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This paper addresses discrete optimization via simulation. We show that allowing for both a correlated prior

distribution on the means (e.g., with discrete kriging models) and sampling correlation (e.g., with common

random numbers, or CRN) can significantly improve the ability to identify the best alternative. These

two correlations are brought together for the first time in a highly-sequential knowledge-gradient sampling

algorithm, which chooses points to sample using a Bayesian value of information (VOI) criterion. We provide

almost sure convergence guarantees as the number of samples grows without bound when parameters are

known, provide approximations that allow practical implementation, and demonstrate that CRN leads to

improved optimization performance for VOI-based algorithms in sequential sampling environments with a

combinatorial number of alternatives and costly samples.
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We consider discrete optimization via simulation, in which we have a discrete set of alternative

systems whose performance can each be evaluated via stochastic simulation, and we wish to allocate

a limited simulation budget among them to find one whose expected performance is as large as

possible. Because of its importance, previous authors have proposed algorithms of several types

to address this problem, including randomized search (Andradóttir 1998, 2006, Zhou et al. 2008),

metaheuristics (Shi and Ólafsson 2000), metamodel-based algorithms (Barton 2009, van Beers and

Kleijnen 2008), Bayesian value-of-information algorithms (Chick 2006, Frazier 2010), local search

algorithms (Wang et al. 2013, Hong and Nelson 2006, Xu et al. 2010), model-based search (Hu

et al. 2012, Wang et al. 2010), and ranking and selection algorithms (Kim and Nelson 2006, Chen

and Lee 2010, Branke et al. 2007). Andradóttir (1998) and Fu (2002) provide surveys of the field.
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We study this problem in a Bayesian context, where we place a prior probability distribution on

the values of the alternatives, and use value of information (VOI) calculations within a knowledge-

gradient (KG) sampling algorithm to decide which alternative, or collection of alternatives, would

be most useful to sample next. The advantage of doing so is that making decisions based on the

VOI automatically addresses the exploration versus exploitation tradeoff, and tends to reduce the

number of function evaluations required on average to reach a given solution quality, potentially

(but not necessarily) at the cost of requiring more computation to decide where to sample.

The prior probability distribution that we consider is a multivariate normal distribution, and

allows for correlation in our prior belief between two alternatives. This models a belief that two

alternatives with similar characteristics often have similar expected performance, and allows the

algorithm that we construct to do well even in problems where the number of alternatives is much

larger than the number of samples that we can take.

We allow common random numbers (CRN), in which multiple alternatives are simulated using

the same stream of random numbers. This induces correlation in the noise, which can be advanta-

geous for optimization when the correlation is positive, because it allows more accurate estimation

of the differences between alternatives’ values.

Several previous authors have considered Bayesian formulations of optimization via simulation.

The setting most frequently studied is that of ranking and selection, with relatively few alternatives,

an independent prior distribution, and independent sampling (Gupta and Miescke 1996, Chick and

Inoue 2001b, Frazier et al. 2008, Chick and Frazier 2012). Bayesian optimization via simulation

with correlated prior distributions (but not with CRN) for problems with many alternatives was

considered in a discrete setting (Frazier et al. 2009) and in a continuous setting (Villemonteix et al.

2009, Huang et al. 2006, Scott et al. 2011). This work in a continuous setting parallels work on

noise-free Bayesian global optimization (Jones et al. 1998, Forrester et al. 2008, Brochu et al. 2009).

Our analysis differs from this previous literature by allowing the use of CRN. This has been

perceived to be difficult, because sampling with CRN makes it difficult to compute the VOI, and to

maintain a closed-form posterior distribution. We overcome these difficulties by calculating the VOI

for observing the difference in value between two alternatives, which can be done analytically, and

by calculating the posterior with adaptively updated point estimates of the noise covariance. We

show that, in the context of VOI-based algorithms, using CRN can greatly improve performance.

Sampling with correlated means and CRN in the Bayesian setting using VOI methods has

been considered by Chick and Inoue (2001a), but assumed two-stage sampling rather than fully

sequential sampling, and restricted attention to conjugate prior distributions for the unknown

means. Others have considered sampling with CRN in the optimal computing budget allocation

framework (Fu et al. 2004), in the indifference-zone setting (Clark and Yang 1986, Nelson and
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Matejcik 1995), and in the multiple comparisons problem (Yang and Nelson 1991, Nakayama 2000,

Kim 2005). The current work differs from this previous work in its focus on problems with many

alternatives, enabled by a multivariate normal prior distribution with arbitrary covariance.

The current work, in its use of multivariate normal prior distributions, makes a link to Gaussian

process (GP) priors (Rasmussen and Williams 2006) and stochastic kriging (Ankenman et al. 2010,

Chen et al. 2012, 2013). When alternatives correspond to points on a grid, as they do in many

resource allocation problems (e.g., each alternative specifies the number of each of several employee

types to have present), our use of a multivariate normal prior distribution can be implemented by

placing a GP prior over the continuum, and then only considering points on the grid.

We present three techniques that reduce the computation required to find a point, or pair of

points, with a large VOI. The first is to use the gradient of the VOI in performing this search,

calculating it over an embedding of our discrete alternatives into a continuous space. This use of

the gradient of the VOI differs from the more common use of gradients of the response surface in

optimization. The second is to consider a VOI with a restricted set of implementation decisions.

The third is to use data structures that avoid enumerating alternatives, instead tracking only

those alternatives that have been sampled, and reconstructing required portions of the posterior

distribution as needed. This is standard in GP regression, but contrasts with previous work on

optimization via simulation with CRN (Clark and Yang 1986, Nelson and Matejcik 1995, Chick

and Inoue 2001a, Fu et al. 2004). These three techniques were applied in Scott et al. (2011) to a

continuous setting without CRN.

We also provide an almost sure guarantee of convergence to the global optimum, as the number of

samples taken grows without bound, when parameters are known. In addition to allowing correlated

sampling, this theoretical result contrasts with Scott et al. (2011) in having conditions that are

easier to verify. It also contrasts with other work that focuses on convergence to local optima (Hong

and Nelson 2006, Xu et al. 2010, Wang et al. 2013).

The current paper extends a report of our preliminary work (Frazier et al. 2011) in a number

of ways. It provides an enhanced version of the algorithm that scales to much larger problems, a

theoretical analysis showing convergence to a global optimum, a derivation of a maximum likelihood

estimation method for estimating covariance parameters from samples observed with CRN, and

additional numerical comparisons with other algorithms on larger problems.

We begin in §1 by formally defining our problem and the statistical model in which we perform

inference. §2 describes a generic sampling algorithm that forms the basis for specific sampling

algorithms defined later in the paper. §3 defines the VOI and the corresponding KG factor, and

shows how it can be computed in the context of optimization via simulation with correlated sam-

pling. §4 takes these VOI and KG computations, and uses them to create allocation rules for the



Xie, Frazier, and Chick: Bayesian Optimization via Simulation with Pairwise Sampling and Correlated Prior Beliefs

4 Article submitted to ; manuscript no. (Please, provide the manuscript number!)

KG sampling algorithm. §5 states theoretical results on consistency of KG algorithms, showing

that these algorithms can produce consistent estimates of the global optimum in the limit as the

sampling budget grows large, when parameters are known. §6 discusses practical implementation

issues, regarding prior distributions and computation of the KG algorithm’s decisions. Numerical

results in §7 show a distinct advantage to the ability to sequentially sample with CRN in discrete

optimization via simulation problems. Appendices prove theoretical results and derive gradient and

statistical estimation results used in the algorithm.

1. Sampling Model and Mechanism for Posterior Inference

Consider a collection of k alternatives with stochastic performance. If we sample from all k alter-

natives together using CRN, then we observe a normal random vector. Let the mean vector of this

normal distribution be θ = [θ(1), . . . , θ(k)]
T
, and let its covariance matrix be Λ, where T denotes

matrix transposition. We wish to find the alternative x with the largest sampling mean θ(x).

We use a Bayesian formulation, in which we begin with a multivariate normal prior on θ,

θ∼N (µ0,Σ0). (1)

The choice of Σ0 allows for conjugate prior distributions for θ (Chick and Inoue 2001a) or for

GP priors (Rasmussen and Williams 2006), which are related to kriging models (Cressie 1993). A

parametric family can be used to specify µ0 and Σ0 in terms of a function taking the alternatives

and few additional parameters as arguments. In practice, the parameters specifying µ0 and Σ0, as

well as the sampling covariance Λ, are unknown, but we will initially assume they are fully known

for simplicity. Then, we will relax this assumption in §6.
In this paper, the ith entry of a length-k vector v (e.g., θ and µ0) is written v(i), and the (i, j)th

entry of a k-by-k matrix M (e.g., Σ0 and Λ) is written M(i, j). Moreover, for an ordered collection

of m alternatives ~x= (x(1), x(2), . . . , x(m)) with elements x(i) ∈ {1,2, . . . , k} for each i, we use v(~x)

to denote the length-m sub-vector of v with the ith entry equal to v
(
x(i)

)
. Let ~x′ with elements in

{1,2, . . . , k} be another vector of alternatives with m′ entries. We denote by M(~x,~x′) the m-by-m′

sub-matrix of M with the (i, j)th entry equal to M
(
x(i), x′(j)

)
.

1.1. Sampling Model and Distribution of Outputs

At each time n= 1,2, . . . we choose a set of the alternatives to sample, specified as a row vector ~xn

with elements in {1,2, . . . , k}, and sample each of the chosen alternatives once using CRN. Each

alternative may appear at most once in ~xn. We then observe a column vector ~yn, with one entry for

each alternative sampled. The conditional distribution of ~yn given ~xn, θ is assumed to be Gaussian

and independent of previous observations,

~yn | θ,~xn, (~xm, ~ym :m<n) ∼N (θ (~xn) ,Λ(~xn, ~xn)) . (2)
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Although (2) is general, in our algorithm below, the sampling decision ~xn is either a singleton

xn, with corresponding observation yn, or a pair of alternatives
(
x(1)
n , x(2)

n

)
, with corresponding

observations (y(1)
n , y(2)

n ). The notation ~xn and ~yn indicates the general case, in which one or more

alternatives is sampled, while xn and yn always indicates a single alternative. The sampling distri-

bution of (2) for these two cases (singletons and pairs) are

yn | θ,xn ∼ N (θ(xn),Λ(xn, xn)) , and

(y(1)
n , y(2)

n ) | θ,
(
x(1)
n , x(2)

n

)
∼ N

([
θ
(
x(1)
n

)

θ
(
x(2)
n

)
]
,

[
Λ
(
x(1)
n , x(1)

n

)
Λ
(
x(1)
n , x(2)

n

)

Λ
(
x(2)
n , x(1)

n

)
Λ
(
x(2)
n , x(2)

n

)
])

.

These sampling distributions are sufficient for calculating posterior distributions from obser-

vations in the sampling algorithms that we propose, but when computing the VOI in §3 below,

we will also consider three additional sampling distributions. First, we will consider the sampling

distribution of observing only the difference between a pair
(
x(1)
n , x(2)

n

)
of alternatives,

y(1)
n − y(2)

n | θ,
(
x(1)
n , x(2)

n

)
∼N

(
θ
(
x(1)
n

)
− θ

(
x(2)
n

)
,Λ

(
x(1)
n , x(1)

n

)
+Λ

(
x(2)
n , x(2)

n

)
− 2Λ

(
x(1)
n , x(2)

n

))
.

Second, we will consider the sampling distribution of observing not necessarily one but βn ≥ 1

vectors of samples from the distribution given by (2), each generated using an independent CRN

stream. We do this to compute an average VOI per sample. The value of βn can be fixed beforehand,

or can be chosen adaptively. We generalize ~yn to refer to the average of these βn observations, so

~yn | θ,~xn, βn ∼N (θ (~xn) ,Λ(~xn, ~xn)/βn) . (3)

Third, we will consider the sampling distribution of observing βn ≥ 1 independent differences

between a pair
(
x(1)
n , x(2)

n

)
, continuing to let ~yn = (y(1)

n , y(2)
n ) denote the average of these observations,

y(1)
n −y(2)

n | θ,
(
x(1)
n , x(2)

n

)
, βn ∼N

(
θ
(
x(1)
n

)
− θ

(
x(2)
n

)
,
[
Λ
(
x(1)
n , x(1)

n

)
+Λ

(
x(2)
n , x(2)

n

)
− 2Λ

(
x(1)
n , x(2)

n

)]
/βn

)
.

(4)

These last three sampling distributions are used only to compute the VOI. In the sampling algo-

rithms that we propose, we always observe from both alternatives when sampling from a pair, and

take only one sample at a time from a singleton or pair even when we calculate a VOI with βn > 1.

1.2. Posterior Distribution for Unknown Means and its Computation

With the sampling scheme in (2), and the assumption that the sampling covariance matrix Λ is

known, we can compute a closed-form expression for the posterior distribution on θ. We let En

and Varn indicate the conditional expectation and variance respectively with respect to the data

~x1, ~y1, ~x2, ~y2, . . . , ~xn, ~yn, where each ~yn is sampled according to (2). Define µn =Enθ and Σn =Varnθ.

The posterior distribution on θ is normal (see, e.g., Gelman et al. 2004, Sec. 14.6),

θ | ~x1, ~y1, ~x2, ~y2, . . . , ~xn, ~yn ∼ N (µn,Σn) ,
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where the posterior mean µn and variance Σn can be computed analytically, either directly from

the prior and the full data, or recursively, updating as each new datapoint ~xn, ~yn is added.

When the number of alternatives k is large, it is computationally infeasible to store all of µn and

Σn, because Σn is a k-by-k matrix. Therefore, we use a method commonly used in GP regression,

which calculates the posterior distribution on the sampled alternatives and any desired additional

alternatives, without requiring a k-by-k matrix. We briefly describe this method here, giving some

notation to be used later, and focusing on singletons and pairs.

Let Xn denote the cumulative row vector of alternatives sampled from time 1 to time n, i.e.,

the concatenation of ~x1, ~x2, . . . , ~xn into a row. Alternatives appear more than once if they are

sampled more than once. For example, if ~x1 = x1 and ~x2 =
(
x
(1)
2 , x

(2)
2

)
, then X1 = (x1) and X2 =(

x1, x
(1)
2 , x

(2)
2

)
. In addition, if x1 = x

(1)
2 = x then X2 =

(
x,x,x

(2)
2

)
.

In §3 we will compute the VOI for an arbitrary (singleton or pair) sampling decision ~x at time

n+ 1. Let the vector Xn,~x denote the row concatenation of Xn and ~x. To compute the VOI, we

require the posterior distribution on θ (Xn,~x), which is multivariate normal with mean µn (Xn,~x) and

covariance Σn (Xn,~x,Xn,~x). We introduce the following expressions for computing these quantities.

Let Yn be the cumulative column vector of sampling observations up to time n, i.e., the columnar

concatenation of ~y1, ~y2, . . . , ~yn, so each entry of Yn is the observation from the corresponding entry

in Xn. Let Γn be the block diagonal matrix with n blocks: Λ(~x1, ~x1),Λ(~x2, ~x2), . . . ,Λ(~xn, ~xn). We

then define three quantities, the measurement residual Ỹn, the residual covariance Sn, and the

optimal Kalman gain Kn(~x), by

Ỹn =Yn −µ0 (Xn) , Sn =Σ0 (Xn,Xn)+Γn, Kn(~x) =Σ0 (Xn,~x,Xn,~x)L [Sn]
−1

. (5)

Here, the matrix L is defined by concatenating an |Xn|-by-|Xn| identify matrix with an |Xn|-by-|~xn|
matrix of zeros, so L= [I|Xn|,~0]

T if ~x= x, and L= [I|Xn|,~0,~0]
T if ~x=

(
x(1), x(2)

)
. Here and elsewhere,

| · | denotes the length of a vector. We will assume in §5 that Σ0 and Λ are positive definite. That

assumption implies that Σ0 (Xn,Xn) is positive semidefinite and that Γn is positive definite, so that

Sn is positive definite and that its inverse [Sn]
−1 exists.

The posterior mean and covariance matrix of θ (Xn,~x) at time n are then given respectively by

µn (Xn,~x) = µ0 (Xn,~x)+Kn(~x)Ỹn, (6)

Σn (Xn,~x,Xn,~x) =
(
I|Xn,~x|

−Kn(~x)L
T
)
Σ0 (Xn,~x,Xn,~x) . (7)

In implementing (5), one should not invert Sn directly, as doing so when n is large is numerically

unstable. Instead, one can perform a Cholesky decomposition, and then solve a numerical system,

as is described in Sec. 2.2 of Rasmussen and Williams (2006). This is more stable, and faster. For

further discussion of implementation issues in GP regression, see Rasmussen and Williams (2006).
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2. Generic Sampling Algorithm

We now formalize our proposed DOvS algorithm. The notation in §1 allows us to formalize it in a

way that is amenable to handling a very large number of alternatives: statistics are tracked only

for alternatives that have been sampled or are being considered for sampling in the next stage.

The algorithm samples in a sequential manner. This requires the specification of an allocation

rule, which maps Xn,Yn to a set of alternatives to sample next, and a stopping rule, which decides

whether or not to stop sampling. The allocation rules we use are based on VOI principles described

in §3 and are presented in §4. The default stopping rule we use in this paper is to stop after a

pre-specified number of samples is observed.

The generic algorithm below is written to be able to handle either a known or an unknown

sampling covariance matrix Λ. When it is unknown, as is typical in applications, the sampling

covariance parameters are estimated. In this case, we also maintain estimates of the parameters µ0

and Σ0 defining the prior distribution in an empirical Bayes fashion, as described below.

1. Initialize: Select an allocation rule and a stopping rule. If the sampling covariance Λ and

the mean vector µ0 and the covariance matrix Σ0 for the unknown sampling means θ are known,

then specify these parameters, initialize n= 0 to be the number of stages of sampling done so far,

and initialize X0 and Y0 to be empty vectors. If Λ, µ0 and Σ0 are not all known, then describe

the functional forms of Λ, µ0 and Σ0 in terms of a collection of parameters (see §6.1), and take an

initial stage of samples to estimate those parameters, setting n, Xn and Yn accordingly (see §6.2).
2. Update parameters (Empirical Bayes): If the parameters determining Λ are unknown

and their estimates are to be updated, then use the maximum likelihood estimator described in

§6.2 to estimate them using all data (collected in Xn and Yn).

3. Check allocation and stopping rule: If the stopping rule says to stop sampling, go to

Step 5. Otherwise, use the allocation rule to choose a set of alternatives, ~xn+1, to sample next.

4. Sample: Sample ~yn+1 using CRN according to (2) with the chosen ~xn+1. Concatenate ~yn+1

with Yn to get Yn+1, and ~xn+1 with Xn to get Xn+1. Increment n and go back to Step 2.

5. Selection rule: Select as the best the alternative in Xn with the largest posterior mean. The

can be found by computing µn(Xn) according to (6) with Xn,~x = Xn, and then taking the largest

component of this vector.

3. Value of Information

In this section we derive analytic expressions for computing the VOI, resulting from sampling

singletons, or sampling the difference between pairs of alternatives. These VOI calculations are

then used to derive our allocation rules in §4 for use in the algorithm of §2.
VOI is a concept which encompasses the expected value of sample information (EVSI) and the

expected value of perfect information (EVPI) (Raiffa and Schlaifer 1961). Information is valued
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according to the expected improvement it produces in some decision to be made later. In this paper,

the decision to be made later is which alternative to select as the best and to implement in reality.

We call this decision the “implementation decision.” The value of an implementation decision x is

θ(x) and has expectation µn+1(x) under the posterior at time n+1. Thus, the expected value of the

best implementation decision that can be made at time n+1 is maxx∈{1,2,...,k} µn+1(x) =maxµn+1.

The increment in this value in going from time n to time n+1 is maxµn+1 −maxµn and depends

on yn+1. Here, the VOI is the expected value of this increment, under the posterior at time n,

under the hypothetical that an alternative is to be selected after a single stage of sampling.

In this framework, the VOI for a set of β samples collected by observing ~yn+1 with a general

sampling decision ~x at time n+1 according to (2) can be written

Vn(~x,β) =En [maxµn+1 | ~xn+1 = ~x,βn+1 = β]−maxµn. (8)

If the implementation decision is restricted to a set An(~x) that may depend upon on Xn,Yn and

~x, then the VOI is

Vn (~x,An(~x), β) =En [max [µn+1 (An(~x))] | ~xn+1 = ~x,βn+1 = β]−max [µn (An(~x))] . (9)

When An(~x) = {1,2, . . . , k}, then Vn(~x,An(~x), β) = Vn(~x,β). This VOI also satisfies a monotonic-

ity property: if A ⊆ B then Vn(~x,A,β) ≤ Vn(~x,B,β). This monotonicity property implies that

Vn(~x,An(~x), β) is actually a lower bound on Vn(~x,β).

There is no restriction on the implementation decision in practice, but we use Vn(~x,An(~x), β) as

an approximation to Vn(~x,β) because it can be computed more quickly, especially when |An(~x)| is
small. Methods for choosing An(~x) are discussed in §6.3.

3.1. Predictive Distribution for Posterior Means to be Observed

The VOI in (8) or (9) depends on the predictive distribution for µn+1(A) that results from a

particular decision to sample ~xn+1 for βn+1 times, for any given set A. We consider two specific types

of sampling decisions ~xn+1: observing singletons ~xn+1 = (xn+1) as in (3); and observing the difference

between a pair of alternatives ~xn+1 =
(
x
(1)
n+1, x

(2)
n+1

)
as in (4). Observing either the singleton yn or

the difference y(1)
n − y(2)

n admits an analytic expression for Vn(~x,A,β) below. Observing both y(1)
n

and y(2)
n together does not: we use the VOI of sampling their difference as a lower bound on the

VOI of observing both values. This lower bound proves to be useful in numerical experiments.

For both singletons and differences between pairs, the predictive distribution is

µn+1(A) | Xn,Yn, ~xn+1, βn+1 ∼ N
(
µn(A), σ̃n (~xn+1,A,βn+1) σ̃n (~xn+1,A,βn+1)

T
)
, (10)
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where σ̃n (~xn+1,A,βn+1) is a |A| × 1 vector defined respectively in the two cases as

σ̃n(x,A,β) =
Σn(A,x)√

β−1Λ(x,x)+Σn(x,x)
,

σ̃n

((
x(1), x(2)

)
,A,β

)
=

Σn

(
A,x(1)

)
−Σn

(
A,x(2)

)
√
β−1P +Qn

,

(11)

which follows directly from Frazier et al. (2011, Sec. 2.2). Here, Σn(A,x) is a column vector con-

taining the entries from Σn in column x with rows in A, and P and Qn are defined by

P =Λ
(
x(1), x(1)

)
+Λ

(
x(2), x(2)

)
− 2Λ

(
x(1), x(2)

)
,

Qn =Σn

(
x(1), x(1)

)
+Σn

(
x(2), x(2)

)
− 2Σn

(
x(1), x(2)

)
.

(12)

This expression will be used in §3.2 to compute the VOI in (9) explicitly.

3.2. Evaluation of the Value of Information

We now provide explicit expressions for the VOI in (9) under observations of singletons and of

differences between pairs. From (10), we know that when Xn, Yn, ~xn+1 and βn+1 are given, µn+1(A)

is equal in distribution to µn(A) + σ̃n(~xn+1,A,βn+1)Z, where Z is a standard normal random

variable. Using this observation in (9) shows that

Vn (~x,An(~x), β) =En [max [µn (An(~x))+ σ̃n (~x,An(~x), β)Z]]−max [µn (An(~x))] . (13)

To compute (13), we consider three cases: when An(~x) has one, two, or more than two elements.

This third case is the most common in the allocation rules developed in §4.
When An(~x) has exactly one element, one can show using the tower property of conditional

expectation that Vn (~x,An(~x), β) = 0. In other words, if only one alternative can ever be selected,

information has no value.

When An(~x) has exactly two elements, computation of Vn (~x,An(~x), β) is similar to related

computations for the VOI in a pairwise comparison (Frazier et al. 2008, Jones et al. 1998, Chick

and Inoue 2001a). Namely, let ∆ be the absolute value of the difference of µn(x) between the two

different x ∈ An(~x), and let s be the absolute value of the difference of the two components of

σ̃n (~x,An(~x), β). Then

Vn (~x,An(~x), β) = sf(−∆/s),

where f(−z) =ϕ(z)− zΦ(−z), and ϕ and Φ are the density and cumulative distribution functions,

respectively, of a standard normal random variable.

When An(~x) contains more than two elements, computation of Vn (~x,An(~x), β) is more involved,

but still can be performed analytically. Recalling (13), we see that we can write

Vn (~x,An(~x), β) = h (µn (An(~x)) , σ̃n (~x,An(~x), β)) , (14)
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where h(a, b) = E [maxi a(i)+ b(i)Z]−maxi a(i) for two vectors a and b of equal length. Frazier

et al. (2008) gives an exact algorithm for computing h and Frazier (2009–2010) provides a Matlab

implementation. More details are given below in §6.3.
In situations where some entries in the sampling covariance Λ are negative, independent sampling

for the pairs of alternatives corresponding to these entries is preferred over correlated sampling.

More generally, the VOI increases as the sampling correlation increases. This is shown by the

following lemma, and is used in our sampling algorithm to improve performance.

Lemma 1. Suppose ~x=
(
x(1), x(2)

)
. Let µn, Σn, Λ

(
x(1), x(1)

)
, Λ

(
x(2), x(2)

)
be fixed. Then for any

A and β, Vn (~x,A,β) is an increasing function of the sampling correlation between x(1) and x(2),

ρ
(
x(1), x(2)

)
=

Λ
(
x(1), x(2)

)

Λ(x(1), x(1))Λ(x(2), x(2))
.

3.3. Knowledge Gradient Factors

The knowledge-gradient (KG) factor is a metric that measures the VOI per sample, when a given

alternative ~x is sampled β times before an implementation decision. Qualitatively, it is a rate of

information per sample. The allocation rules in §4 will make use of the KG factor when making a

sampling decision at each stage of sampling. The KG factor uses the predictive distribution in (10)

and the computational cost c(~x) of sampling at ~x, measured by the computation time required.

Thus, the KGβ factor at time n for observing the value at a given singleton x∈ {1,2, . . . , k} is

ν
KGβ
n (x) = Vn (x,An(x), βn)/[βnc(x)], (15)

where βn and An(·) may be chosen in an implementation-specific way (see §6.3). Similarly, the KGβ

factor at time n for observing the difference in value between a pair of alternatives
(
x(1), x(2)

)
is

ν
KGβ
n

(
x(1), x(2)

)
= Vn

((
x(1), x(2)

)
,An

(
x(1), x(2)

)
, βn

)/[
βnc

((
x(1), x(2)

))]
. (16)

If the computation time for a sample does not depend on ~x, then c(~x) = c|~x|, where c is a positive

constant cost per sample, and |~x| is the length of ~x. We adopt this model in numerical tests below.

4. Allocation Rules

This section discusses allocation rules, which use previous sampling information to decide how to

take the next sample or samples, and which appear in Step 3 of the generic sampling algorithm in

§2. The allocation rules discussed all search over a set of possible sampling decisions to find the

one with the largest KGβ factor, but differ in the way in which this search is performed.

Let Ξ= {1,2, . . . , k}∪
{(

x(1), x(2)
)
∈ {1,2, . . . , k}2 : x(1) 6= x(2)

}
denote the set of all singletons and

pairs. For each allocation rule below, we let Ξn ⊆ Ξ denote a possibly smaller set, and at each
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iteration n, the allocation rule selects the sampling decision that maximizes the KGβ factor from

§3.3 over this set,

~xn = argmax
~x∈Ξn

ν
KGβ
n (~x). (17)

Certain ways of choosing the Ξn will be shown to improve the computation time of the algorithm

while retaining theoretical convergence guarantees (in §5) and good empirical performance (in §7).
When calculating the KGβ factor ν

KGβ
n (~x), we replace strictly negative entries in the sampling

covariance matrix Λ by 0, because Lemma 1 shows that this generates a larger VOI and corre-

sponding KGβ factor. Then, if a pair of alternatives whose sampling covariance was replaced by 0

is selected for simulation by our allocation rule, we use independent sampling rather than CRN to

simulate these alternatives. Otherwise, we use CRN when sampling pairs.

The expression (17) depends upon the choice for Ξn, and implicitly on the choice of βn and An(~x)

used to calculate ν
KGβ
n (~x). Thus, different allocation rules are specified by different methods for

choosing Ξn, βn, and An(~x). We define a class of allocation rules, called KG2
β allocation rules,

to be any that includes at least one singleton and one pair of alternatives in Ξn, and includes both

x(1) and x(2) in An(~x), if ~x =
(
x(1), x(2)

)
, for each n. Within this larger class, we now define two

more specific types of KG2
β allocation rules, which place additional conditions on Ξn.

An idealized KG2
β allocation rule (proposed in Frazier et al. 2011) is one in which Ξn = Ξ for

each n. Thus, an idealized KG2
β allocation rule looks over all the singleton and pairwise-difference

KGβ factors and finds the largest one. A specific instance of an idealized KG2
β allocation rule would

require specifying a choice for βn and An(~x).

When k is large, the exhaustive maximization performed by an idealized KG2
β rule is too compu-

tationally intensive. Frazier et al. (2011) proposed an alternative to this exhaustive maximization,

which checks only singletons and a subset of pairs of alternatives, but even that approach is too

computationally intensive when k≫ 103 and is not easily amenable to theoretical analysis.

To allow for better performance in large problems in a way that also supports theoretical analysis,

we propose here a new class of KG2
β allocation rules, called accelerated KG2

β allocation rules, which

can be used when the alternatives are embedded in an integer lattice, or some other space that

supports local search. An accelerated KG2
β allocation rule is one that chooses at least one singleton

from {1,2, . . . , k} and at least one pair from
{(

x(1), x(2)
)
∈ {1,2, . . . , k}2 : x(1) 6= x(2)

}
, adding these

to Ξn. Then, starting at each chosen singleton or pair ~x, it applies a function f̃ , which we call a

“local search function”, to produce a point f̃(~x), and adds this point to Ξn as well. The singleton or

pair in Ξn with the best KG factor is then selected for evaluation, according to (17). The function

f̃ can be defined in an implementation specific way, but would usually be designed to find a local

optimum of the KG factor in the neighborhood of the passed input sampling decision.
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Thus, an accelerated KG2
β allocation rule is specified by a rule for choosing the starting singletons

and pairs, and for βn, An(~x), and f̃ . One choice for f̃ , implemented using a gradient-based local

search appropriate for alternatives corresponding to an integer lattice, is provided in §6.3. Another

choice, the identity map, f̃(~x) = ~x, results in a form of random search.

The class of KGβ allocation rules is defined analogously to the class of KG2
β allocation rules,

except that only singletons (not pairs) may be sampled. That is, Ξn ⊆ {1,2, . . . , k} in (17) for KGβ

allocation rules. The notions of idealized and accelerated KGβ allocation rules are defined as for the

KG2
β allocation rules above, except that pairs are not included in the search. When Ξn = {1, . . . , k},

An(~x) = {1, . . . , k}, and βn = 1, we recover the allocation rule proposed in Frazier et al. (2009).

5. Convergence Properties

This section shows that the generic sampling algorithm from §2, when used with known Λ, µ0, and

Σ0, and with a KG2
β allocation rule from §4 satisfying mild conditions, samples every alternative

infinitely often, so that we learn the value of every alternative, and are able to find a global

maximum x∗ ∈ argmaxx θ(x) almost surely in the limit as the number of samples grows without

bound. Frazier et al. (2009) proved these consistency results for the idealized KGβ algorithm with

An(~x) = {1, . . . , k} and βn = 1, and so the results here can be viewed as a generalization to KG2
β

and to algorithms that do not require exhaustive optimization over all alternatives. The presence

of sampling correlations, however, require substantially different proof techniques from those used

in Frazier et al. (2009).

These results depend up two assumptions and a condition, which are stated precisely below.

The first assumption states that we require the parameters governing Λ, µ0, and Σ0 to be known

and fixed. The second assumption states that there is genuine uncertainty about each alternative’s

performance. The condition restricts the choice of KG2
β allocation rule, and is satisfied by the

idealized KG2
β and accelerated KG2

β allocation rules from §4 as long as every ~x ∈ Ξ is chosen as a

starting point for the local search infinitely often, with probability one.

Assumption 1. µ0, Σ0 and Λ are known.

Assumption 2. Σ0 and Λ are positive definite.

Condition 1. Each ~x∈Ξ is included in Ξn infinitely often, with probability 1.

We now state our main result: that we become certain of the vector of true means θ eventually, as

the conditional variance Σn(x,x) of θ(x) converges to 0, and the conditional mean µn(x) converges

to θ(x), for each x; and that the implementation decision that would be chosen if sampling stopped

at time n, argmaxx µn(x), is eventually globally optimal. The proof may be found in Appendix A.

Theorem 1. If Assumptions 1 and 2 hold, and if sampling occurs according to a KG2
β allocation

rule satisfying Condition 1, then: limn→∞Σn(x,x) = 0 almost surely for each x; limn→∞ µn(x) = θ(x)

almost surely and in L2 for each x; and limn→∞ argmaxx µn(x) = argmaxx θ(x) almost surely.
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6. Implementation Features and Practicalities

This section discusses practical implementation choices arising in the generic algorithm in §2 and

allocation rules in §4. This includes the specification of the functional form of the prior distribution

and structure of the initial stage of sampling in Step 1, the empirical Bayes estimator used to

assess µ0, Σ0 and Λ in Step 2, the choice of An(~x) and βn used in KG2
β allocation rules, and

derivations of the gradients of the VOI and KG factors used by accelerated KG2
β allocation rules.

The convergence results in §5 do not depend on how these implementation issues are addressed, as

long as Assumptions 1, 2 and Condition 1 are valid.

Several of the implementation choices discussed assume that the k alternatives may be repre-

sented as elements in a lattice in Z
d. For example, in a manufacturing problem, there may be d

decision variables, each of which represents the number of resources (machines, employees with

given skill sets, etc.) that combine to define a specific alternative manufacturing system design.

That is, for any alternative x, we can specify its grid coordinates {ζi(x)}di=1.

6.1. Functional Form of the Prior Distribution and Sampling Covariance (Step 1 of
Generic Sampling Algorithm)

Step 1 of the generic sampling algorithm requires specification of the functional form of the sampling

covariance and prior distribution for the unknown means, either fully, or more frequently in terms

of parameters to be estimated later in Step 2. We discuss this choice here.

The functional form of the sampling covariance Λ is considered first. While several different forms

are possible, we assume compound sphericity for simplicity. The compound sphericity assumption

means that Λ can be specified with exactly two parameters: a common sampling variance σ2
ǫ on the

diagonals and a common sampling correlation across any pair of alternatives, ρ. All off-diagonal

elements of Λ are the same. While the compound sphericity assumption is strong, it has been

used by others to model the effect of CRN (Schruben and Margolin 1978, Tew and Wilson 1992),

including in the context of CRN with kriging (Chen et al. 2012).

We now discuss the functional form of the prior distribution for the unknown means. When

the alternatives may be embedded in a lattice, there may be a belief that the performance of

two alternatives that are ‘near’ each other in this lattice are more likely to be similar than the

performance of two alternatives that are ‘distant’ from each other. This motivates the notion

that the prior distribution may be a multivariate normal distribution under which the covariance

between the values of any two alternatives is a decreasing function of their distance from each

other on the lattice. This is analogous to covariance functions used in GP priors over continuous

functions. Inspired by this link to GP priors, we adopt the commonly used Gaussian kernel.

Σ0 (x,x
′) = σ2

0 exp

{
−

d∑

i=1

αi [ζi(x)− ζi(x
′)]

2

}
. (18)
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Here σ2
0 is the homogeneous prior variance of the unknown means and ~α = {αi}d1 is a vector of

scaling parameters. We also let η be a parameter for the mean in this model and let ~1 be a vector

of k ones, so that (18) and µ0 = η~1 define the prior distribution in (1).

Specification of the prior distribution parameters µ0,Σ0 can therefore be accomplished by spec-

ifying σ2
0, ~α, and η. Kernels other than that in (18) would be handled similarly.

6.2. Initial Stage of Sampling (Step 1 of Generic Sampling Algorithm) and
Empirical Bayes Parameter Update (Step 2 of Generic Sampling Algorithm)

Here we discuss the initial stage of sampling performed in Step 1, and the periodic empirical Bayes

updates performed in Step 2 of the generic sampling algorithm. These steps are used when Λ, µ0

or Σ0 or some parameters of their functional forms are unknown, and require some estimation.

If an initial stage of sampling is required, we randomly select a set ~x01 of N1 alternatives, sample

once from each of them using CRN, sort them in descending order, and then take another sample

from each of the first N2 alternatives, denoted by the vector ~x02, using CRN (N2 <N1). We initialize

the number of stages sampled so far to be n = 2 (one for each use of CRN), X2 to be the row

concatenation of ~x01 and ~x02, and Y2 to be the outputs at those alternatives.

Once this initialization stage of samples is complete, and also periodically thereafter according

to a fixed schedule, we estimate the parameters determining µ0, Σ0, and Λ in Step 2 of the generic

sampling algorithm using a maximum likelihood estimator (MLE). Appendix B derives a MLE

assuming that µ0, Σ0, and Λ take the functional form specified in §6.1, which has parameters σ2
0, ~α,

η, σ2
ǫ and ρ. This use of maximum likelihood estimation to estimate parameters within a Bayesian

model is known as an empirical Bayes approach, and is common in GP regression. Relaxing the

compound sphericity assumption or using a different GP prior in our proposed algorithm simply

involves providing an alternative MLE for Λ, µ0 and Σ0.

We let N3 denote the set of times at which the MLE will be performed, so N3 contains N1+N2. If

computation time for the allocation rule is unimportant (e.g., because the simulations themselves

are very time-consuming), one may perform the MLE before each new stage of sampling, in which

case N3 = {N1 +N2,N1 +N2 + 1,N1 +N2 + 2, . . .}. In other situations, because computation of

the MLE may be time-consuming, it may be beneficial to avoid recomputing the MLE at every

stage. In our implementation, we update the MLE more frequently at first when additional samples

tend to have more impact on parameter estimates, and then less frequently as more samples are

acquired. If the parameters are known, we may skip these updates by setting N3 = ∅.

6.3. Local Search Function and Other Implementation Choices in KG Allocation
Rules (Step 3 of Generic Sampling Algorithm)

This section discusses implementation-specific choices for An(~x) and βn in idealized and accelerated

KGβ and KG2
β allocation rules. Additionally, for accelerated allocation rules, it discusses the choice

of Ξn and the local search function f̃ .
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Except where otherwise noted in our numerical experiments, we set βn = 1 and we chose An(~x)

to be the alternatives in ~x and the best other sampled alternative given the observations available.

So, for singletons ~x = (x), we set An(x) = {x,x∗}, where x∗ = argmaxx′∈Xn\{x}
µn(x

′). For pairs,

~x= (x(1), x(2)), we set An (~x) =
{
x(1), x(2), x∗

}
, where x∗ = argmaxx′∈Xn\{x(1),x(2)}

µn(x
′).

We now describe the choice of Ξn used within accelerated KG2
β and KGβ allocation rules in our

numerical experiments. Denote the best and second best alternative (in terms of posterior mean)

after n samples as

xn,b = argmax
x∈Xn

µn(x), xn,s = argmax
x∈Xn\{xn,b}

µn(x).

In accelerated KGβ allocation rules, eligible sampling decisions Ξn were xn,b, xn,s, a randomly

chosen singleton, and the values of f̃ applied to those three sampling decisions. In accelerated KG2
β

allocation rules, eligible sampling decisions Ξn were xn,b, a random singleton, (xn,b, xn,s), a random

pair of alternatives, and the values of f̃ applied to those five sampling decisions.

In first stages of sampling, Xn may have too few elements for x∗, xn,b or xn,s to be defined. In

such a case, a random sampling decision is used instead.

We now describe the local search function f̃ used within accelerated KG2
β and KGβ allocation

rules. This local search function assumes that the alternatives correspond to points on a grid

embedded in a continuous space, as discussed in the beginning of §6, and also assumes that the

prior is of the form specified in §6.1. This structure allows us to determine the gradient of the KG

factors, and to use the gradient to locally optimize the KG factor in a neighborhood of ~x, where

~x is interpreted as varying continuously. We round that local optimum to the nearest feasible grid

point to obtain f̃(~x).

We first derive the gradient of the VOI, as it is required to determine the gradi-

ent of the KG factor. Specifically, we assess the gradient of Vn (x,An(x), β) in R
d and of

Vn

(
(x(1), x(2)),An

(
x(1), x(2)

)
, β

)
in R

2d, where An(~x) is as described above.

We abuse notation slightly by writing the gradient of Vn (x,An(x), β) in R
d in terms of derivatives

with respect to the d coordinates of x rather than with respect to the ζi(x), in order to simplify

notation. Similarly, for pairs ~x, we write the gradient of Vn (~x,An (~x) , β) in R
2d by referring directly

to the alternatives ~x rather than indirectly through the function ζi that embeds them in the grid.

First consider the case of the singleton ~x = x. Recall that Vn (x,An(x), β) = sf(−∆/s), where

∆ = |µn(x) − µn(x∗)|, s = |σ̃n(x,x,β) − σ̃n(x,x∗, β)|, and f(z) = ϕ(z) + zΦ(z). Direct calculation

then reveals that

∇x [Vn (x,An(x), β)] =ϕ(∆/s) · sign [σ̃n(x,x,β)− σ̃n(x,x∗, β)] · ∇x [σ̃n(x,x,β)− σ̃n (x,x∗, β)]

−Φ(−∆/s) · sign [µn(x)−µn(x∗)] · ∇x[µn(x)−µn(x∗)].
(19)

Detailed derivations of ∇x [µn (x
′)] and ∇x [σ̃n (x,x

′, β)] for arbitrary x′ are given in Appendix C.
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Second, consider the case of the pair ~x=
(
x(1), x(2)

)
. Letting a= µn(An(~x)) and b= σ̃(~x,An(~x), β)

we have from §3.2 that

Vn (~x,An(~x), β) = h(a, b).

To support taking the derivative of this quantity, we now recall Algorithms 1 and 2 from Frazier

et al. (2009) for computing h(a, b) =E[maxi a(i)+ b(i)Z]−maxi a(i). We first reorder the compo-

nents of a and b so that the b(i) are in non-decreasing order and ties in b are broken so that a(i)≤
a(i+1) if b(i) = b(i+1). Then, we remove all those entries i for which a(i)+ b(i)z <maxj 6=i a(j)+

b(j)z for all values of z (this is accomplished by Algorithm 1 in Frazier et al. (2009)). This gives

new vectors a′ and b′ with |a′|= |b′| ≤ |a|= |b|. Set γ(i) = a′(i+1)−a′(i)

b′(i+1)−b′(i)
for i= 1,2, . . . , |a′| − 1. Then

Vn (~x,An(~x), β) = h(a, b) =

|a′|−1∑

i=1

[b′(i+1)− b′(i)]f (−|γ(i)|)

if |a′|> 1 and the sum is taken to be 0 if |a′| = 1. Computation then reveals that

∇~x [Vn (~x,An(~x), β)] =

|a′|−1∑

i=1

ϕ (γ(i))∇~x[b
′(i+1)− b′(i)]

−Φ(−|γ(i)|) sign[a′(i+1)− a′(i)]∇~x[a
′(i+1)− a′(i)].

(20)

For each i, a′(i) and b′(i) are equal to a(j) and b(j) for j given by the reordering procedure above,

and a(j) and b(j) are the jth components of a = µn(An(~x)) and b = σ̃(~x,An(~x), β) respectively.

Thus, ∇~x[a
′(i)] and ∇~x[b

′(i)] are equal to ∇~x [µn (x
′)] and ∇~x [σ̃n (~x,x

′, β)], where x′ is the jth

element in An(~x). Derivations of these quantities are given in Appendix C.

We now consider the gradient of the KGβ factors in R
d. Recalling (15) and (16), we have

∇~x

[
ν
KGβ
n (~x)

]
= (∇~x [Vn (~x,An(~x), β)] · c(~x)−Vn (~x,An(~x), β) · ∇~x [c(~x)])/

(
β[c(~x)]2

)
(21)

for ~x= x or
(
x(1), x(2)

)
. In the case of homogeneous sampling costs for each alternative (c(~x) = c|~x|),

we have ∇~x [c(~x)] = 0. Hence (21) is determined by preceding results as

∇~x

[
ν
KGβ
n (~x)

]
= ∇~x [Vn (~x,An(~x), β)]/(βc(~x)) .

7. Numerical Results

Beyond asymptotic convergence to the optimal solution, we are interested in the rate in which

solutions improve for even small numbers of samples. We measure this performance by the expected

opportunity cost (the difference between the true best and the estimated best xn,b, as defined in

§6.3, at each time n), E
[
maxx θx − θxn,b

]
.

In this section we present numerical results to explore the behavior of the proposed algorithm,

allocations rules, and implementation choices from §6 in order to answer the following questions.
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Does pairwise sampling with CRN provide an efficiency benefit, even if approximations are made to

simplify computations? How much benefit can the KG and KG2 allocation rules give, on problems

with combinatorially large numbers of solutions, as compared to other benchmark algorithms such

as a random search which is enhanced with a Gaussian process metamodel (which we call RSGP

and describe below) and Industrial Strength COMPASS (Xu et al. 2010).

Except as noted below, the KG and KG2 allocation rules used the Gaussian process prior for

unknown means, compound sphericity assumption for samples, MLE and empirical Bayes estima-

tion, and other parameters as described in §6. When µ0, Σ0 and Λ were not known, the parameters

for the initial stage of sampling were N1 = 10d, d≤N2 ≤ 2d, where d is the dimension of the prob-

lem, and we let N3 contain N1 +N2 and stage numbers that allowed the period between updates

to increase from 30 to 60 as sampling continued. In cases where sampling was done without CRN,

we performed maximum likelihood estimation with ρ fixed to 0.

7.1. How do the approximations interact?

This section assesses the relative importance of several features and approximations described

above: the allocation rule, approximations due to accelerated allocations and parameter estimation,

and deviations from the assumed sampling correlation structure under CRN. Specifically, we assess

the 12 = 2×3×2 combinations that result from combining each level of the following three factors:

Allocation: KGβ allocation rule (no CRN); or KG2
β allocation rule (CRN allowed).

Approximation: Idealized allocation rule with known parameters; accelerated allocation rule with

known parameters; or accelerated allocation with unknown parameters (σ2
0, ~α, η,σ

2
ǫ , ρ) fit as in §6.2.

Sampling with CRN: Samples satisfy compound sphericity (with ρ(i, j) = 0.25 for i 6= j); or decreas-

ing correlations (with ρ(i, j) = exp [−(i− j)2/50] for i 6= j) even though compound sphericity may

be (incorrectly) assumed by the parameter fitting.

We do so for randomly generated problem instances with a small (100) number of alternatives.

We generate 500 problem instances. In each problem, the 100 alternatives had means distributed

as a N (µ0,Σ0) with µ0 =~0 and Σ0(i, j) = 100exp [−(i− j)2/50] for i, j = 1,2, . . . ,100. We assumed

a homogeneous sampling variance σ2
ǫ = 50. We set β = 1 and so refer to KG1 and KG2

1.

Figure 1 shows the expected opportunity cost of a potentially incorrect selection, on a logarithmic

scale, as a function of the total number of samples. The maximum size of the 95% confidence

intervals is 0.28 at sample size 100, 0.09 at sample size 300, and 0.05 at sample size 500.

Not surprisingly, idealized KG allocation rules performed better than their accelerated counter-

parts (the idealized does an exhaustive, not local, search to maximize the KG factor). The degree of

sub-optimality was not particularly great in any setting where parameters were known. A greater

degree of sub-optimality was seen when parameter estimation was used. The deterioration due
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Figure 1 Performance of selected algorithms in the grid test problem with compound sphericity (left plot) and

decreasing correlations (right plot).

to parameter estimation was not significant for the KG1 allocation, even when sphericity did not

apply and parameters were (incorrectly) estimated with the sphericity assumption (right panel, top

three lines). The degradation in performance due to parameter estimation with the KG2
1 allocation

was not too significant when sphericity was correctly assumed (left panel, bottom three curves).

All else fixed, a KG2 allocation with CRN improved upon the performance of its corresponding

KG allocation with independent sampling. Thus, the ability of sampling pairs with CRN offered

an important benefit beyond sampling only one alternative independently at a time (both panels).

Moreover, we observed that the accelerated KG2
1 allocation rule, even when parameter estimation

was used, performed better than the idealized KG1 allocation, which had the advantage of ‘knowing’

the true sampling correlation and of doing an exhaustive search over KG factors. Thus, the benefit

of CRN outweighed the penalties associated with sub-optimality in the accelerated KG2
1 allocation

rule with unknown parameters, once 200 samples were observed to get stable parameter estimates

(even when sphericity was incorrectly assumed by the MLE, right panel).

In experiments not shown here for reasons of space, we found other interesting observations.

One, when we set ρ(i, j) = 0.5 rather than ρ(i, j) = 0.25 for all i 6= j, the expected opportunity

costs decreased. This is consistent with the benefit offered by sampling pairs being increasing in

a (common) sampling correlation ρ. Two, we experimented with the number of randomly selected

singletons and pairs that were included in Ξn for the accelerated allocations. Increasing that number

to 2 or 3 provided a practical improvement in performance in the approximate KG and KG2 allo-

cations, but the benefit of adding random points beyond 4 or 5 had little marginal increase. Three,
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Figure 2 Expected opportunity cost for a benchmark algorithm, (Random Search with Gaussian Processes,

RSGP), accelerated KG1 (KG1) and accelerated KG2
1 (KG2

1) allocation rules as a function of the total

number of samples (on discrete Rosenbrock function).

experiments with several values of βn for KG2
β allocation rules did not reveal a large difference in

performance due to the choice of βn.

7.2. Comparison with RSGP on a Rosenbrock Problem with 106 Alternatives

This section explores the performance of the procedures when there are a very large number of

alternatives. The problem considered is a discretized version of a 6-dimensional Rosenbrock function

with 106 alternatives. Each alternative x corresponds to a point in the grid with coordinates

ζ(x) = {ζi(x)}6i=1 ∈ [−0.8,−0.5, . . . ,1.9]6 and has value

θ(x) =−
5∑

i=1

[
100

[
ζi(x)

2 − ζi+1(x)
]2
+ [ζi(x)− 1]2

]
.

The computation required for idealized KG allocation rules is not practical when there are

such a large number of alternatives. This section assesses differences in performance between the

accelerated KG1 and accelerated KG2
1 allocation rules, as well as a benchmark algorithm that we

introduce, called RSGP. The RSGP samples uniformly at random and uses the Gaussian Process

model and parameter estimation tools in §6 to estimate the performance for each alternative by

its posterior mean when selecting the best alternative.

The sampling noise satisfies the compound sphericity assumption, with σ2
ǫ = 125 and ρ(i, j) = 0.4

for all i 6= j. These values were assumed unknown in this test, and the empirical Bayes approach

described in §6.2 was used to estimate the GP prior and sampling covariance.

Figure 2 shows the opportunity cost, averaged over 200 sample paths, of the accelerated KG1 and

accelerated KG2
1 allocation rules, and the benchmark RSGP. Both KG allocation rules dramatically
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Figure 3 Performance of the accelerated KG2
1 and accelerated KG1 allocation rules, and Industrial Strength

COMPASS (ISC) for the assemble-to-order (ATO) problem.

outperformed RSGP. This is because the KG factors steered sampling to areas that more efficiently

identified local extrema. The KG1 and KG2
1 performed similarly through about 500 samples, but

KG2
1 provided better solutions thereafter. Exploring sample paths indicates that this was because

both KG1 and KG2
1 initially identified regions of good local extrema, which occurred at about the

same rate. Then, when good local extrema were found, the use of CRN helped KG2
1 find better

solutions more quickly, as compared to KG1, near such local extrema.

7.3. Comparison with ISC on the Assemble to Order Problem

We now compare the accelerated KG1 and KG2
1 allocation rules with a well-known algorithm,

Industrial Strength COMPASS (ISC, developed by Xu et al. 2010). We do so for the Assemble to

Order (ATO) problem described in Hong et al. (2012), which is a variation on the problem studied

by Hong and Nelson (2006), and has a combinatorially large number (218) of alternatives.

In the ATO problem, orders for 5 different products arrive according to independent Poisson

processes with constant arrival rates. Products are made up of a collection of items of 8 different

types. Items are either key items or non-key items. If any of the key items are out of stock then the

product order is lost. If all key items are in stock, then the order is assembled from all key items

and the available non-key items. Each item sold brings a profit, and each item in inventory incurs

a holding cost per unit time. There is an inventory capacity 20 for each item. Items are produced

one at a time on dedicated machines. The production time for each item is normally distributed,

truncated at 0. The system operates under a continuous-review base stock policy under which each

item k has a target base stock bk, and each demand for an item triggers a replenishment order

for that item. Each simulation replication starts from a fully stocked system with no orders in

production, has a warm-up period of 20 time units, then captures statistics for the next 50 time
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units of operation. The goal is to maximize the expected total profit per unit time by selecting the

target inventory level vector b= (b1, b2, . . . , b8). See Hong et al. (2012) for more details and code.

We calculate each algorithm’s performance by collecting the true expected total profit (estimated

in a post-processing step through exhaustive simulation) of the algorithm’s current solution, as a

function of the sample size. We then average this value over 100 independent sample paths for each

algorithm. We fix the starting solution of KG1 and KG2
1 to the inventory capacity, and randomize

the initial solution of ISC over the feasible set {b : 0≤ bk ≤ 20, bk ∈ Z}. Thus, KG1 and KG2
1 were

forced to start searching with a worse initial alternative to sample than did ISC, on average.

Figure 3 shows the average performance of the three algorithms. This average performance

jumped when algorithms finished their initialization phases (Step 1 of the KG algorithms), which

occurred at 250 samples for ISC and 95 samples for the two KG algorithms. The height of the

x at the right edge of the plot (at x = 1000) gives the value (141, estimated through exhaustive

simulation) of the best solution found by all sample paths across all three algorithms. This best

solution was discovered by a KG algorithm. The true optimal solution is unknown. The accelerated

KG2
1 allocation rule outperformed the accelerated KG1 allocation rule, which in turn outperformed

ISC for this problem, in terms of achieving a higher quality solution with fewer samples. It is also

important to consider the total amount of computation time required to reach a given solution

quality. ISC required an average of 27 minutes of computation time to complete, taking 1084

samples on average. Its average profit upon completion was 115.53. To reach this same level of

solution quality achieved by ISC, KG1 took 279 samples on average and required 9 minutes of

computation time, while KG2
1 took 203 samples on average and required 5.5 minutes of computation

time. The two KG algorithms required fewer samples and less computation time than did ISC,

with KG2
1 delivering additional efficiency above and beyond that delivered by KG1.

While the KG algorithms outperformed ISC in terms of total computation time to reach a given

level of solution quality on the ATO problems, algorithms like KGβ and KG2
β that rely on kriging or

Gaussian-process regression may consume substantial computational resources in deciding where to

sample, which may make them less suitable for problems in which simulation can be performed very

quickly. When simulation samples come from a complex, long-running simulator, this is relatively

unimportant, and algorithms like KG2
β that find good solutions in few samples also work well in

terms of overall computation time.

Figure 4 shows the time taken in a single sample path of the KG2
β algorithm. It shows that the

CPU time per sampling decision increased over time, with a baseline level of computation due to

gradient-based optimization of the KG factor, and spikes at regular intervals due to the empirical

Bayes update of parameters. These spikes, which are so prominent in the right-hand panel of

Figure 4, would also be present in any algorithm using kriging with adaptively updated parameter
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Figure 4 CPU time spent in a sample path of KG2
1, as a function of the sample size, on the ATO problem.

estimates. The increase with sample size in both the time to perform gradient-based optimization

of the KG factor, and to perform empirical Bayes updates, was due to the increasing size of the

matrices being manipulated for maximum likelihood estimation and for kriging-based prediction.

These points suggest potential future research directions: how to balance frequency of parameter

updates to improve performance with the cost of computing them; how to speed up and improve

parameter estimation; adaptation or development of localized submodels for kriging approximation

to reduce the number of samples included in local gradient search to optimize KG factors; how

much time to spend on the local search (balancing some improvement versus perfect improvement

in these steps). Related to this last point, we did derive and test second-order methods (not shown)

to find local optimizers of the KG factors but found they did not give CPU cost per iteration

benefits relative to Matlab’s fminsearch and simple gradient search on some test problem.

In summary, our algorithms demonstrate superior efficiency compared to others in problems with

large solution spaces and when samples are moderately to very computationally expensive.

8. Conclusions

We contributed to the area of discrete optimization via simulation, where the value of the best

alternative is to be estimated by simulation, by developing a fully sequential algorithm based on

new value of information tools. Those tools are able to take advantage of both correlated prior

beliefs and correlated sampling distributions. We gave easy-to-verify conditions under which almost

sure convergence to the optimal solution can be guaranteed. The implementation presented here

takes advantage of machine learning tools that enable exploring combinatorially large solution

spaces, with run times that are a low order polynomial in the number of samples observed (which

is much better than a low order polynomial in the size of the solution space). We also derived

‘accelerated’ versions of the algorithms that use local search when alternatives can be embedded in
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a continuous space. That acceleration takes advantage of gradient information about the Bayesian

value of information, rather than the more common technique of using gradient information about

the response surface, to improve practical performance. Numerical results show that there is a

distinct benefit for being able to use both correlated prior beliefs and correlated sampling in

simulation optimization using the Bayesian value of information framework.

Appendix

A. Mathematical Proofs

Proof of Lemma 1. From the definition of the function h(·, ·) (just after (14)), for any vectors a, b and b′

with b(i)≤ b′(i) for all i, we have h(a, b)≤ h(a, b′). From (14), we have Vn(~x,A,β) = h (µn(A), σ̃n (~x,A,β)),

where for all x′ ∈ A, the element of σ̃n(~x,A,β) corresponding to x′ is
[
Σn

(
x′, x(1)

)
−Σn

(
x′, x(2)

)]
/B,

where B is the denominator (in the lower equation for pairs) in (11). Hence we only need to show that

B is a decreasing function of ρ
(
x(1), x(2)

)
. The result follows immediately by observing Λ

(
x(1), x(2)

)
=

ρ
(
x(1), x(2)

) [
Λ(x(1), x(1))Λ(x(2), x(2))

]1/2
. �

Preliminary results for the convergence proofs. We first state and prove several lemmas needed to

prove the convergence results stated in §5. These lemmas all assume Assumptions 1 and 2. Condition 1 is

assumed only in the proof of Theorem 1.

Lemma 2. There exist random variables µ∞ ∈R
k and Σ∞ ∈Σk

+ (the space of k× k positive semi-definite

matrices), such that µn converges to µ∞, and Σn converges to Σ∞ almost surely.

Proof of Lemma 2. Let (µn,Σn) and Mn = (µn,Σn +µnµ
T
n ). We can write the components of Mn as the

conditional expectation of an integrable random variable with respect to Xn, Yn by µn = Enθ,Σn +µnµ
T
n =

Enθθ
T . This implies that Mn is a uniformly integrable martingale and hence converges almost surely (Doob’s

second martingale convergence theorem, e.g. see Oksendal 2003, App. C). Because (µn,Σn) is a continuous

transformation of Mn, it also converges almost surely to some random variable (µ∞,Σ∞). �

Lemma 3. Σn(x
′, x) = Σ0(x

′, x)−Σ0 (x,Xn) [Sn]
−1Σ0 (Xn, x

′).

Proof of Lemma 3. Let ix′ be the index of x′ in Xn,x. (If x
′ appears more than once, let it be the index of

one occurance.) Let ex′ be a column vector with length |Xn|+1 that has value 1 at entry ix′ and 0 elsewhere.

Let ex be defined similarly. Using (5), (7) and the symmetry of [Sn]
−1, we then have

Σn(x
′, x) = eTx′Σn (Xn,x,Xn,x) ex = eTx′

(
I|Xn|+1 −Kn(x)

[
I|Xn|,~0

])
Σ0 (Xn,x,Xn,x) ex

= eTx′Σ0 (Xn,x,Xn,x) ex − eTx′Kn(x)
[
I|Xn|,~0

]
Σ0 (Xn,x,Xn,x) ex

=Σ0(x
′, x)− eTx′Σ0 (Xn,x,Xn,x)

[
I|Xn|,~0

]T
[Sn]

−1
[
I|Xn|,~0

]
Σ0 (Xn,x,Xn,x) ex

=Σ0(x
′, x)−Σ0 (x

′,Xn) [Sn]
−1Σ0 (Xn, x) = Σ0(x

′, x)−Σ0 (x,Xn) [Sn]
−1Σ0 (Xn, x

′) . �

Lemma 4. Σn+1(x,x)≤Σn(x,x) for all x.
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Proof of Lemma 4. Using standard results from Bayesian linear regression (e.g., Gelman et al. 2004,

Sec. 14.6) and the Sherman-Morrison-Woodbury formula (e.g., Rasmussen and Williams 2006, App. A.3),

the posterior variance Σn+1 of θ can be computed recursively by

Σn+1 =Σn −ΣnXn+1

[
XT

n+1 (Λ+Σn)Xn+1

]−1
XT

n+1Σn,

where

Xn+1 =

{
ex, if ~xn+1 = x,

[ex(1) , ex(2) ] , if ~xn+1 =
(
x(1), x(2)

)
,

and ex is a k× 1 vector with a value of 1 at the entry for x and 0 elsewhere.

It is clear that Λ+Σn and XT
n+1 (Λ+Σn)Xn+1 are positive definite. Hence for any x,

Σn+1(x,x) = Σn(x,x)− eTxΣnXn+1

[
XT

n+1 (Λ+Σn)Xn+1

]−1
XT

n+1Σnex ≤Σn(x,x). �

Lemma 5. For all x and x(1) 6= x(2), P
(
x(1), x(2)

)
=Λ

(
x(1), x(1)

)
+Λ

(
x(2), x(2)

)
− 2Λ

(
x(1), x(2)

)
> 0 and

νKGβ
n (x)≤ 1

c(x)

√
2maxx′ Σ0(x′, x′)Σn(x,x)

βπΛ(x,x)
,

νKGβ
n

(
x(1), x(2)

)
≤ 1

c (x(1), x(2))

√
2maxx′ Σ0(x′, x′)

βπP (x(1), x(2))

[√
Σn (x(1), x(1))+

√
Σn (x(2), x(2))

]
.

Proof of Lemma 5. First, we have

Vn (~x,An(~x), β) =En [maxµn+1 (An(~x)) | ~xn+1 = ~x,βn+1 = β]−maxµn (An(~x))

=E [max{µn (An(~x))+ σ̃n (~x,An(~x), β)Z}]−maxµn (An(~x))

≤maxµn (An(~x))+E [max{σ̃n (~x,An(~x), β)Z}]−maxµn (An(~x))

=E [max{σ̃n (~x,An(~x), β)Z}]≤E [max{|σ̃n (~x,An(~x), β) | · |Z|}]

=E|Z| ·max{|σ̃n (~x,An(~x), β) |}=
√
2/π ·max{|σ̃n (~x,An(~x), β) |}

=
√
2/π · max

j=1,2,...,|An(~x)|
|eTj σ̃n (~x,An(~x), β) |,

where ej is a |An(~x)| × 1 vector with 1 at entry j and 0 elsewhere.

We now derive an upper bound on eTj σ̃n (~x,An(~x), β). First, P
(
x(1), x(2)

)
= [ex(1) −ex(2) ]TΛ[ex(1) −ex(2) ]> 0

because Λ is positive definite by Assumption 2, where ex(j) is a vector with 1 at entry x(j) and 0 elsewhere.

Similarly, we have Σn

(
x(1), x(1)

)
+Σn

(
x(2), x(2)

)
− 2Σn

(
x(1), x(2)

)
≥ 0 because Σn is positive semi-definite.

Now applying (11) and Lemma 4, for ~x= x we have

|eTj σ̃n (x,An(x), β) | =
|eTj Σn (An(x), x) |√
β−1Λ(x,x)+Σn(x,x)

=
|Σn

(
A(j)

n (x), x
)
|√

β−1Λ(x,x)+Σn(x,x)

≤

√√√√Σn

(
A

(j)
n (x),A

(j)
n (x)

)
Σn(x,x)

β−1Λ(x,x)
≤

√√√√Σ0

(
A

(j)
n (x),A

(j)
n (x)

)
Σn(x,x)

β−1Λ(x,x)
,

where A(j)
n (~x) is the jth component of An(~x). Similarly for ~x=

(
x(1), x(2)

)
we have

|eTj σ̃n (~x,An(~x), β) |=
|eTj Σn

(
An(~x), x

(1)
)
− eTj Σn

(
An(~x), x

(2)
)
|√

β−1P (x(1), x(2))+Σn (x(1), x(1))+Σn (x(2), x(2))− 2Σn (x(1), x(2))
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≤ |Σn

(
A(j)

n (~x), x(1)
)
|+ |Σn

(
A(j)

n (~x), x(2)
)
|√

β−1P (x(1), x(2))

≤

√√√√Σn

(
A

(j)
n (~x),A

(j)
n (~x)

)

β−1P (x(1), x(2))

[√
Σn (x(1), x(1))+

√
Σn (x(2), x(2))

]

≤

√√√√Σ0

(
A

(j)
n (~x),A

(j)
n (~x)

)

β−1P (x(1), x(2))

[√
Σn (x(1), x(1))+

√
Σn (x(2), x(2))

]
.

The claimed bounds in the lemma for ν
KGβ
n (x) and for ν

KGβ
n

(
x(1), x(2)

)
follow directly. �

Lemma 6. Under the allocation rule x1 = x2 = · · ·= xn = x, Σn (x,x) decreases to 0 as n→+∞. Under the

allocation rule ~x1 = ~x2 = · · ·= ~xn =
(
x(1), x(2)

)
, Σn

(
x(1), x(1)

)
and Σn

(
x(2), x(2)

)
decrease to 0 as n→+∞.

Proof of Lemma 6. Lemma 4 shows that Σn(x,x) is a decreasing sequence bounded below by zero, for

all x. It suffices to show that the limit is 0 under these two cases.

First consider the case when x1 = x2 = · · ·= xn = x0. Note Σ0 (Xn,Xn) = Σ0(x0, x0)ee
T , where e is an n×1

vector with n entries of 1. By Lemma 3 and the Sherman-Morrison-Woodbury formula, for any x and x′,

Σn (x,x
′) = Σ0 (x,x

′)−Σ0 (x,Xn) [Sn]
−1

Σ0 (Xn, x
′)

=Σ0 (x,x
′)−Σ0 (x,x0)Σ0 (x

′, x0) e
T
[
Σ0(x0, x0)ee

T +Λ(x0, x0) In
]−1

e

=Σ0 (x,x
′)− Σ0 (x,x0)Σ0 (x

′, x0)

Λ(x0, x0)
eT

[
In −

Σ0(x0, x0)

nΣ0(x0, x0)+Λ(x0, x0)
eeT

]
e

=Σ0(x,x
′)− nΣ0(x,x0)Σ0(x

′, x0)

nΣ0 (x0, x0)+Λ(x0, x0)
.

Specifically,

Σn (x0, x0) = Σ0 (x0, x0)

[
1− nΣ0 (x0, x0)

nΣ0 (x0, x0)+Λ(x0, x0)

]
→ 0 as n→+∞.

Next consider the case when ~x1 = ~x2 = · · ·= ~xn =
(
x
(1)
0 , x

(2)
0

)
. Let

D1 =


Σ0

(
x
(1)
0 , x

(1)
0

)
Σ0

(
x
(1)
0 , x

(2)
0

)

Σ0

(
x
(1)
0 , x

(2)
0

)
Σ0

(
x
(2)
0 , x

(2)
0

)

 , D2 =


Λ

(
x
(1)
0 , x

(1)
0

)
Λ
(
x
(1)
0 , x

(2)
0

)

Λ
(
x
(1)
0 , x

(2)
0

)
Λ
(
x
(2)
0 , x

(2)
0

)

 .

Let U = [I2, I2, . . . , I2]
T
be a 2n× 2 matrix with n I2-blocks. Let u=

[
Σ0

(
x,x

(1)
0

)
,Σ0

(
x,x

(2)
0

)]T
and v =

[
Σ0

(
x′, x

(1)
0

)
,Σ0

(
x′, x

(2)
0

)]T
be two 2× 1 vectors. Then Σ0 (Xn,Xn) =UD1U

T , and Γn is a block diagonal

matrix with n blocks, with each block equal to D2. Similar to the above argument we have

Σn (x,x
′) = Σ0 (x,x

′)−Σ0 (x,Xn) [Sn]
−1

Σ0 (Xn, x
′)

=Σ0 (x,x
′)−Σ0 (x,Xn)

[
UD1U

T +Γn

]−1
Σ0 (Xn, x

′)

=Σ0 (x,x
′)−Σ0 (x,Xn)

[
Γ−1

n −Γ−1
n U

(
D−1

1 +UTΓ−1
n U

)−1
UTΓ−1

n

]
Σ0 (Xn, x

′)

=Σ0 (x,x
′)−n

[
uTD−1

2 v−nuTD−1
2

[
D−1

1 +nD−1
2

]−1
D−1

2 v
]

=Σ0 (x,x
′)−nuT (nD1 +D2)

−1
v,
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where the last line follows from the previous line by the following computation, which uses the matrix identity

A−1B−1 = (BA)−1 and the Sherman-Morrison-Woodbury formula:

[
I −nD−1

2 (D−1
1 +nD−1

2 )−1
]
D−1

2 =
[
I −n(D−1

1 D2 +nI)−1
]
D−1

2 =

[
I −

(
I +

D−1
1 D2

n

)−1
]
D−1

2

=
[
I − (I −D−1

1 (nI +D2D
−1
1 )−1D2

]
D−1

2 =D−1
1 (nI +D2D

−1
1 )−1 = (nD1 +D2)

−1.

Simple algebra then yields limn→+∞ nuT (nD1 +D2)
−1

v= (d2 + d3 − d4)/d1, where

d1 =Σ0

(
x
(1)
0 , x

(1)
0

)
Σ0

(
x
(2)
0 , x

(2)
0

)
−
[
Σ0

(
x
(1)
0 , x

(2)
0

)]2
,

d2 =Σ0

(
x
(1)
0 , x

(1)
0

)
Σ0

(
x,x

(2)
0

)
Σ0

(
x′, x

(2)
0

)
,

d3 =Σ0

(
x
(2)
0 , x

(2)
0

)
Σ0

(
x,x

(1)
0

)
Σ0

(
x′, x

(1)
0

)
,

d4 =Σ0

(
x
(1)
0 , x

(2)
0

)[
Σ0

(
x,x

(1)
0

)
Σ0

(
x′, x

(2)
0

)
+Σ0

(
x,x

(2)
0

)
Σ0

(
x′, x

(1)
0

)]
.

Under Assumption 2, we always have d1 > 0 because Σ0 is positive definite. Specifically, when x= x′ = x
(i)
0

(i= 1,2), [d2 + d3 − d4]/d1 =Σ0

(
x
(i)
0 , x

(i)
0

)
. Hence Σn

(
x
(i)
0 , x

(i)
0

)
→ 0 as n→+∞ for i= 1,2. �

Lemma 7. If alternative x is sampled infinitely often, then Σn(x,x)→ 0 and ν
KGβ
n (x)→ 0 as n→∞. If

alternative x′ 6= x is also sampled infinitely often, then Σn(x
′, x′)→ 0 and ν

KGβ
n (x,x′)→ 0 as n→∞.

Proof of Lemma 7. There are k possible decisions in Ξ that involve sampling alternative x, namely, x

and (x,x′) for x′ 6= x. Because x is sampled infinitely many times, at least one of these k decisions is chosen

infinitely often. Let ~x be one such decision and {qn}∞n=1 be a strictly increasing subsequence of Z+ such that

~xqn = ~x for n= 1,2, . . . Because the ordering of the decision-observation pairs can be changed without altering

Σn(x,x), and because taking additional observations can only decrease Σn(x,x) by Lemma 4, we know that

an upper bound on Σqn(x,x) is given by the posterior variance of θx at time n under an allocation rule, call it

π, that chooses x1 = x2 = · · ·= xn = ~x. Call this posterior variance Σπ
n(x,x), so we have Σqn(x,x)≤Σπ

n(x,x).

Lemma 6 shows limn→∞Σπ
n(x,x) = 0. Hence limn→∞Σqn(x,x) = 0. Because {Σn(x,x)}n

is a non-negative

decreasing sequence, limn→∞Σn(x,x) exists and equals 0, due to the uniqueness of the limit. Combining this

with Lemma 5 and the non-negativity of the KGβ factors, we have limn→∞ ν
KGβ
n (x) = 0.

If x′ 6= x is also sampled infinitely often, similarly we have limn→∞Σn(x
′, x′) = 0, and thus

limn→∞ ν
KGβ
n (x,x′) = 0 by Lemma 5. �

Lemma 8. If lim infn→∞ ν
KGβ
n (~x) = 0 for all ~x∈Ξ, then limn→∞Σn(x,x) = 0 for all x.

Proof of Lemma 8. Consider an arbitrary sample path on which the µn converges to µ∞. Lemma 2 shows

that the set of such sample paths is almost sure. We will show that the claim holds on this sample path.

Lemma 4 shows that {Σn(x,x)}n is a non-negative decreasing sequence and hence limn→∞Σn(x,x) exists

and is non-negative for any x. We prove the contrapositive of the statement of the lemma. That is, we

suppose that maxx [limn→∞Σn(x,x)]> 0 and show that lim infn→∞ ν
KGβ
n (~x)> 0 for some ~x∈Ξ.

We choose two alternatives on which to focus in our analysis. First, because at least one decision ~x′ ∈
Ξ is chosen by the algorithm infinitely often, Lemma 7 shows that there exists an alternative x′ with
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limn→∞Σn(x
′, x′) = 0. Second, by our choice of sample path, limn→∞ µn = µ∞. Let x∗ = argmaxµ∞, breaking

ties arbitrarily. Then µ∞(x∗)≥ µ∞(x) for all x. It follows that there exists N large enough and a sequence

{ǫn} decreasing to 0 such that µn(x
∗)≥ µn(x)− ǫn for all x for n≥N . If limn→∞Σn(x

∗, x∗)> 0, let x(1) = x∗

and x(2) = x′; otherwise pick x(1) with limn→∞Σn

(
x(1), x(1)

)
> 0 and let x(2) = x∗. Let ~x=

(
x(1), x(2)

)
.

For each n≥N , let

a1n = µn

(
x(1)

)
, a2n = µn

(
x(2)

)
, b1n =

Σn

(
x(1), x(1)

)
−Σn

(
x(1), x(2)

)
√
β−1P +Qn

, b2n =
Σn

(
x(2), x(1)

)
−Σn

(
x(2), x(2)

)
√
β−1P +Qn

,

where P and Qn are given in (12). Then we have the following:

Vn (~x,An(~x), β) =En [maxµn+1 (An(~x)) | ~xn+1 = ~x,βn+1 = β]−maxµn (An(~x))

≥En

[
max

{
µn+1

(
x(1)

)
, µn+1

(
x(2)

)}
| ~xn+1 = ~x,βn+1 = β

]
−max

{
µn

(
x(1)

)
, µn

(
x(2)

)}
− ǫn

=E
[
max

{
a1n + b1nZ,a

2
n + b2nZ

}]
−max{a1n, a2n}− ǫn

= |b1n − b2n|f
(
−|a1n − a2n|
|b1n − b2n|

)
− ǫn, (22)

where f(−s) = ϕ(s)− sΦ(−s) is as defined in §3.2, and (22) is understood to be 0 when |b1n − b2n| = 0. In

this sequence of expressions, the first line applies (13); the second line uses maxµn(An(~x))≤ µn(x
∗) + ǫn =

max{µn(x
(1), µn(x

(2))}+ ǫn together with the fact that An(~x) contains x
(1) and x(2); the third line uses (10)

and (11); and the last line follows from computations involving the normal distribution, which may be found

in equation (14) of Frazier et al. (2009). We will take the limit of (22) as n goes to ∞.

By our choice of sample path, µn converges to µ∞, so limn→∞ |a1n−a2n|= |µ∞(x(1))−µ∞(x(2))| := γ1 <∞.

We now show that limn→∞ |b1n − b2n| is strictly positive. First,

|b1n − b2n|=
|Σn

(
x(1), x(1)

)
− 2Σn

(
x(1), x(2)

)
+Σn

(
x(2), x(2)

)
|√

β−1P +Qn

=
|Qn|√

β−1P +Qn

.

Then,
{
Σn

(
x(1), x(1)

)}
n
is bounded above by Σ0(x

(1), x(1)) by Lemma 4, and limn→∞Σn

(
x(2), x(2)

)
= 0,

so limn→∞ |Σn

(
x(1), x(2)

)
| ≤ limn→∞

√
Σn (x(1), x(1))Σn (x(2), x(2)) = 0. Hence limn→∞Σn

(
x(1), x(2)

)
= 0. It

follows that limn→∞Qn = limn→∞Σn

(
x(1), x(1)

)
− 2Σn

(
x(1), x(2)

)
+ Σn

(
x(2), x(2)

)
= limn→∞Σn(x

(1), x(1)),

which is strictly positive by the construction of x(1). Thus,

lim
n→∞

|b1n − b2n|= lim inf
n→∞

|Qn|√
β−1P +Qn

=
| limn→∞Σn(x

(1), x(1))|√
β−1P + limn→∞Σn(x(1), x(1))

:= γ2 > 0.

Recall (22). The function s 7→ f(−s) is continuous, so (22) is continuous in (|a1n − a2n|, |b1n − b2n|) on [0,∞)×
(0,∞), and the limit of (22) as n→∞ is γ2f (−γ1/γ2). Since Vn(~x,An(~x), β) is bounded below by (22),

lim inf
n→∞

νKGβ
n (~x) =

lim infn→∞ Vn (~x,An(~x), β)

βc (~x)
≥ 1

βc (~x)
γ2f

(
−γ1
γ2

)
> 0,

where we have used that γ1 <∞ and γ2 > 0, and f(−s) is strictly positive for s <∞. �

Proof of Theorem 1 We first show, by contradiction, that lim infn→∞ ν
KGβ
n (~x) = 0 almost surely for all

~x∈Ξ. Consider an arbitrary sample path of the KG2
β algorithm from the almost sure set on which the claim

of Lemma 8 holds. Let

χ0 :=
{
~x∈Ξ : lim

n→∞
νKGβ
n (~x) exists and is 0

}
and χ1 :=

{
~x∈Ξ : lim inf

n→∞
νKGβ
n (~x) = 0

}
,
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Suppose for contradiction that χ1 6=Ξ, i.e., that Ξ \χ1 =
{
~x∈Ξ : lim infn→∞ ν

KGβ
n (~x)> 0

}
is not empty.

Pick ~x∈Ξ\χ1. By Condition 1, there exists a subsequence of Z+, denoted by {ni}∞i=1, such that ~xni
∈Ξni

for all i. Also, lim infi→∞ ν
KGβ
ni (~x)≥ lim infn→∞ ν

KGβ
n (~x)> 0. Thus there exists some ǫ > 0 and a subsequence

of {ni}∞
i=1, denoted {nj}∞j=1, such that ν

KGβ
nj (~x)≥ ǫ for all j. Then ν

KGβ
nj

(
~xnj

)
≥ ν

KGβ
nj (~x)≥ ǫ for all j.

For each ~x′ ∈ Ξ \χ0, the contrapositive of Lemma 7 implies there exists a finite number N (~x′) such that

the KG2
β algorithm does not choose ~x′ for n>N (~x′). Let N :=max~x′∈Ξ\χ0

N (~x′). Then ~xn ∈ χ0 for all n>N .

For each ~x′ ∈ χ0, limn→∞ ν
KGβ
n (~x′) = 0. Hence there exists a finite number N0 (~x

′) such that ν
KGβ
n (~x′)< ǫ

for all n>N0 (~x
′). Let N0 :=max~x′∈χ0

N0 (~x
′). Then for all n>N0, ν

KGβ
n (~x′)< ǫ for any ~x′ ∈ χ0.

It follows that ν
KGβ
n (~xn)< ǫ for all n>max{N0,N}, which contradicts ν

KGβ
nj

(
~xnj

)
≥ ǫ for all j. We thus

conclude that χ1 =Ξ on this sample path, i.e. lim infn→∞ ν
KGβ
n (~x) = 0 for all ~x∈Ξ. Since the chosen sample

path was arbtitrary, this holds almost surely.

Since we chose a sample path on which Lemma 8 holds, limn→∞Σn(x,x) = 0 on this sample path. Moreover,

as the set of sample paths on which Lemma 8 holds is almost sure, limn→∞Σn(x,x) = 0 almost surely.

To show that limn µn(x) = θ(x) almost surely for each x, we first show this limit holds in L2. For

each x, E [(µn(x)− θ(x))2] = E [En [(µn(x)− θ(x))2]] = E [Σn(x,x)]. Taking the limit as n → ∞ and using

0 ≤ Σn(x,x) ≤ Σ0(x,x) with the dominated convergence theorem implies limn→∞E [(µn(x)− θ(x))2] =

E [limn→∞Σn(x,x)] = 0. Then, since µn(x) converges to θ(x) in L2, and Lemma 2 implies limn→∞ µn(x)

exists almost surely, this almost sure limit equals θ(x).

We now show that limn→∞ argmaxx µn(x) = argmaxx θ(x) almost surely. First, x∗ ∈ argmaxx θ(x) is almost

surely unique as a realization of a multivariate normal random variable, and so ǫ= θ(x∗)−maxx 6=x∗ θ(x) is

almost surely strictly positive. Fix a sample path on which limn→∞ µn(x) = θ(x) for each x (which occurs

almost surely). There exists N <∞ such that |µn − θ(x)| < ǫ
2
for all n > N . Then, for all n > N and all

x 6= x∗, µn(x
∗) > θ(x∗)− ǫ

2
> θ(x) + ǫ

2
> µn(x), implying x∗ is the unique element in argmaxx µn(x). This

shows that limn→∞ argmaxx µn(x) = argmaxx θ(x) almost surely. �

B. MLE for Unknown Parameters in §6.2

This section derives the MLE used in §6.2to estimate the parameters η, σ2
0 , ~α= {αi}1≤i≤d, σ

2
ǫ and ρ, which

determine Λ, µ0 and Σ0 through the model defined in §6.1. The derivation is related to results of Huang

et al. (2006) and Rasmussen and Williams (2006, Sections 2 and 5), but it goes beyond this previous work

in considering the sampling correlation ρ.

Continue to let Xn and Yn represent all design points and outputs that have been observed through stage

n, including the initialization phase. Let m= |Xn| be the total number of observations. Set g= σ2
0/σ

2, σ2 =

σ2
0 +σ2

ǫ , and let δij be 1 if X (i)
n and X (j)

n are sampled using CRN, and 0 otherwise. Then Yn ∼N
(
η~1, σ2R

)

for a correlation matrix R defined by

R(i, j) =

{
1, if i= j,

g exp
{
−∑d

l=1αl

[
ζl
(
X (i)

n

)
− ζl

(
X (j)

n

)]2}
+(1− g)ρδij , if i 6= j.

The MLE is then argmaxη,σ2
0 ,~α,σ2

ǫ ,ρ
log p (Yn | η,σ2

0 , ~α,σ
2
ǫ , ρ). We reparameterize this problem by replacing

(σ2
0 , σ

2
ǫ ) with (g,σ2), which uniquely determine each other, to obtain an equivalent formulation of the MLE,

argmax
η,σ2,g,~α,ρ

log p
(
Yn | η,σ2

0 , ~α,σ
2
ǫ , ρ

)
= argmax

η,σ2,g,~α,ρ

log p
(
Yn | η,σ2

0 ,R
)
,
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where we have noted that the parameters g, ~α, ρ only influence the log-likelihood through the correlation

matrix R, which is determined by them.

We solve this optimization problem in two steps, first optimizing over σ2 and η with the other parameters

fixed, which can be done analytically, and then numerically optimizing the resulting value over the set of R

matrices that can be achieved with the remaining parameters g, ~α,ρ. We first describe optimization over σ2

and η in the following lemma.

Lemma 9. The maximum log-likelihood over η and σ2 with R fixed is

log p
(
Yn | η̂, σ̂2,R

)
=max

η,σ2
log p

(
Yn | η,σ2,R

)
=−1

2

(
m log σ̂2 + log |R|

)
− m

2
(1+ log 2π),

where ~1 denotes a length-m column vector of ones, |R| is the determinant of R, and

σ̂2 =
1

n

(
Yn − η̂~1

)T

R−1
(
Yn − η̂~1

)
η̂=

(
~1TR−1~1

)−1
~1TR−1Yn. (23)

Proof of Lemma 9. We first rewrite the log-likelihood as

log p
(
Yn | η,σ2,R

)
=−1

2

(
Yn − η~1

)T (
σ2R

)−1
(
Yn − η~1

)
− 1

2
log |σ2R| − m

2
log 2π

=− 1

2σ2

(
Yn − η~1

)T

R−1
(
Yn − η~1

)
− m

2
logσ2 − 1

2
log |R| − m

2
log 2π

Observe that η̂ = argminη

[(
Yn − η~1

)T

R−1
(
Yn − η~1

)]
=

(
~1TR−1~1

)−1
~1TR−1Yn is the generalized least

squares estimate of η. Let C :=
(
Yn − η̂~1

)T

R−1
(
Yn − η̂~1

)
. We then consider a function H : R+ 7→ R with

H(s) = C/s+m log s. Since H ′(s) = −C/s2 +m/s, we know C/m is the global minimum of H. It follows

that σ̂2 =C/m is the MLE of σ2. We thus conclude that log p (Yn | η̂, σ̂2,R) =− 1
2
(m log σ̂2 + log |R|)− m

2
(1+

log 2π) is the maximum log marginal likelihood of Yn given matrix R. �

To complete the calculation of the MLE, we maximize the expression for log p (Yn | η̂, σ̂2,R) from Lemma 9

over matrices R that can be obtained by varying the remaining parameters g, ρ and ~α. Denote such max-

imizers by ĝ, ρ̂ and ~̂α. To find them, we examine the partial derivatives of log p (Yn | η̂, σ̂2,R) with respect

to g, ρ and αl (l = 1, . . . , d). Let t denote any of these parameters. Rasmussen and Williams (2006, Sec. 5)

show ∂R−1

∂t
=−R−1 ∂R

∂t
R−1 and ∂ log |R|

∂t
= tr

(
R−1 ∂R

∂t

)
. Thus, we can write

∂

∂t
log p (Yn |R) =−1

2

[(
n

σ̂2

∂σ̂2

∂t

)
+tr

(
R−1 ∂R

∂t

)]
,

where

∂σ̂2

∂t
=− 1

n

(
2
∂η̂

∂t

(
Yn − η̂~1

)T

R−1~1+
(
Yn − η̂~1

)T

R−1 ∂R

∂t
R−1

(
Yn − η̂~1

))
,

∂η̂

∂t
=
(
~1TR−1~1

)−2
~1TR−1 ∂R

∂t
R−1~1~1TR−1Yn −

(
~1TR−1~1

)−1
~1TR−1 ∂R

∂t
R−1Yn.

Each entry of the matrix ∂R
∂t

is given by ∂R
∂t
(i, i) = 0 for i= 1,2, . . . ,m and, for i 6= j,

∂R

∂g
(i, j) = exp

{
−

d∑

l=1

αl

[
ζl
(
X (i)

n

)
− ζl

(
X (j)

n

)]2
}
− ρδij ,

∂R

∂αl

(i, j) =−g
[
ζl
(
X (i)

n

)
− ζl

(
X (j)

n

)]2
exp

{
−

d∑

l=1

αl

[
ζl
(
X (i)

n

)
− ζl

(
X (j)

n

)]2
}
, l= 1,2, . . . , d,

∂R

∂ρ
(i, j) = (1− g)δij .
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By applying a Cholesky decomposition to the positive definite matrix R, one can avoid a direct inversion

of R in the computations above by solving triangular linear systems. Letting G be the Cholesky factor, the

log determinant of R can be calculated efficiently by log |R|= 2
∑m

1=1 logGii.

With these expressions, we can then use gradient based maximization methods to find ĝ, ρ̂ and ~̂α. As

previously discussed, MLEs η̂ and σ̂2 are given by (23), and MLEs σ̂2
0 , σ̂

2
ǫ follow from inverting the definitions

of g and σ2 and applying the inverted expressions to ĝ and σ̂2.

C. Gradients Results

This section provides details to support the computation of gradients of the posterior means and predictive

covariances with respect to sampling decisions (singletons or pairs), under the assumption that the alterna-

tives sampled are embedded in R
d. These were used in §6.3 to compute the gradient of the VOI and KG factor

with respect to the location of the sampling decision. We also demonstrate simplifications of those results

for the special case of a GP prior distribution with Gaussian kernel and constant mean, and a sampling

covariance that satisfies a compound sphericity assumption (as in §6.1 and §6.2).
We continue the notational convention of §6.3, in which derivatives taken with respect to x (in the case of

singletons) and ~x (in the case of pairs), actually indicate derivatives taken with respect to these alternatives’

grid coordinates: (ζi(x) : i= 1, . . . , d) for singletons; and (ζi(x
(1)), ζi(x

(2)) : i= 1, . . . , d) for pairs.

The expressions provided in C.1 and C.2 are for general priors and sampling models, and have within them

terms such as ∇x [µ0(x)], ∇x [Σ0(x,x)], and ∇x [Λ(x,x)], whose values depend on the specific prior and form

of sampling correlation assumed. Specific values for these quantities for the prior and sampling correlation

used in §6.2-§6.3 are provided in Appendix C.3.

C.1. Gradients of µn (x
′) and σ̃n (x,x

′, β) when Sampling a Singleton

In this section, we provide expressions for ∇x [µn (x
′)] and ∇x [σ̃n (x,x

′, β)] for an arbitrary alternative

x′. These expressions can be substituted in (19) to obtain an expression for the gradient of the VOI

Vn (x,An(x), β) when sampling a singleton ~x= x, that holds when An(x) is as described in §6.3.
To support this computation, let Jn (x

′) :=∇x′ [Σ0 (x
′,Xn)] be a d× |Xn| matrix, the ith column of which

is ∇x′ [Σ0 (x
′,Xn(i))], where Xn(i) is the ith entry of Xn. Recall Ỹn, Sn and Kn(~x) from (5).

We first provide an expression for ∇x [µn (x
′)].

Lemma 10. ∇x [µn (x
′)] =∇x [µ0(x)] + Jn(x)[Sn]

−1Ỹn if x= x′, and is ~0 if x 6= x′.

Proof of Lemma 10. If x 6= x′, then µn(x
′) does not depend on x, so ∇x [µn(x

′)] = 0. Now consider x= x′.

Note that x is the last element of Xn,x. Let ex be a column vector [0,0, . . . ,0,1]T with length |Xn|+1. Then

µn(x) = eTxµn (Xn,x) = eTx

[
µ0 (Xn,x)+Kn(x)Ỹn

]

= eTxµ0 (Xn,x)+ eTxΣ0 (Xn,x,Xn,x)
[
I|Xn|,~0

]T
[Sn]

−1Ỹn = µ0(x)+Σ0 (x,Xn) [Sn]
−1Ỹn,

where we use (5) and (6) in the last line. Because [Sn]
−1Ỹn does not depend on x, the gradient is ∇x [µn(x)] =

∇x (µ0x)+∇x [Σ0(x,Xn)] [Sn]
−1Ỹn =∇x [µ0(x)] + Jn(x)[Sn]

−1Ỹn. �

We now provide an expression for ∇x [σ̃n (x,x
′, β)].
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Lemma 11.

∇x [σ̃n (x,x
′, β)] =

B∇x [Σn(x
′, x)]−Σn (x

′, x)∇x(B)

B2

where B :=
√
Λ(x,x)/β+Σn(x,x), and

∇x [Σn (x
′, x)] =

{
∇x [Σ0(x

′, x)]− Jn(x)[Sn]
−1Σ0(Xn, x

′), if x′ 6= x,

∇x [Σ0(x,x)]− 2Jn(x)[Sn]
−1Σ0(Xn, x), if x′ = x,

∇x(B) =
1

2B

{
∇x [Λ(x,x)/β+Σ0(x,x)]− 2Jn(x)[Sn]

−1Σ0(Xn, x)
}
.

Proof of Lemma 11. Recall that σ̃nx′(X,β) = Σn(x
′, x)/B, so ∇x [σ̃n (x,x

′, β)] is as claimed. Next, recall

from Lemma 3 that Σn(x
′, x) = Σ0(x

′, x)−Σ0 (x,Xn) [Sn]
−1Σ0 (Xn, x

′). Thus if x′ 6= x, then

∇x [Σn(x
′, x)] =∇x [Σ0(x

′, x)]−∇x [Σ0(x,Xn)] [Sn]
−1Σ0 (Xn, x

′) =∇x [Σ0(x
′, x)]− Jn(x)[Sn]

−1Σ0 (Xn, x
′) .

If x′ = x, then using standard matrix differentiation, we can compute the gradient as ∇x [Σn(x,x)] =

∇x [Σ0(x,x)]− 2Jn(x)[Sn]
−1Σ0 (Xn, x). The claimed formula for ∇x(B) follows from simple algebra. �

C.2. Gradients of µn (x
′) and σ̃n (~x,x

′, β) when Sampling a Pair

In this section, we describe computation of ∇~x [µn (x
′)] and ∇~x [σ̃n (~x,x

′, β)] for an arbitrary alternative

x′. These expressions can be substituted in (20) to obtain an expression for the gradient of the VOI

Vn (x,An(x), β) when sampling a pair ~x, that holds when An(x) is as described in §6.3.
The gradient ∇x(i) [µn(x

′)] for i= 1,2 is given in Lemma 10 where we replace x by x(i). The derivation is

similar and is hence omitted. The derivation of ∇x(i) [σ̃n (~x,x
′, β)] when sampling pairs differs from that of

the gradient when sampling a singleton, so details follow.

Lemma 12. For i= 1,2,

∇x(i) [σ̃n (~x,x
′, β)] =

1

B2

{
B∇x(i)

[
Σn

(
x′, x(1)

)
−Σn

(
x′, x(2)

)]

−
[
Σn

(
x′, x(1)

)
−Σn

(
x′, x(2)

)]
∇x(i)(B)

}
,

(24)

where
B :=

{
β−1

[
Λ
(
x(1), x(1)

)
+Λ

(
x(2), x(2)

)
− 2Λ

(
x(1), x(2)

)]

+Σn

(
x(1), x(1)

)
+Σn

(
x(2), x(2)

)
− 2Σn

(
x(1), x(2)

)} 1
2 ,

(25)

∇x(i)

[
Σn

(
x′, x(1)

)
−Σn

(
x′, x(2)

)]
(26)

=





∇x(1)

[
Σ0

(
x′, x(1)

)]
− Jn

(
x(1)

)
[Sn]

−1Σ0 (Xn, x
′) , if i= 1, x′ 6= x(1)

∇x(1)

[
Σ0

(
x(1), x(1)

)
−Σ0

(
x(1), x(2)

)]
− Jn

(
x(1)

)
[Sn]

−1
[
2Σ0

(
Xn, x

(1)
)
−Σ0

(
Xn, x

(2)
)]

, if i= 1, x′ = x(1)

−∇x(2)

[
Σ0

(
x′, x(2)

)]
+ Jn

(
x(2)

)
[Sn]

−1Σ0 (Xn, x
′) , if i= 2, x′ 6= x(2)

∇x(2)

[
Σ0

(
x(1), x(2)

)
−Σ0

(
x(2), x(2)

)]
+ Jn

(
x(2)

)
[Sn]

−1
[
2Σ0

(
Xn, x

(2)
)
−Σ0

(
Xn, x

(1)
)]

, if i= 2, x′ = x(2)

and

∇x(i)(B) =
1

B

{
∇x(i)

[
1

2

[
β−1Λ

(
x(i), x(i)

)
+Σ0

(
x(i), x(i)

)]
−
[
β−1Λ

(
x(1), x(2)

)
+Σ0

(
x(1), x(2)

)]]

+ Jn

(
x(i)

)
[Sn]

−1
[
Σ0

(
Xn, x

3−i
)
−Σ0

(
Xn, x

i
)]}

.
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Proof of Lemma 12. First, recall that σ̃n (~x,x
′, β) = 1

B

[
Σn

(
x′, x(1)

)
−Σn

(
x′, x(2)

)]
, hence (24) follows.

Using (5) and (6), similar to the proof of Lemma 11, we have for i= 1,2 that Σn

(
x′, x(i)

)
=Σ0

(
x′, x(i)

)
−

Σ0

(
x(i),Xn

)
[Sn]

−1Σ0 (Xn, x
′).

We show the first two cases (i = 1) of (26). The other two cases (i = 2) follow similarly, and are

ommitted. In the first case (x′ 6= x(1)) we have ∇x(1)

[
Σn

(
x′, x(1)

)
−Σn

(
x′, x(2)

)]
= ∇x(1)

[
Σn

(
x′, x(1)

)]
=

∇x(1)

[
Σ0

(
x′, x(1)

)]
− Jn

(
x(1)

)
[Sn]

−1Σ0 (Xn, x
′). In the second case (x′ = x(1)) then from the observa-

tion that Σn

(
x(1), x(1)

)
−Σn

(
x(1), x(2)

)
=Σ0

(
x(1), x(1)

)
−Σ0

(
x(1), x(2)

)
−Σ0

(
x(1),Xn

)
[Sn]

−1Σ0

(
Xn, x

(1)
)
+

Σ0

(
x(1),Xn

)
[Sn]

−1Σ0

(
Xn, x

(2)
)
, it follows from standard matrix differentiation and the defini-

tion of Jn

(
x(1)

)
that ∇x(1)

[
Σn

(
x(1), x(1)

)
−Σn

(
x(1), x(2)

)]
= ∇x(1)

[
Σ0

(
x(1), x(1)

)
−Σ0

(
x(1), x(2)

)]
−

2Jn

(
x(1)

)
[Sn]

−1Σ0

(
Xn, x

(1)
)
+ Jn

(
x(1)

)
[Sn]

−1Σ0

(
Xn, x

(2)
)
.

It remains to compute ∇x(i)(B). Notice that for i= 1,

∇x(1)

[
Σn

(
x(1), x(1)

)
+Σn

(
x(2), x(2)

)
− 2Σn

(
x(1), x(2)

)]

=∇x(1)

[
Σn

(
x(1), x(1)

)
−Σn

(
x(1), x(2)

)]
−∇x(1)

[
Σn

(
x(2), x(1)

)
−Σn

(
x(2), x(2)

)]

=∇x(1)

[
Σ0

(
x(1), x(1)

)
− 2Σ0

(
x(1), x(2)

)]
+2Jn

(
x(1)

)
[Sn]

−1
[
Σ0

(
Xn, x

(2)
)
−Σ0

(
Xn, x

(1)
)]

,

where the last equation follows from (26). ∇x(1)(B) then follows from the definition of B. The formula for

∇x(2)(B) is similar. �

C.3. Simplification under Compound Sphericity, Constant Prior Mean, and Gaussian Kernel

The gradients of the VOI and KG factors in Appendices C.1-C.2 involve the gradients of the sampling

covariance matrix, and of the mean and covariance for the unknown mean θ. That is, they include the terms

∇x [Λ(x,x
′)], ∇x [µ0(x)] and ∇x [Σ0 (x,x

′)] for arbitrary x,x′. These values depend on the prior distribution

and the assumed form of the sampling correlation.

In this section, we provide specific values for these quantities that result from adopting the modeling

choices from §6.2-§6.3: a GP prior with a Gaussian kernel and constant mean, and compound sphericity.

These choices substantially simplify the expressions from Appendices C.1-C.2, as many terms become 0.

First, under compound sphericity, ∇x [Λ(x,x
′)] = ~0 for arbitrary x and x′. Second, under constant prior

mean, ∇x [µ0(x)] = ∇x [η] = ~0. Third, we compute ∇x [Σ0(x,x
′)] for arbitrary x and x′. Denote by ◦ the

Hadamard (componentwise) product of two vectors u and v of the same length, so that (u ◦ v)(i) = u(i)v(i).

Then ∇x [Σ0 (x,x
′)] = 2Σ0 (x,x

′)α ◦ [ζ(x)− ζ(x′)] . In particular, ∇x [Σ0(x,x)] =∇x [σ
2
0 ] =~0.
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