter as a

stopping condition can impair the efficiency and robustness

of BO since the global optimum can be found at T≪Niter

or T>Niter. EImax of a tiny positive constant as a stopping

condition can be detrimental to the efficiency of BO because

it is possible for BO to reach the global optimum when EImax

is much larger than a tiny value such as 10-9. Therefore,

huge redundant BO iterations can be generated to meet the

stopping criterion, resulting in the inefficiency of BO. The

inefficiency of a tiny positive constant method and efficiency

of our ESC method are illustrated in Section III-A. Detailed

explanation of BO and TCAD simulation follows.

A. BAYESIAN OPTIMIZATION

BO is a ML-based experimental design algorithm for finding

the global optimal point of the black-box objective function.

Mathematically it is expressed as:

x∗ = argmax
x∈X

f(x), (1)

Algorithm 1 Bayesian Optimization

Require: Number of initial sampling points Ninit, number

of iterations Niter, and number of samplings at each

iteration Nsp

1: Randomly sample Ninit input points in the design space:

x1:Ninit

2: Number of observations M = 0

3: Choose Acquisition function α(x)
4: for iteration T = 1 to Niter do

5: if T == 1 then

6: Observe y1:Ninit
corresponding to x1:Ninit

7: M + = Ninit

8: Construct the data set DT = D1:M = {(xi, yi)}Ninit

i=1

9: else

10: Observe y1:Nsp
corresponding to x1:Nsp

11: M + = Nsp

12: DT = D1:M = DT-1 ∪ {(xi, yi)}Nsp

i=1

13: end if

14: Fit probabilistic surrogate model to DT

15: Get unexplored input set X ′

= X ∩ {{xi}M
i=1}c

16: Set x1:Nsp
= ∅

17: for s = 1 to Nsp do

18: xs = argmaxx∈X ′αT(x)
19: x1:Nsp

= x1:Nsp
∪ {xs}

20: X ′

= X ∩ {xs}c
21: end for

22: Get next sampling point set x1:Nsp

23: end for

24: return y∗ = max y1:M and x∗ (input of y∗)

where f(x) is the objective black-box function, and x is the

D-dimensional input vector comprising the design variables.

D is the number of design variables to be optimized. X is

a design space of interest (i.e., a compact subset of RD),

and x∗ is the global optimizer. The main assumption is that

f(x) does not have a closed form but can be evaluated by

observation, y [16]. BO also assumes that y is noisy, so that

the black-box function, f(x), is hindered by observation noise

ǫ. The stochastic nature of y is expressed as y=f(x)+ǫ, where

ǫ∼N(0,σ2
n). σ2

n is the observation variance. BO is based on

Bayes’ theorem:

p(y|D1:M, θ) =
p(D1:M|y, θ)p(y|θ)

p(D1:M|θ)
, (2)

where D1:M = {(x1,y1), (x2,y2), ... ,(xM,yM)} is the data set

collected after M observations. When hyperparameter (θ) is

given, p(y|θ), p(y|D1:M,θ), and p(D1:M|y,θ) are the distribu-

tions of the prior, posterior, and likelihood, respectively [30].

As shown in Algorithm 1, BO starts with Ninit observations,

where Ninit is the number of initial sampling points. Then,

the iteration consisting of surrogate model training and

the selection of Nsp next sampling points is repeated until

T=Niter. Nsp is the number of samplings at each iteration.

The surrogate model is trained using hyperparameter tuning,

which will be explained later. Most previous works used
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finite Niter as the stopping condition of BO. For example,

Niter=200 [21], 100 [22], and 10D [24]. There is no rule for

Ninit. Thus, Ninit can be 100 [22] or 3D [24]. To prevent

frequent training of the surrogate model, Nsp can be greater

than 1, for instance Nsp=4 or Nsp=20 [22], [31].

BO has two key components: a surrogate model and

an acquisition function. The surrogate model is the pos-

terior distribution of the objective function. The acquisition

function evaluates the unexplored data points and selects

the next query points. In this work, we utilized two types

of surrogate model: Gaussian process regression (GPR)

[14] and Bayesian linear regression (BLR) [29]. BLR can

sometimes be faster than GPR if the optimization requires

large training data [32]. Because we do not know in advance

the number of training data required for device optimization,

we try both and evaluate their suitability for MOSFET

device optimization. For an acquisition function, we choose

the expected improvement (EI), because it can be used

to define the stopping criterion [24]. We use the open-

source BO Python library, COMBO [29], to construct our

framework. A detailed explanation of the surrogate model

and acquisition function is as follows.

1) Gaussian Process Regression

GPR is one of the most typical surrogate models of BO.

When M points are observed, f(x1:M) is assumed to be

jointly Gaussian, and the observation, y1:M, is assumed to

be normally distributed, given f(x1:M) [16]:

f(x1:M) ∼ N(µ(x1:M),K(x1:M)), (3)

y1:M ∼ N(f(x1:M), σ2

nI), (4)

where µ(x1:M) is the mean function and K(x1:M) is the

covariance matrix, consisting of kernel functions k(xi, xj).
I is the identity matrix having a size of M. µ(x1:M) and

K(x1:M) are expressed as:

µ(x1:M) = [µ(x1), ..., µ(xM)]T , (5)

K(x1:M) =







k(x1, x1) . . . k(x1, xM)
...

. . .
...

k(xM, x1) . . . k(xM, xM)






. (6)

It is common to use µ(x1)=µ(x2) = . . .=µ(xM)=m, where

µ(x1:M) is a constant mean function. m is one of the

hyperparameters, and it is common to use a parametric

mean function, because it provides a useful bias for the

prediction of the model [16], [30], [33]. The kernel function

is essential, because it captures the interactions in the model

input variables. We adopt the radial basis function kernel

[14] as the kernel function, given by

k(xi, xj) = α2exp(−||xi − xj||2
2η2

), (7)

where α2 is the signal variance corresponding to the func-

tion smoothness, and η is the kernel width that determines

the radial action.

The prediction model, f(xM+1), for the unexplored point,

xM+1, can be constructed using the joint distribution of

f(x1:M) over M data points. The prediction model follows a

normal distribution with a posterior mean, µ̂(xM+1), and a

variance, σ̂2(xM+1):

f(xM+1) ∼ N(µ̂(xM+1), σ̂
2(xM+1)), (8)

µ̂(xM+1) = m

+ k(xM+1, x1:M)T (K(x1:M) + σ2

nI)
−1(y1:M −m),

(9)

σ̂2(xM+1) = k(xM+1, xM+1)

− k(xM+1, x1:M)T (K(x1:M) + σ2

nI)
−1k(xM+1, x1:M),

(10)

where k(xM+1, x1:M)T =[k(xM+1, x1),...,k(xM+1, xM)]T . The

accuracy of the prediction model strongly depends on the

training of the surrogate model. The training is performed

by finding the optimal hyperparameter vector, θ∗, where

θ=[m, σn , α, η]. θ is initialized using the heuristic method

developed by Yang et al. [34]. Then, it is optimized to

maximize the type-II likelihood or, equivalently, to minimize

the negative log marginal likelihood − log p(y1:M|x1:M, θ)

[30].

θ∗ = argmin
θ∈Θ

− log p(y1:M|x1:M, θ), (11)

− log p(y1:M|x1:M, θ) =

1

2
(y1:M −mθ)

T (K(x1:M)θ + σ2

n,θI)
−1(y1:M −mθ)

+
1

2
log |K(x1:M)θ + σ2

n,θI|+
M

2
log(2π).

(12)

Θ is a 4D space for the hyperparameter, θ. The depen-

dency of θ is denoted by the θ subscript (e.g., mθ). The

first and second terms in (12) refer to model accuracy and

complexity. The third term corresponds to the likelihood

tendency over the observation number, M [16]. For mini-

mization, the state-of-the-art gradient-descent optimization

algorithm, ADAM, is applied, where the gradient is evalu-

ated via subsampling [35]. The expression, p(y1:M|x1:M, θ),

is derived to marginalize out the uncertainty about θ for the

unknown function, f(xM+1):

f(xM+1) = Eθ|D1:M
[f(xM+1; θ)]

=

∫

f(xM+1; θ)p(θ|D1:M)dθ.
(13)

The posterior belief over θ given D1:M can be expressed via

Bayes’ rule as:

p(θ|D1:M) =
p(y1:M|x1:M, θ)p(θ)

p(D1:M)
. (14)

p(θ|D1:M) determines the fitness of θ to the D1:M, and

it is proportional to p(y1:M|x1:M, θ). Thus, maximizing

p(y1:M|x1:M, θ) is crucial to improve model accuracy, which

can be obtained by (11). This approach is applicable to a

binary classification problem. θ can be replaced by a classifi-

cation criterion (i.e., threshold) and the performance of the

classifier can be optimized by maximizing p(y1:M|x1:M, θ)

[36].
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FIGURE2: Bayesian optimization of the toy function. x

indicates the input space. Red dashed line indicates the

objective function with zero noise. Red circle denotes the

observation value. Green dashed line indicates the mean of

the prediction. Green shaded region denotes the possible

values that the prediction model can have.

2) Bayesian Linear Regression

BLR is employed to model the objective function, f(x), as:

f(x) = wTφ(x) + m, (15)

y = f(x) + ǫ, (16)

where φ:RD−→Rd is a feature map, and w∈Rd is a weight

vector of the feature vector, φ(x). d is the number of

extracted features. w determines the shape of the objective

function, and the posterior distribution of w after obtaining

D1:M is given by:

w|D1:M ∼ N(µ̂w, Σ̂w), (17)

where µ̂w=(ΦΦT +σ2
nI)

−1Φy1:M, Σ̂w=σ2
n(ΦΦ

T +σ2
nI)

−1,

and Φ is d × M matrix in which the ith column corresponds

to φ(xi) [29]. We apply the random feature map (RFM),

which has shown successful results in previous works [31],

[32]. The RFM approximates Gaussian kernel function,

k(xi, xj) in GPR, using a sampling approach.

Using the Bochner’s theorem, the kernel of the unit width,

k(δ) = exp(−||δ||2/2), can be expressed as

k(x− x′) =

∫

exp(jωT (x− x′))p(ω)dω, (18)

where j indicates an imaginary number, and p(ω) =
(2π)−D/2exp(−||ω||2/2). By introducing zω,b(x) =√
2cos(ωTx+ b), where ω follow p(ω), and b are sampled

uniformly from [0,2π], E[zω,b(x)zω,b(x
′)]=k(x−x′). There-

fore, φ(x)Tφ(x′) can approximate the Gaussian kernel with

width, η, and variance, α2 (i.e., α2 exp(−||x− x′||2/2η2))
by defining φ(x) = α(zω1,b1

(x/η), ..., zωd,bd
(x/η)), where

{ωi, bi}di=1 is the set of d random samples. When d−→ ∞,

the BLR converges to the GPR. The BLR is trained by

maximizing the type-II likelihood, as explained in (11)-(12).

3) Acquisition function

EI is chosen as an acquisition function, because it can

be used as the stopping condition, and it is the most

popular acquisition function for BO [24]. EI calculates the

expectation value of the improvement over the maximum in

the observation dataset, y∗ = max y1:M. At iteration T, it

can be expressed as

EI(x)T = σ(x)ξ(z′) + (µ(x)− y∗T )Ξ(z
′), (19)

where σ(x) and µ(x) are the estimation variance and mean

of the surrogate model, respectively. They can be obtained

using (9) and (10) in GPR.

For the BLR, they can be obtained by inserting µ̂w and

Σ̂w into (15) z′(x)=(µ(x) − y∗T )/σ(x), where y∗T is the

maximum observed value at iteration T. ξ and Ξ corre-

spond to the standard normal probability density function

and the standard normal cumulative distribution function,

respectively.

We plot the Bayesian optimization of the toy function in

Fig. 2 using the Python library, skopt. The surrogate model is

GPR and acquisition function is EI(x) following Algorithm

1. Ninit, Nsp, and Niter are 5, 1, and 100 respectively. At

each iteration, T, the next sampling point is chosen by

maximizing EI(x)T. Then, that point is observed at the

T+1 iteration. By repeating this automatic feedback process,

the BO reaches the global maximum of the non-concave

objective function within a few observations. Algorithm 1

continues until T becomes the Niter. If BO finds the global

optimum at T≪Niter, many redundant observations are gen-

erated after reaching the global optimum in this algorithm.

To maximize the efficiency of BO, we modify Algorithm 1

to use ESC, as shown in Algorithm 2. At each iteration T,

EImax,T is calculated. If EImax,T is less than ESC, a 1% of unit

value, the optimization stops and reports the best-observed

value. The Algorithm in the previous work stops BO when

EImax is less than a tiny constant κ (e.g., 10-9) [24]. We

replace κ with ESC. Line 20-39 in Algorithm 2 is same

with line 16-21 in Algorithm 1 when Nsp=1. It is a method

to choose sampling points for the next iteration when Nsp>1,

which is implemented in the COMBO library. When Nsp>1

and α(x)T=EI(x)T, Algorithm 1 chooses samples with Nsp

highest EI(x)T values. However, Algorithm 2 selects one

sample with the highest EI(x)T value when the sampling

index s is one. For the rest Nsp-1 points, at s>1, posteriors of

previously selected points (f(x1)..f(xs-1)) are sampled and

trained Nps times, generating Nps different prediction models

(N(µ(x)p, σ(x)p)), with acquisition functions EI(x)T,p. Nps

is the number of posterior samplings and p is the posterior

sampling index. The sampling point when s>1, xs, is chosen

when it exhibits highest average value of EI(x)T,p (i.e., xs

= argmaxx∈X ′
1

Nps
Σ

Nps

p=1
EI(x)T,p).
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Algorithm 2 Bayesian Optimization using ESC

Require: Number of initial sampling points Ninit, number

of iterations Niter, number of samplings at each iteration

Nsp, and small positive constant κ (e.g. 10−9), number

of posterior samplings Nps

1: Randomly sample Ninit input points in the design space:

x1:Ninit

2: Set Number of observations M = 0

3: Set κ = ESC (contribution of this work)

4: for iteration T = 1 to ∞ do

5: if T == 1 then

6: Observe y1:Ninit
corresponding to x1:Ninit

7: M + = Ninit

8: Construct the data set DT = D1:M = {(xi, yi)}Ninit

i=1

9: else

10: Observe y1:Nsp
corresponding to x1:Nsp

11: M + = Nsp

12: DT = D1:M = DT-1 ∪ {(xi, yi)}Nsp

i=1

13: end if

14: Fit probabilistic surrogate model f(x) to DT

15: Get unexplored input set X ′

= X ∩ {{xi}M
i=1}c

16: EImax,T=maxx∈X ′ EI(x)T

17: if EImax,T < κ then

18: Stop the optimization and go to line 42

19: end if

20: Set x1:Nsp
= ∅

21: for s = 1 to Nsp do

22: if s == 1 then

23: xs = argmaxx∈X ′ EI(x)T

24: else

25: for p = 1 to Nps do

26: Set temporary data set DT,temp = DT

27: for q = 1 to s-1 do

28: xq = x1:Nsp
(q)

29: sample f(xq) from N(µ̂(xq), σ̂
2(xq))

30: DT,temp = DT,temp ∪ {xq , f(xq)}
31: end for

32: σ(x)p, µ(x)p ← Fit f(x) to DT,temp

33: Get EI(x)T,p using σ(x)p, µ(x)p

34: end for

35: xs = argmaxx∈X ′
1

Nps
Σ

Nps

p=1
EI(x)T,p

36: end if

37: x1:Nsp
= x1:Nsp

∪ {xs}
38: X ′

= X ∩ {xs}c
39: end for

40: Get next sampling point set x1:Nsp

41: end for

42: return y∗ = max y1:M and x∗ (input of y∗)

B. TCAD SIMULATIONS

In this work, we apply our BO scheme to two different

devices; SG nMOSFET, and NS FET. The first one is

chosen, because its computational loads are sufficiently

small to be used as test system for developing the BO

FIGURE3: (a) Device schematics, (b) current-voltage charac-

teristics, (c) ION distribution, and (d) SS distribution of 2,800

SG nMOSFETs. Red letters in (a) indicate design variables

for optimization.

TABLE1: Input Space of SG nMOSFET Optimization

Variables Values

tox [nm] 1, 1.5, 2, 2.5, 3

Nsub [cm-3] 1011,1012,1013,1014,1015,1016,1017

xj [nm] 1, 1.5, 2, 2.5, 3

Nsrc [cm-3] 1018,1019,1020,1021

Ndrn [cm-3] 1018,1019,1020,1021

Total 5×7×5×4×4 = 2,800 devices

scheme. The developed BO scheme is then applied to the

NS FET, which is much larger in terms of computational

size. For SG nMOSFETs, the simulations were conducted

in 2D mesh space, so that a complete dataset of 2,800 SG

nMOS FETs can be obtained within a reasonable time. For

the 2D mesh simulations, SILVACO ATLAS [37] is used

with default material parameters. For the 3-nm node NS

FET optimization, where device calculation in 3D mesh

requires several hours, Synopsys Sentaurus [38] is used.

The numerical transport calculation is conducted by self-

consistently solving several equations, including continuity,

Poisson, density gradient, and contact equation. SCE is

calculated in every simulation of a nanometer-scale device

by solving the numerical equations. We construct a multi-

dimensional input space for optimization by varying design

parameters independently. Design variables for optimization

are chosen based on previous studies [5]–[14]. Each variable

can improve or degrade device characteristics.

1) SG nMOSFET Simulation

The structure of the SG nMOSFET is shown in Fig. 3(a).

The channel length (Lch), and body thickness (tbody) are as-

sumed to be 20 and 10 nm, respectively. The supply voltage

(VDD) is 1.0 V. ION is defined as IDS at VGS-VTH=VDD.
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FIGURE4: Device schematics of 3-nm node NS FET: (a)

3D structures with thermal boundaries, (b) enlarged device

region, and (c) x-z plane view at y = 0. Red letters in (b)

and (c) indicate design variables for optimization.

VTH is the VGS at IDS=0.1 A/m for every simulation of

the SG nMOSFET and NS FET. SS, ∂V GS/∂ log 10(IDS),
is measured at VTH. 5D input space consisting of 2,800 SG

nMOSFETs is constructed by changing five design variables

independently: tox, Nsub, xj, Nsrc, and Ndrn. Details of the

input space are presented in Table 1. The current-voltage

characteristics of 2,800 SG nMOSFETs are given in Fig.

3(b), where ION is distributed with a mean (µION
) of 377.3

and a standard deviation (σION
) of 370.5 A/m. The SS is

distributed with a µSS of 140.65 and a σSS of 39.52 mV/dec.

To include the effects of the doping density and electrical

fields, we apply the CVT model [39]. To calculate the

oxide leakage, the Fowler-Nordheim tunneling model [40]

is applied.

2) 3-nm node NS FET Simulation

For an application of our framework to a highly sophis-

ticated optimization, we choose a 3-nm node NS FET as

the optimization target. The structure of the three-stacked

NS FET is shown in Fig. 4. We benchmark the structure

of the NS FETs from previous works [5]–[8]. For a

realistic simulation, we include the QME and SHE. For

the SHE, a thermodynamic transport model is used. The

thermal conductivities for the SHE simulations and other

device parameters are listed in Table 2. For QME, the

eQuantumPotential is used. A BandGapNarrowing having

an input-band gap of 1.241 eV [41] and Fermi statistics

are used. For mobility estimation, Enormal (Lombardi)

and Phumob are used to consider Coulomb and interface

scattering, respectively. The saturation velocity is assumed

to be 2.2×107 cm/s [7]. The thermal contact and electrical

contact resistance are assumed to be 2×10-4 cm2K/W [8]

and 3×10-9 Ω-cm2 [7], respectively. A 5×5×2.5 µm3 Si

substrate and an 800-nm back end of lines are included

in the simulation for thermal boundaries. The device is

assumed to be surrounded by SiO2 for isolation. We use

the contacted gate pitch (CGP) as an optimization constraint

to maintain the device scale in the lateral direction [6]–[8].

For the optimization, we vary five design parameters which

alter the device characteristics of the NS FET: Lsp, WSH,

TABLE2: Device Parameters of 3-nm node NS FET optimiza-

tion

Parameter Value

Channel Length, Lch 8.5 nm
Extension Length, Lext 5.75 nm
Channel Thickness, Tch 5 nm

Contacted Gate Pitch, CGP 24 nm
S/D Length, LS/D 4 nm

SiO2 thickness 0.45 nm
HfO2 thickness 1.5 nm

EOT 0.7 nm

Channel Doping 1×1015 cm-3

S/D Doping 1×1021 cm-3

Local Doping 5×1018 cm-3

Doping Gradient 1 nm/dec
Supply Voltage, VDD 0.55 V

Channel Thermal Conductivity 7.5 W/K·m [8]
Gate Oxide Thermal Conductivity 2.5 W/K·m [5]

S/D Thermal Conductivity 3.8 W/K·m [8]
Local Doping Thermal Conductivity 33 W/K·m [8]

Bottom Substrate Thermal Conductivity 150 W/K·m [8]
Contact Pad Thermal Conductivity 238 W/K·m [5]

TABLE3: Input Space of 3-nm node NS FET optimization

Variables Values (min,max,interval)

Lsp [nm] (3.0, 7.0, 0.5)
WSH [nm] (8.0, 40.0, 1.0)
TG [nm] (2.0, 20.0, 1.0)
rvia [nm] (3.0, 7.0, 0.5)
ǫsp [ǫ0] 1.0 (Air), 3.9 (SiO2), 7.5 (Nitride), 22.0 (HfO2)

Total 9×33×19×9×4 = 203,148 devices

TG, rvia, and ǫsp. We construct 5D input space by varying

each parameter independently as shown in Table 3, resulting

in 203,148 candidates.

C. MULTI-OBJECTIVE OPTIMIZATION

MOSFET optimization requires multiple figures-of-merits

(FOMs) to be jointly optimized, because the practical de-

vice needs to exhibit high performance with low-power

consumption to meet the industrial standard. We perform

multi-objective optimization by transforming it into a mono-

objective optimization. The scalarization by the weighted

sum of different objective functions has been used for multi-

objective BO, in which the mono-objective function has

been called as the "target function" [21]. This approach

can provide Pareto optimal points where the improvement

of one objective is infeasible without degradation of the

other objectives [17], [42]. Although previous works used

the weighted sum of objectives, we use the weighted sum of

normalized objectives, because each objective has a different

scale. In our work, the target function, Z, is given as:

Z = Σn
i=1w

i × norm(yi), (20)

where yi and wi indicate the observation value and weight

of the ith objective, respectively. norm() is the normalization

function that transforms yi into values between 0 and 1 (i.e.,

[0,1]): norm(yi)=yi/yimax for the maximizing object, and
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FIGURE5: Results of SG nMOSFET optimization. EImax at T iteration during the optimization of (a) ION, (b) SS, and (c) Z

optimization. Stars in (a)-(c) indicate the iteration when BO found global optimum. Up triangles in (a)-(c) denote iteration

reached effective stopping conditions of 10-2 A/m for ION, of 10-2 mV/dec for SS, and of 10-6 for Z. Down triangle in

(a)-(c) denote iteration reached stopping conditions of EImax<10-8. Best observed values at M observations when it comes

to (d) ION, (e) SS, and (f) Z optimization. Dashed lines in (d)-(f) indicate global optimum for each optimization.

norm(yi)=yimin/y
i for the minimizing object. yimax and

yimin are obtained from the single-objective optimization of

yi. wi is given by

wi = (1− yimax − δyi

yimax

)−1, (21)

wi = (1− yimin

yimin + δyi
)−1. (22)

(21) and (22) are used to maximize and minimize objects,

respectively. δyi is the controlling factor of weight, where

the δyi improvement near optimum gives one point to the

target function, Z.

III. RESULTS AND DISCUSSION

A. EFFECTIVE STOPPING CONDITION FOR THE BO OF

MOSFET DEVICES

We first investigated the efficiency of ESC and carried

out simulations of SG nMOSFETs for this purpose. To

compare our method with the tiny positive constant method

in the previous work [24], we first set κ of 10-8 as the

stopping condition for the optimization. This choice of

κ could require large redundant iterations, resulting in a

decrease in the efficiency of BO. We scanned the whole

design space of SG nMOSFETs so that we know the global

optimum of the design space more precisely. We measured

the efficiency of the ESC when it was applied to ION, SS, and

multi-objective optimization. We compared the optimization

trajectories of different surrogate functions (i.e, BLR with

d = 1,000 (BLR1) and d = 5,000 (BLR2), and GPR) to

determine the suitability of each surrogate model. d is the

number of extracted features for BLR. The number of initial

sampling points, Ninit, and the number of samplings at each

iteration, Nsp, were each set to be 5.

We conducted ION optimization of the SG nMOSFET

with a 5D design space. The optimization stopped when

the EImax<10-8 A/m. The globally optimal I∗ON was found

to be 1,297 A/m, with the transfer characteristics shown in

Fig. 6(a). All of the attempted optimizations with different

surrogate models succeeded in finding the global optimum

of the ION before EImax<10-8 A/m and before T=7 (Fig.

5(a)). However, to meet the stopping condition of EImax<10-8

A/m, 7 to 11 redundant iterations corresponding to 35

to 55 redundant device calculations were required, even

after the optimizer found the global maximum, because the

stopping condition, κ, was too strict. Therefore, to minimize

redundant evaluations of the device characteristics, κ must

be relaxed.

By utilizing the ESC, we can boost the efficiency of the

BO. We set κ to 10-2 A/m as the ESC for ION which is 1%
of the unit value. The unit value means the smallest number

that carries a meaningful contribution to the observation.

We set the unit value of ION to 1 A/m, such that an ION

improvement of less than 1 A/m is meaningless. Compared
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FIGURE6: (a) Current-voltage characteristics of initial and the

global optimal devices in SG nMOSFET optimization, (b)

Pareto front of SG nMOSFET design space, and (c) Pareto

optimal points corresponding to δSS

TABLE4: Device Specification in SG nMOSFET optimization

Device tox [nm] Nsub [cm-3] xj [nm] Nsrc [cm-3] Ndrn [cm-3] ION [A/m] SS [mV/dec]

Initial 1.5 1011 3 1019 1020 225 112.17

I∗ON 1 1016 3 1021 1021 1,297 97.60

SS∗ 1 1017 1 1020 1018 890 91.44

Z∗ 1 1016 3 1020 1019 1,151 91.97

with the tiny constant method, a substantial reduction in the

required Niter for optimization can be achieved by utilizing

the ESC: 38% in BLR1 (13 to 8), 47% in BLR2 (17 to 9),

and 31% in GPR (13 to 9). The required Niter was much

smaller than Niter from the a previous work that used an

Niter of 100 [22] for a preset stopping condition.

Next, the SS optimization of the SG nMOSFET design

space was carried out, as SS affects the standby power dis-

sipation of the MOSFET device. The optimization stopped

when EImax<10-8 mV/dec. The globally optimal SS∗ was

found at T≤6 (Fig. 5(b)) and it turned out to be 91.44

mV/dec with the transfer characteristics shown in Fig. 6(a).

We have set κ to 10-2 mV/dec as ESC for SS (i.e., 1% of

1 mV/dec). Enhancing the efficiency of the BO by utilizing

the ESC was also achieved during the SS optimization. A

considerable reduction of Niter was obtained compared with

the tiny constant method: 21% in BLR1 (33 to 26), 31% in

BLR2 (39 to 27), and 41% in GPR (29 to 17).

For a multi-objective optimization, the SS and ION were

simultaneously optimized by introducing the target function,

Z: Z=w1×SS+w2×ION (Fig, 5(f)). The set of Pareto optimal

points (Pareto front) in Figs. 6(b) and (c) was determined by

changing the δSS and by maximizing Z [42]. The δION was

fixed to 10 A/m. The Pareto front in Fig. 6(b) denotes the

design boundary of the multi-objective optimization, that is,

the design outside the Pareto front is infeasible. Although

the target value method [14] can be used for multi-objective

optimization, the target values can be Pareto suboptimal

points or outside the design boundary. Therefore, we used

FIGURE7: Comparison of computational time required for op-

timization of SG nMOSFET among three different surrogate

models: BLR1, BLR2, and GPR. The time was measured

by Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20 GHz.

the weighted sum of objectives, such that the maximum of

Z was on the Pareto front. Because the design boundary

of SS (SSZ∗ ) was abruptly degraded when δSS was greater

than 0.1 mV/dec (Fig. 6(c)), we used a δSS of 0.1 mV/dec

and a δION of 10 A/m. The optimization of Z stopped

when EImax<10-8. All of the attempted optimizations with

three surrogate models found the globally optimal device

before EImax<10-8, as shown in Fig. 5(c), with an ION of

1,151 A/m and SS of 91.97 mV/dec. Both ION and SS

were close to the globally optimal values from the single-

objective optimization: their deviations were 146 A/m and

0.53 mV/dec from I∗ON and SS∗, respectively (Fig. 6(a)). We

have set κ to a value of 10-6 as an ESC of Z (i.e., 1% of

10-4). Because 1 point improvement of SS can be offset by

1 point degradation of ION, the unit value must be a small

positive constant. We found that a 10-4 of Z was sufficiently

small as the unit value. The reduction of Niter was 1 (27 to

26, 4%) for all surrogate models. A rapid reduction in EImax

was observed when EImax<10-3 (Fig. 5(c)).

The device specifications of the initial device and globally

optimal device are listed in Table 4. Each specification was

the solution of the complex function in a 5D design space.

With an analytical reasoning alone, it could be difficult

to attain the results that showed that Nsub should be 1016

cm-3 for I∗ON and Z*, but it should be 1017 cm-3 for SS*

with different design parameters such as Nsrc and Ndrn. By

utilizing the automatic ML-based optimization framework,

we can obtain a globally optimized device without intensive

human effort.

We found that the GPR was sufficient for SG nMOSFET

optimization. More than 900 observations were required for

BLR to be more efficient than GPR (Fig. 7). In the 5D SG

nMOSFET optimization, small observations (≪ 900) were

required, so using GPR as a surrogate model, we found that

ESC was robust and efficient.

We optimized the SG nMOSFET with different initial

devices which were generated with 34 different random

seeds. All the optimization runs stopped at ESC: κ for
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FIGURE8: Robustness test of ESC. EImax at T iteration of 34 different initial seeds when it comes to (a) ION, (b) SS, and

(c) Z optimization. Each EImax,T of 34 different optimization is plotted with different colors. Every optimization ended at

ESC. Dashed lines in (a)-(c) indicate ESC value for each optimization: 10-2 A/m for ION, of 10-2 mV/dec for SS, and of

10-6 for Z. Best observed value at M observations of 34 different optimizations when it comes to (d) ION, (e) SS, and (f)

Z optimization. Inset figures depict enlarged optimization results around the global optimum. Best-observed values of 34

different optimization are plotted with different colors. Every optimized values converged to the global optimum. Dashed

lines in (d)-(f) indicate global optimum for each optimization. The globally optimum points are known in advance because

we calculated every device in the input space consisting of 2,800 SG nMOSFETs to confirm that the optimal point from

BO matches the true global optimum of the input space.

FIGURE9: Posterior distribution of SG nMOSFET optimization when it comes to ION, (b) SS, and (c) Z optimization. GPR

and ESC were applied for the optimization. posterior mean (µ̂(x)), with upper/lower bound (µ̂(x)±1.96σ̂(x)) are plotted to

illustrate 95% confidence interval. Posterior values at T iteration were predicted at T-1 iteration. Observed values are plotted

with posterior values. Most of observed values were in the prediction bound. As T increased, prediction mean values got

closer to observed values due to improvement of model accuracy.

ION, SS, and Z were 10-2 A/m, 10-2 mV/dec, and 10-6,

respectively (Figs. 8(a)-(c)). ION, SS, and Z converged to

the global optimum before the EImax met the ESC (Figs.

8(d)-(f)). Few SS optimization runs finished at sub-optimal

points, but the mean deviation of SS optimization from the

global optimum was 0.05 mV/dec, which can be regarded

as negligible in a device analysis.

ESC only required 12.4, 23.1 and 27.4 iterations on
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FIGURE10: Results of NS FET optimization. EImax at T iteration during the optimization of NS FET: (a) τRC, (b) SS, (c) TON,

and (d) Z optimization. Dashed lines in (a)-(d) indicate ESC value for each optimization: 10-4 ps for τRC, of 10-2 mV/dec

for SS, of 10-2 K for TON, and of 10-6 for Z. Best observed value at M observations during the optimization of NS FET:

(e) τRC, (f) SS, (g) TON, and (h) Z optimization. Dashed lines in (e)-(h) indicate optimum for each optimization.

average for the optimization of ION, SS and Z, respectively.

The use of ESC was efficient, because less than 5% obser-

vations of the total of 2,800 devices were needed for the

optimization of the SG nMOSFET on average. Compared

with the previous empirical method which used the stopping

condition of Niter=100 [22], 87.6%, 76.9%, and 72.6%
reductions of required Niter were achieved in optimizations

of ION, SS and Z, respectively.

As explained in (8), the posterior distribution is assumed

to follow normal distribution, N(µ̂(x), σ̂2(x)). We have

depicted posterior mean (µ̂(x)), with upper/lower bound

(µ̂(x)±1.96σ̂(x)), indicating 95% confidence interval (Fig.

9). ION, SS, and Z were optimized using GPR and stopped

at ESC. Posterior values at T iteration were predicted at T-1

iteration. Most of observed values were in the prediction

bound (95% confidence interval). As T got bigger, pre-

diction mean got closer to observation data. It is because

increased training data improved model accuracy. When

T=2, observation data were far from the prediction mean

values in Fig. 9, but got more closer to the prediction mean

when T=7.

A few data were out of the prediction bound at T>7.

It is because the BO is designed to sample training data

near optimum as T increases. The prediction accuracy

for values far from the optimal value got relatively low,

resulting in lower bound overestimation in the maximization

problem, and upper bound underestimation in the mini-

mization problem (T=8 in ION, T=9 in SS, and T=14 in

Z optimization). These out-of-prediction bound data helped

model to improve its prediction accuracy at the next iteration

by changing hyperparameters of the prediction model. There

was improvement of model accuracy after the prediction

failure (see T=8 and T=9 in ION, T=9 and T=10 in SS, and

T=15 and T=16 in Z optimization). Even though prediction

models sometimes failed to predict the observation data

during optimization, we found it did not affect for BO to

find the global optimum because every optimization found

the global optimum before stopping (Fig. 5 and Fig. 8).

Therefore, we found our model assumption in (8) was a

reasonable one for the BO of SG nMOSFETs.

B. APPLICATION TO AN ADVANCED LOGIC DEVICE:

OPTIMIZATION OF 3-NM NODE NS FETS

Next, we applied our BO framework to a highly sophisti-

cated optimization of 3-nm node NS FET. The NS FET is

a front-edge nanoscale device that requires demanding 3D

simulations and involves heat transport as well as a charge

transport. Our goal is the multi-objective optimization of the

3-nm node NS FET to meet industrial standards.

We first carried out a single-objective optimization for

each of the three FOMs: τRC, SS and TON. τRC is defined

as CON×VDD/ION, where CON is the CGG at VGS=VDD-VTH

and TON is the maximum lattice temperature in the device

when VGS=VDD-VTH. Because the industry requires MOS-

FETs having high-speed and low-power consumption, these

FOMs must be minimized. A reduction in τRC improves

the speed of the device, while decreases in the SS and

TON lower the standby and ON-state power consumption of

the device, respectively. TON affects the device performance

and reliability through the SHE which degrades the carrier

mobility and the device lifetime [5].

We set the unit values of τRC, SS, and TON as 10-2

ps, 1 mV/dec, and 1 K, respectively. The corresponding κ
values for the ESC were 10-4 ps, 10-2 mV/dec, and 10-2
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FIGURE11: The schematic view of multi-objective optimization of 3-nm NS FET. First, 3 FOMs are independently optimized

from the initial device. Using the optimized values from the single-objective optimization, 3 FOMs are jointly optimized.

IDS-VGS, CGG-VGS, and the lattice temperature of the initial and optimized devices are drawn in the boxes. Comparison

between the initial and the optimal device are drawn with triangles.

TABLE5: Device Specification in 3-nm node NS FET optimization

Device Lsp [nm] WSH [nm] TG [nm] rvia [nm] ǫsp [ǫ0] τRC [ps] SS [mV/dec] TON [K]

Initial 6.5 37 10 7 1 1.09 77.6 369.0
τ
∗

RC 5.5 40 2 3 1 0.86 73.3 365.5
SS∗ 3 8 18 7 22 5.86 63.6 347.4
T∗

ON 4.5 8 2 7 7.5 2.34 65.0 321.8
Z∗ 6.5 40 2 3 7.5 0.89 75.0 345.1

K, respectively. The single-objective optimization for the

three FOMs was completed at the ESC (Figs. 10(a)-(c)).

The optimization of τRC, SS and TON required 13, 17,

and 19 iterations, respectively. All single-objective device

optimization runs ended within 19 iterations and 95 obser-

vations, which were 0.05% of the total input candidates. The

optimized FOMs were τ∗RC of 0.86 ps, SS∗ of 63.6 mV/dec,

and T∗
ON of 321.8 K (Figs. 10(e)-(g)). We inserted these

extreme values into the target function Z and set δτRC, δSS,

and δTON as 0.01 ps, 1 mV/dec, and 2 K, respectively. More

weight was given to τRC than TON, because a reduction of

0.01 ps, 1 mV/dec and 2 K gives similar increase to Z. The

unit value of Z was 10-4 and the corresponding κ value for

ESC was 10-6.

Multi-objective optimization was completed after 18 iter-

ations when it met the ESC (Figs. 10(d) and 10(h)) corre-

sponding to 0.04 % of the total candidates. The optimum of

Z fulfilled 97% of τ∗RC, 85% of SS∗, and 93% of T∗
ON (Fig.

11). A significant improvement of FOMs compared with the

initial device was obtained. The multi-objectively optimized

device exhibits 22% faster speed with 23.9 K less TON than

initial device.

As shown in Fig.11 and Table 5, τRC was minimized

12 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3101812, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE12: 5D optimization trajectories of NS FET in 3D space when it comes to (a) τRC, (b) SS, (c) TON and (d) Z

optimization. Starting point is marked with blue sphere and the optimal point is marked with green sphere. Different input

points in 5D space are overlapped when they have same input parameters in 3D space. Input parameters were distributed

around the optimal point during optimization. EI values at the last iteration in 2D plane when it comes to (e) τRC, (f) SS, (g)

TON and (h) Z optimization. When 5D input parameters related to EI values have same input parameters at each coordinate

of 2D plane, only the maximum EI value of 2D point was plotted in 2D plane. Inset figures depict enlarged EI distribution

around high values of EI.

by increasing ION through the WSH expansion and the

Lsp reduction and by decreasing CON through TG and rvia

reduction, compared with the initial device. SS and TON

were minimized by reducing power consumption via WSH

reduction. The CON of SS∗ was larger than that of initial

device, and CON of T∗
ON was smaller than the initial one. For

multi-objective optimal point, Z∗, all the device parameters

were finely tuned. Low TON is attributed to Si3N4 spacer

with higher thermal conductivity (18.5 W/K·m) than air

spacer (10-8 W/K·m). The device specifications in Table 5

were the optima of the complex black box function in the

5D design space.

As shown in the previous work [21], we have drawn the

5D optimization trajectories of NS FET in 3D space (Figs.

12(a)-(d)). Different input points in 5D space are overlapped

when they have same input parameters in 3D space. We have

also depicted the distribution of EI values at the last iteration

in 2D plane (Figs. 12(e)-(h)). When 5D input parameters

related to EI values have same input parameters in 2D space,

only the maximum EI value of 2D point was plotted in 2D

plane. As shown in Figs. 12(a)-(d), device input parameters

were distributed around the optimized points tabulated in

Table 5. This can be explained by distribution of EI values

because input parameters which were expected to improve

FOMs were weighted with high EI values as the number

of training data increased and input parameters with high

EI values were sampled during the optimization. In τRC

minimization, input parameters were concentrated on WSH

of 40 nm, TG of 2 nm, ǫsp of 1ǫ0, Lsp of 5.5 nm, and

rvia<4 nm (Fig. 12(a)). This distribution was similar to the

VOLUME 4, 2016 13
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FIGURE13: Posterior distribution of NS FET optimization when it comes to (a) τRC, (b) SS, (c) TON and (d) Z optimization.

GPR and ESC were applied for the optimization. posterior mean (µ̂(x)), with upper/lower bound (µ̂(x) ± 1.96σ̂(x)) are

plotted to illustrate 95% confidence interval. Posterior values at T iteration were predicted at T-1 iteration. Observed values

are plotted with posterior values. Most of observed values were in the prediction bound. As T increased, prediction mean

values got closer to observed values due to improvement of model accuracy.

distribution of high EI values. EI values at the last iteration

were high at wide WSH, thin TG, low ǫsp, Lsp of 6 nm, and

rvia of 3.5 nm (Fig. 12(e)).

In SS minimization, input parameters were distributed

around WSH of 8 nm, TG>10 nm, ǫsp≥7.5ǫ0, and Lsp of 3

nm with large variation of rvia (Fig. 12(b)). High EI values

at the last iteration were calculated around WSH of 8 nm, TG

of 14-18 nm, ǫsp≥7.5ǫ0, Lsp of 3 nm, and almost all range

of rvia (Fig. 12(f)). Because all range of rvia were evaluated

with similar EI values, there were large variation of rvia (Fig.

12(b)).

In TON minimization, input parameters were populated

around WSH of 8 nm, TG of 2 nm, and ǫsp of 7.5ǫ0 with

large variation of Lsp and rvia (Fig. 12(c)). High EI values

were evaluated around WSH of 8 nm, TG of 2 or 10 nm, and

ǫsp≥7.5ǫ0 (Fig. 12(g)). The scattered high EI values (yellow

color) in Lsp-rvia plane explained the large variations of two

parameters (Fig. 12(c)).

In Z maximization, input parameters were crowded

around WSH of 40 nm, TG of 2 nm, ǫsp of 7.5ǫ0 rvia of 3

nm with large variation of Lsp (Fig. 12(d)). The distribution

can be attributed to high EI values near wide WSH, TG of

2 nm, ǫsp of 7.5ǫ0, and rvia of 3 nm (Fig. 12(h)). High EI

values at Lsp of 7 nm at the last iteration implied that EI

values were highly evaluated near the optimum (Lsp of 6.5

nm).

All the MOSFET optimization tasks utilizing our frame-

work required a small number of training data (< 200 obser-

vations). It could be attributed to the sample-efficiency of

BO. As shown in Figs. 12(a)-(d), training data were sampled

around the optimum during optimization. Therefore, BO

required a tiny portion of input space because only the data

near the optimum were needed for training.

As shown in Fig. 13, we have depicted 95% confidence

interval of the prediction model. τRC, SS, TON and Z were

optimized using GPR and stopped at ESC as shown in Fig.

10. Most of observed values were in the prediction bound

(95% confidence interval). Especially, 100% of observed

values of SS during optimization were in the prediction

bound and almost match prediction mean when T≥6. As

T increases, prediction mean got closer to observed data

due to increased training data. When T=2, observed values

were far from the prediction mean values in Fig. 13, but

they got more closer to the prediction mean values when

T>7. Observed data out of the prediction bound helped

model to improve its prediction accuracy at the next iteration

by changing the hyperparameters of the prediction model.

Therefore, we found our model assumption in (8) was a

reasonable one for the BO of NS FETs.

We found that our framework, the Bayesian optimization

of the MOSFET device with ESC which maximized the ef-

ficiency while not impairing the reliability, can significantly

accelerate the development of new transistor devices in

the semiconductor industry. Our framework was extremely

efficient, because it required a tiny number of training data

(0.05% of input space) and small Niter (≪100).

IV. CONCLUSION

We have systematically investigated the ESC of the

Bayesian optimization when applied to the MOSFET design.

By combining TCAD simulations with BO, we used ESC

as the stopping condition for the BO. The ESC values were

tested and explored by utilizing extensively large numbers

of data of SG nMOSFETs. We found that 1% of unit

value was the most efficient and reliable ESC for MOSFET

optimization. Compared with the fixed iteration method and

the tiny constant method, our ESC can reduce the number

of BO iterations by up to 87.6% and 47%, respectively. By

qualitatively analyzing optimization trajectories, we found

that in MOSFET optimization BO required a small number

of training data (≪1,000) because training data were effi-

ciently sampled around the optimum during optimization.

As an example application to a highly sophisticated, ad-

vanced CMOS device, 3-nm node NS FET was optimized by

our framework, where the τRC, SS, and TON were minimized

via multi-objective optimization. Our framework can boost

the BO in the MOSFET design and accelerate the rapid

development of devices to fulfill industrial requirements.

In this work, we limited out study of ESC to MOSFET

optimization only. However, our 1%-of-unit-value rule has
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potential to improve efficiency and reliability of BO in other

engineering problems in general.
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