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Abstract

Bayesian optimization is a powerful framework

for minimizing expensive objective functions

while using very few function evaluations. It has

been successfully applied to a variety of prob-

lems, including hyperparameter tuning and ex-

perimental design. However, this framework has

not been extended to the inequality-constrained

optimization setting, particularly the setting in

which evaluating feasibility is just as expensive

as evaluating the objective. Here we present con-

strained Bayesian optimization, which places a

prior distribution on both the objective and the

constraint functions. We evaluate our method on

simulated and real data, demonstrating that con-

strained Bayesian optimization can quickly find

optimal and feasible points, even when small fea-

sible regions cause standard methods to fail.

1. Introduction

Bayesian optimization has become a popular tool to solve

a variety of optimization problems where traditional nu-

merical methods are insufficient. For many optimization

problems, traditional global optimizers will effectively find

minima (Liberti & Maculan, 2006). However, these meth-

ods require evaluating the objective function many times.

Bayesian optimization is designed to deal specifically with

objective functions that are prohibitively expensive to com-

pute repeatedly, and therefore must be evaluated as few

times as possible. A popular application is hyperparameter

tuning, where the task is to minimize the validation error of

a machine learning algorithm as a function of its hyperpa-
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rameters (Snoek et al., 2012; Bardenet et al., 2013; Swersky

et al., 2013). In this setting, evaluating the objective func-

tion (validation error) requires training the machine learn-

ing algorithm and evaluating it on validation data. Another

application is in experimental design, where the goal is to

optimize the outcome of some laboratory experiment as a

function of tunable parameters (Azimi et al., 2010b). In

this setting, evaluating a specific parameter setting incurs

resource costs–materials, money, time, etc.–required to run

the experiment.

In addition to expensive evaluations of the objective func-

tion, many optimization programs have similarly expen-

sive evaluations of constraint functions. For example, to

speed up k-Nearest Neighbor classification (Cover & Hart,

1967), one may deploy data structures for approximate

nearest neighbor search. The parameters of such data struc-

tures,e.g. locality sensitive hashing (LSH) (Gionis et al.,

1999; Andoni & Indyk, 2006), represent a trade-off be-

tween test time and test accuracy. The goal of optimiz-

ing these hyperparameters is to minimize test time, while

constraining test accuracy: a parameter setting is only fea-

sible if it achieves the same accuracy as the exact model.

Similarly, in the experimental design setting, one may wish

to maximize the yield of a chemical process, subject to

the constraint that the amount of some unwanted byprod-

uct produced is below a specific threshold. In computer

micro-architecture, fine-tuning the particular specifications

of a CPU (e.g. L1-Cache size, branch predictor range, cy-

cle time) needs to be carefully balanced to optimize CPU

speed, while keeping the power usage strictly within a pre-

specified budget. The speed and power usage of a particular

configuration can only be evaluated with expensive simula-

tion of typical workloads (Azizi et al., 2010). In all of these

examples, the feasibility of an experiment is not known un-

til after the experiment had been completed, and thus fea-

sibility can not always be determined in advance. In the

context of Bayesian optimization, we say that evaluating



feasibility in these cases is also prohibitively expensive, of-

ten on the same order of expense as evaluating the objective

function. These problems are particularly difficult when the

feasible region is relatively small, and it may be prohibitive

to even find a feasible experiment, much less an optimal

one.

In this paper, we extend the Bayesian optimization frame-

work naturally to scenarios of optimizing an expensive-to-

evaluate function under equally expensive-to-evaluate con-

straints. We evaluate our proposed framework on two sim-

ulation studies and two real world learning tasks, based

on LSH hyperparameter tuning (Gionis et al., 1999) and

SVM model compression (Bucilu et al., 2006; Burges &

Schölkopf, 1997).

Across all experiments, we outperform uniform sam-

pling (Bergstra & Bengio, 2012) on 13 out of 14 datasets—

including cases where uniform sampling fails to find even

a single feasible experiment.

2. Background

To motivate constrained Bayesian optimization, we begin

by presenting Bayesian optimization and the key object on

which it relies, the Gaussian process.

2.1. Gaussian Processes

A Gaussian process is an uncountable collection of random

variables, any finite subset of which have a joint Gaussian

distribution. A Gaussian process thus provides a distribu-

tion over functions ℓ(·) ∼ GP (µ(·), k(·, ·)), parameter-

ized by mean function µ(·) and covariance kernel k(·, ·),
which are defined such that, for any pairs of input points

x,x′ ∈ R
d, we have:

µ(x) = E[ℓ(x)]

k(x,x′) = E[(ℓ(x)− µ(x))(ℓ(x′)− µ(x′))].

Given a set of input points X = {x1, ...,xn}, the corre-

sponding function evaluations ℓ(X) = {ℓ(x1), ..., ℓ(xn)},

and some query point x̂, the joint Gaussianity of all finite

subsets implies:

[

ℓ(X)
ℓ(x̂)

]

∼ N

([

µ(X)
µ(x̂)

]

,

[

k(X,X) k(X, x̂)
k(x̂,X) k(x̂, x̂)

])

,

where we have (in the standard way) overloaded the

functions ℓ(·), µ(·), and k(·, ·) to include elementwise-

operation across their inputs. We then can calculate the

posterior distribution of ℓ(·) at the query point x̂, which

we denote ℓ̃(x̂) ∼ p (ℓ(x̂)|x̂,X, ℓ(X)). Using the standard

conditioning rules for Gaussian random variables, we see

ℓ̃(x̂) ∼ N
(

µ̃ℓ(x̂), Σ̃
2
ℓ(x̂)

)

, where:

µ̃ℓ(x̂) = µ(x̂) + k(x̂,X)k(X,X)−1(ℓ(X)− µ(X))

Σ̃2
ℓ(x̂) = k(x̂, x̂)− k(x̂,X)k(X,X)−1k(X, x̂).

A full treatment of the use of Gaussian processes for ma-

chine learning is Rasmussen (2006). In the context of this

work, the critical takeaway is that, given observed function

values ℓ(X) = {ℓ(x1), ..., ℓ(xn)}, we are able to update

our posterior belief ℓ̃(x̂) of the function ℓ(·) at any query

point, with simple linear algebra.

2.2. Bayesian optimization

Bayesian optimization is a framework to solve programs:

min
x

ℓ(x),

where the objective function ℓ(x) is considered pro-

hibitively expensive to evaluate over a large set of values.

Given this prohibitive expense, in the Bayesian formal-

ism, the uncertainty of the objective ℓ(·) across not-yet-

evaluated input points is modeled as a probability distri-

bution. Bayesian optimization models ℓ(·) as a Gaussian

process, which can be evaluated relatively cheaply and of-

ten (Brochu et al., 2010). At each iteration the Gaussian

process model is used to select the most promising candi-

date x
∗ for evaluation. The costly function ℓ is then only

evaluated at ℓ(x∗) in this iteration. Subsequently, the Gaus-

sian process naturally updates its posterior belief ℓ̃(·) with

the new data pair (x∗, ℓ(x∗)), and that pair is added to the

known experiment set Tℓ = {(x1, ℓ(x1)), ..., (xn, ℓ(xn))}.

This iteration can be repeated to iterate to an optimum.

The critical step is the selection of the candidate point x∗,

which is done via an acquisition function that enables ac-

tive learning of the objective ℓ(·) (Settles, 2010). The per-

formance of Bayesian optimization depends critically on

the choice of acquisition function. A popular choice is the

Expected improvement of a candidate point (Jones et al.,

1998; Mockus et al., 1978). Let x̂ be some candidate point,

and let ℓ̃(x̂) be the Gaussian process posterior random vari-

able for ℓ(x̂). Let x+ be the best point in Tℓ (evaluated thus

far), namely:

x
+ = min

x∈Tℓ

ℓ(x).

Following Mockus et al. (1978), we then define the im-

provement of the candidate point x̂ as the decrease of ℓ(x̂)
against ℓ(x+), which due to our Gaussian process model is

itself a random quantity:

Ĩ(x̂) = max
{

0, ℓ(x+)− ℓ̃(x̂))
}

, (1)

and thus the expected improvement (EI) acquisition func-

tion is the expectation over this truncated Gaussian vari-

able:

EI(x̂) = E

[

Ĩ(x̂)|x̂
]

. (2)



Mockus et al. (1978); Jones et al. (1998) derive an easy-to-

compute closed form for the EI acquisition function:

EI(x̂) = Σ̃ℓ(x̂) (ZΦ(Z) + φ(Z))

with: Z =
µ̃ℓ(x̂)− ℓ(x+)

Σ̃ℓ(x̂)
,

where Φ is the standard normal cumulative distribution

function, and φ is the standard normal probability density

function. In summary, the Gaussian process model within

Bayesian optimization leads to the simple acquisition func-

tion EI(x̂) that can be used to actively select candidate

points.

3. Method

In this paper we extend Bayesian Optimization to incorpo-

rate inequality constraints, allowing problems of the form

min
c(x)≤λ

ℓ(x). (3)

where both ℓ(x) and c(x) are the results of some expensive

experiment. These values may often be the result of the

same experiment, and so when we conduct the experiment,

we compute both the value of ℓ(x) and that of c(x).

3.1. Constrained Acquisition Function

Adding inequality constraints to Bayesian optimization is

most directly done via the EI acquisition function, which

needs to be modified in two ways. First, we augment our

definition of x
+ to be the feasible point with the lowest

function value observed in T . Second, we assign zero im-

provement to all infeasible point. This leads to the follow-

ing constrained improvement function for a candidate x̂:

IC(x̂) = ∆(x̂)max
{

0, ℓ(x+)− ℓ(x̂)
}

= ∆(x̂)I(x̂)

where ∆(x̂) ∈ {0, 1} is a feasibility indicator function that

is 1 if c(x̂) ≤ λ, and 0 otherwise.

Because c(x) and ℓ(x) are both expensive to compute, we

again use the Bayesian formalism to model each with a

conditionally independent Gaussian process, given x. Dur-

ing Bayesian optimization, after we have picked a candi-

date x̂ to run, we evaluate ℓ(x̂) and add (x̂, ℓ(x̂)) to the

set Tℓ as previously, and we also now evaluate c(x̂) and

add (x̂, c(x̂)) to the set Tc, which is then used to update

the Gaussian process posterior c̃(x) ∼ N (µ̃c(x), Σ̃
2
c(x))

as above.

With this model, our Gaussian process models the con-

strained acquisition function as the random quantity:

ĨC(x) = ∆̃(x)max
{

0, ℓ(x+)− ℓ̃(x))
}

= ∆̃(x)Ĩ(x),

where the quantity ∆̃(x) is a Bernoulli random variable

with parameter:

PF (x̂) := Pr [c̃(x) ≤ λ] =

∫ λ

−∞

p(c(x̂)|x̂, Tc)dc(x̂)

Conveniently, due to the marginal Gaussianity of c̃(x̂), the

quantity PF (x̂) is a simple univariate Gaussian cumulative

distribution function.

These steps lead to the expected constrained improvement

acquisition function:

EIC(x̂) = E

[

ĨC(x̂)|x̂
]

= E

[

∆̃(x̂)Ĩ(x̂)|x̂
]

= E

[

∆̃(x̂)|x̂
]

E

[

Ĩ(x̂)|x̂
]

= PF (x̂)EI(x̂),

where the third equality comes from the conditional inde-

pendence of c(x) and ℓ(x), given x.

Thus the expected constrained improvement acquisition

function EIC(x̂) is precisely the standard expected im-

provement of x̂ over the best feasible point so far weighted

by the probability that x̂ is feasible.

It is worth noting that, while infeasible points are never

considered our best experiment, they are still useful to

add to Tℓ and Tc to improve the Gaussian process poste-

riors. Practically speaking, infeasible samples help to de-

termine the shape and descent directions of c(x), allow-

ing the Gaussian process to discern which regions are more

likely to be feasible without actually sampling there. This

property–that we do not need to sample in feasible regions

to find them–will prove highly useful in cases where the

feasible region is relatively small, and uniform sampling

would have difficulty finding these regions.

3.2. Multiple Inequality Constraints

It is possible to extend the above derivation to perform

Bayesian optimization with multiple inequality constraints,

c(x) ≤ Λ, where c(x)= [c1(x), ..., ck(x)] and Λ =
[λ1, ..., λk]. We simply redefine ∆̃(x) as the Bernoulli ran-

dom variable with E

[

∆̃(x)
]

= p(c̃1(x) ≤ λ1, ..., c̃k(x) ≤

λk), and the remainder of the EIc(x̂) constrained acquisi-

tion function is unchanged.

Note that p(c̃1(x) ≤ λ1, ..., c̃k(x) ≤ λk) is a multivariate

Gaussian probability. In the simplest case, we assume the

constraints are conditionally independent given x, which

conveniently factorizes the probability as
∏k

i=1 p(c̃i(x) ≤
λi), a product of univariate Gaussian cumulative distribu-

tion functions. In the case of dependent constraints, this



multivariate Gaussian probability can be calculated with

available numerical methods (Cunningham et al., 2011).
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Figure 1. Objective functions ℓ(x, y) and constraint functions

c(x, y) used for simulations 1 and 2.

4. Results

We evaluate our method, which we call constrained

Bayesian Optimization (cBO) on two synthetic tasks and

two real world applications. In all cases we compare cBO

with function minimization by uniform sampling, an ap-

proach that is generally considered competitive (Bergstra

& Bengio, 2012) and typically more efficient than grid-

searching (Bishop, 2006). Our implementation is written

in MATLABTM . All GP hyperparameters were selected

by maximizing the marginal likelihood. We will release

our code and all scripts to reproduce the results in this sec-

tion at http://tinyurl.com/kgj56vy.

4.1. Simulation Function

For the purpose of visualizing our method, we first evalu-

ate it on two simulations with 2D objective and constraint

functions. We compare cBO to standard Bayesian opti-

mization and uniform sampling. All methods are allowed

30 evaluations of ℓ(·) and c(·).

Simulation 1. For the first simulation, the objective func-

tion is

ℓ(x, y) = cos(2x) cos(y) + sin(x),

which we want to minimize subject to the constraint

c(x, y) = cos(x) cos(y)− sin(x) sin(y) ≤ 0.5.

The top row of figure 1 depicts the contour plots of these

functions, and the top row of figure 2 depicts the function

evaluations initiated by all three methods during optimiza-

tion. The infeasible regions are made opaque in figure 2.

Black × symbols indicate infeasible locations at which ℓ(·)
and c(·) were evaluated. Circles (black with white filling)

indicate feasible evaluations.

After a short amount of time, cBO narrows in on the global

minimum of the constrained objective (the dark blue spot in

the top right corner). In contrast, uniform sampling misses

the optimum and wastes a lot of evaluations (22/30) outside

the feasible region. It is noteworthy that cBO also initiates

multiple evaluations outside the feasible regions (14/30),

however these are very close to the global minimum (top

right) or at the infeasible second minimum (dark blue spot

at the bottom right), thus exploring the edge of feasibil-

ity where it matters the most. BO without constraints my-

opically optimizes to the infeasible global minimum (the

bottom right corner), because it has no knowledge of the

constraints.

Simulation 2. In the second simulation, we demonstrate

how cBO can quickly find the minimum feasible value of a

function even when this feasible region is very small. Here,

the objective function (to be minimized) is

ℓ(x, y) = sin(x) + y,

subject to the constraint

c(x, y) = sin(x) sin(y) ≤ −0.95.

The contour plots of these functions are in the bottom row

of figure 1. The results of this simulation are displayed in

the lower row of figure 2. The feasible regions are small

enough that uniform sampling might take some time to

sample a feasible point, and none of the 30 samples are

feasible. BO without constraints manages to sample two

feasible points, but without knowledge of the constraints,

these were sampled by chance with the ultimate goal of BO

being the global optimum in the lower right. By contrast,

cBO is quickly able to use infeasible samples to sufficiently

learn the constraint function c(x, y) to locate the feasible

regions.

4.2. Locality Sensitive Hashing

As a first real world task, we evaluate cBO by selecting pa-

rameters for locality-sensitive hashing (LSH) (Gionis et al.,

1999; Andoni & Indyk, 2006) for approximate k-nearest

neighbors (kNN) (Cover & Hart, 1967). We begin with a

short description of LSH and the constrained optimization

problem. We then present the performance of cBO along-

side the uniform baseline. We do not compare against stan-

dard BO, as without knowledge of the constraints, BO only

samples feasible points by chance.
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Figure 2. Evaluation of Uniform sampling, standard Bayesian Optimization (BO), and constrained Bayesian Optimization on the simu-

lation problems. Areas shaded in white are infeasible regions. White circle indicate feasible points, and black crosses indicate infeasible

points.

Locality-sensitive hashing (LSH) is an approximate

method for nearest neighbor search based on random pro-

jections. The overall intuition is that nearest neighbors al-

ways stay close after projections. LSH defines j random

projections, or hash functions, h1, . . . , hj . This ‘hashing’

is performed multiple times, in sets of j hash functions, and

each set is called a hash table.

For further details we refer the interested reader to a review

by Slaney & Casey (2008).1 The key idea is that these

hyperparameters of LSH (the number of hash functions j

and the number of hash tables L) create a tradeoff between

speed and accuracy.

Ideally, one wants to search for the fastest setting that

does not impact the classification error. Formally, the con-

straint function c(j, L) is the leave-one-out (LOO) classi-

fication error obtained with the LSH data structure with j

hash functions and L hash tables. Let ǫ denote the LOO

classification error without LSH. Then our constraint is

c(j, L) ≤ ǫ. Our objective, ℓ(j, L), is the time required to

compute the LOO kNN classification error on the training

set, which we aim to minimize.

We allow both cBO and uniform sampling to perform 100

1We use the LSH implementation from the Caltech Image
Search Toolbox, http://tinyurl.com/caltechLSH.

Table 1. Mean LSH results with standard deviations over 10 runs

for selecting the number of hash tables and functions for approx-

imate kNN search. We show speedup over kNN and the percent-

age of infeasible points sampled.

LSH

SPEEDUP (ℓ) % INFEASIBLE

DATASET CBO UNIFORM CBO UNIFORM

YALEFACES 3.33± 1.53× 2.61± 0.54× 89± 7.0% 70± 3.3%
COIL 18.6± 13.6× 9.69± 1.77× 84± 8.4% 74± 3.4%

ISOLET 6.97± 1.21× 5.49± 0.87× 67± 16% 48± 4.2%
USPS 3.58± 0.89× 3.33± 0.52× 81± 14% 69± 2.0%

LETTERS 1.64± 0.70× 1.56± 0.71× 70± 14% 93± 2.4%
ADULT* 2.80± 2.13× 2.47± 1.63× 97± 3.5% 96± 2.5%

W8A* 3.01± 0.30× 2.32± 0.12× 54± 15% 54± 1.4%
MNIST* 1.69± 0.59× 1.37± 0.28× 71± 16% 64± 1.4%

function evaluations to find feasible settings of j and L.

Evaluation. Table 1 shows results for learning these LSH

parameters under the LOO constraint on 8 popular datasets

for face detection (YaleFaces) (Georghiades et al., 2001),

insurance policy prediction (COIL), letter recognition from

audio and font-specific features (Isolet and Letters), income

and webpage classification (Adult and W8a), and optical

character recognition (USPS, MNIST). We subsampled the

training data of three of the larger datasets to 10% (marked

in the table with an asterisk). We compare cBO with uni-

form sampling of the LSH parameters (both optimized over

the same range). The table shows the speedup obtained



with the final LSH model over standard Euclidean kNN

search. In all cases the cBO-selected model is, on average,

faster than the one obtained with uniform sampling.

Uniform sampling sometimes finds more feasible points

than cBO. This is likely because the objective function is

often decreasing at the boundary of the feasible region, for

example, see the lower left corner of figure 3. This is be-

cause the boundary represents the region where LSH be-

comes too approximate, and sacrifices accuracy. cBO, in an

effort to minimize the objective as much as possible, must

explore this boundary to find its edge, resulting in more in-

feasible points sampled.

Figure 4 shows the traceplots of the fastest feasible LSH

kNN time as a function of sample iterations on the Coil

and Adult data sets. The red and blue dots depict iterations

in which feasible points are selected. On the Coil dataset,

after only 13 iterations, cBO finds a feasible setting of j and

L that has a lower evaluation time than any setting discov-

ered by uniform sampling. On Adult, it is able to further

decrease the evaluation time from one that is similar to a

setting eventually found by uniform sampling.

Figure 3 shows a contour plot of the 2D objective surface

on the USPS handwritten digits data set. The infeasible re-

gion is masked out in light blue. Feasible evaluation points

are marked as white circles, whereas infeasible evaluations

are denoted as black crosses. cBO queries only a few in-

feasible parameter settings and narrows in on the fastest

model settings (dark blue feasible region). The majority

of infeasible points sampled are near the feasibility border

(bottom left). These points are nearly feasible and likely

have low objective. Because of this and the thin regions

of feasibility, cBO explores this region with the hopes of

further minimizing ℓ(·). Although uniform sampling does

evaluate parameters near the optimum, the final model only

obtains a speedup of 3.03× whereas cBO returns a model

with speedup 4.1× (see Table 1).

4.3. SVM Compression

Our second real-world application is speeding up sup-

port vector machines (SVM) (Cortes & Vapnik, 1995)

through hyperparameter search and support-vector “com-

pression” (Burges & Schölkopf, 1997). In this work,

Burges & Schölkopf (1997) describe a method for reduc-

ing the number of SVM support vectors used for the kernel

support vector machine. Their approach is to first train a

kernel SVM and record the learned model and its predic-

tions on the training set. Then, one selects an initial small

subset of m support vectors and re-optimizes them so that

an SVM with only m support vectors matches the predic-

tions of the original model. This re-optimization can be
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Figure 4. Plot of the best LSH nearest neighbor search evaluation

time (ℓ) found so far versus iteration for cBO and uniform sam-

pling over one run on the Coil and Adult datasets.

done efficiently with conjugate gradient descent2 and can

be very effective at speeding up SVMs during test-time—

however it is highly dependent on several hyperparameters

and has the potential to degrade a classifier’s performance.

We restrict our setting to the popular radial basis function

(RBF) kernel (Schölkopf & Smola, 2001),

k(x, z) = exp
(

γ2‖x− z‖22
)

, (4)

which is sensitive to a width parameter γ2. To speed up

SVM evaluation we need to select values for γ2, the SVM

cost parameter C, and the number of support vectors m that

minimize the validation evaluation time. However, to avoid

degrading the performance of our classifier by using fewer

support vectors, we need to constrain the validation error to

increase by no more than s% over the original SVM model.

To be precise, we first train an SVM on a particular data

set (all hyperparameters are tuned with standard Bayesian

optimization). We then compress this model to minimize

validation evaluation time, while only minimally affecting

its validation error (up to a relative increase of s%). For

2http://tinyurl.com/minimize-m
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white circles indicate feasible points. Left: Parameter settings evaluated by cBO. Right: Parameter settings evaluated by uniformly

sampling.

a particular parameter setting
{

γ2, C,m
}

, an evaluation of

ℓ() and c() involves first compressing an SVM with param-

eters
{

γ2, C
}

down to m support vectors following Burges

& Schölkopf (1997), and then evaluating the resulting clas-

sifier on the validation set. The value of ℓ(γ2, C,m) is the

time required for the evaluation (not the compression), and

the value of c(γ2, C,m) is the validation error. This er-

ror is constrained to be no more than s% larger than the

validation error of the original SVM. As in the LSH task,

we allow both cBO and uniform sampling to perform 100
evaluations.

Comparison. Table 2 shows results for learning γ2, C and

m on six medium scale UCI datasets3 including spam clas-

sification (Spam), gamma particle and engine output de-

tection (Magic and IJCNN1), and tree type identification

(Forest). We also evaluate on Adult and W8a, as with LSH.

Similar to LSH, we subsampled the training data of five of

the larger datasets to 10% (marked in the table with an as-

terisk, the table shows the data set size after subsampling).

We consider the two cases of s = 1% and s = 10% rel-

ative validation error increase. The table presents the best

speedups found by cBO and uniform sampling, the corre-

sponding number of support vectors (SVs), as well as the

percent of parameter settings that turned out to be infeasi-

ble. cBO outperforms uniform sampling on all datasets in

speedup. In the most extreme case (Adult), the compressed

SVM model was 551× faster than the original with only

1% relative increase in validation error. On two data sets

(IJCNN1 and Forest), uniform subsampling does not find a

single compressed model that guarantees a validation error

increase below 1% (as well as 10% for IJCNN1). The table

also shows the number of support vectors m, to which the

3http://tinyurl.com/ucidatasets

SVM is compressed. In all cases is the cBO model substan-

tially smaller than the one obtained with uniform sampling.

One interesting observation is that uniform sampling finds

more feasible points for Adult and W8a datasets. A possible

explanation for this is that a very fast parameter setting is

right near the feasibility border. Indeed, it is likely for only

m = 3 support vectors many settings of γ2 and C will be

infeasible.

5. Related Work

There has been a large amount of recent work on using

sampling methods for blackbox optimization in machine

learning. A popular application of these methods is hyper-

parameter tuning for machine learning algorithms, or op-

timizing the validation performance of a machine learning

algorithm as a function of its hyperparameters. Bergstra

& Bengio (2012) demonstrates that uniform sampling per-

forms significantly better than the common grid search ap-

proach. They propose that the use of Bayesian optimization

for this task is promising, and uniform sampling serves as

a baseline for Bayesian optimization papers (Snoek et al.,

2012).

A large number of relevant papers have been published on

the topic of hyperparameter tuning as well Hutter et al.

(2011); Bergstra et al. (2011). Most similar to our work

is Bernardo et al. (2011) and Snoek (2013). Constraints

are considered in these, but only feasibility is observed. As

a result, it is difficult to predict where feasible points will

be before observing them. The method in these works is

therefore less applicable in the less general scenario that

we consider, where the constraint function is actually com-

putable. Snoek et al. (2012) introduces Spearmint, a pop-

ular tool for this application. Spearmint marginalizes over



Table 2. SVM compression results with standard deviations over 10 runs for selecting γ2, C, and the number of support vectors m.

1% RELATIVE ERROR INCREASE 10% RELATIVE ERROR INCREASE

NUMBER OF SPEEDUP (ℓ) % INFEASIBLE SVS SPEEDUP ℓ % INFEASIBLE SVS

DATASET SAMPLES CBO UNIFORM CBO UNIFORM CBO UNIFORM CBO UNIFORM CBO UNIFORM CBO UNIFORM

SPAM 3681 50± 24× 22± 8.2× 96± 3.5% 99± 0.8% 539± 643 746± 263 294± 43× 123± 48× 87± 5.2% 82± 4.5% 7.3± 3.2 110± 105

MAGIC* 1522 273± 84× 43± 21× 94± 4.1% 99.4± 0.7% 62± 89 348± 173 361± 32× 73± 58× 91± 6.0% 99± 1.2% 23± 4.1 239± 122

ADULT* 3256 1248± 244× 1007± 185× 24± 1.0% 6.6± 2.3% 10± 9.7 20± 16 1371± 34× 1007± 185× 22± 1.2% 1.3± 0.8% 3.8± 0.7 20± 16

W8A* 4975 555± 142× 463± 77× 29± 9.5% 19± 2.8% 236± 716 28± 24 625± 156× 494± 80× 25± 8.1% 13± 2.2% 227± 701 22± 26

IJCNN1* 4999 8.7± 0.96× − 99.6± 0.5% 100± 0.0% 1099± 667 − 9.2± 0.47× 7.9± 0.0× 99± 1.4% 99.9± 0.3% 909± 672 1946± 0

FOREST* 5229 79± 42× 38± 17× 95± 4.3% 99± 1.0% 819± 841 1195± 596 179± 58× 66± 42× 96± 2.5% 96± 2.5% 178± 126 910± 744

the Gaussian process hyperparameters using slice sampling

rather than finding the maximum likelihood hyperparame-

ters. Spearmint also introduces the EI per cost acquisition

function, which—in addition to its applications with costs

other than time—often allows for faster optimization when

some parameters affect the running time of an experiment.

There has been other work on the hyperparameter tuning

problem as well. A few papers have also been published

dealing with multi task validation Bardenet et al. (2013);

Swersky et al. (2013), where the goal is either to opti-

mize multiple datasets simultaneously, or use the knowl-

edge gained from tuning previous datasets to provide a

warm start to the optimization of new datasets. Paralleliz-

ing Bayesian optimization is an active research area (Azimi

et al., 2010a; 2012; Snoek et al., 2012). Wang et al. (2013)

adapts Bayesian optimization to very high dimensional set-

tings.

A number of other extensions to and applications of

Bayesian optimization exist as well. Azimi et al. (2010b)

extends Bayesian optimization to the case where one can-

not control the precise value of some parameters in an ex-

periment. Mahendran et al. (2012) applies Bayesian op-

timization to perform adaptive MCMC. Finally, Hoffman

et al. (2013) introduce constraints on the number of func-

tion evaluations, rather than expensive-to-compute con-

straints, which we model with cBO.

6. Discussion

In conclusion, in this paper we extended Bayesian Opti-

mization to incorporate expensive to evaluate inequality

constraints. We believe this algorithm has the potential to

gain traction in the machine learning community and be-

come a practical and valuable tool. Classical Bayesian op-

timization provides an excellent means to get the most out

of many machine learning algorithms. However, there are

many algorithms–particularly approximate algorithms with

the goal of speed–that the standard Bayesian optimization

framework is ill-suited to optimize. This is because it has

no way of dealing with the tradeoff between speed and ac-

curacy that these algorithms present.

We extend the Bayesian optimization framework to deal

with these tradeoffs via constrained optimization, and

present two applications of our method that yield substan-

tial speedups at little to no loss in accuracy for two of the

most popular machine learning algorithms, kernel Support

Vector Machines and k-Nearest Neighbors.

Although not the primary focus of this paper, the strong

results of our model-compression applications (Burges &

Schölkopf, 1997; Bucilu et al., 2006) demonstrate the high

impact potential of cBO. The use of cBO eliminates all hy-

perparameters from the compression algorithm and guar-

antees that any output model matches the validation accu-

racy of the original classifier. In our experiments we obtain

speedups of several order of magnitudes with kernel SVM,

making the algorithm by Burges & Schölkopf (1997) (with

cBO) suddenly a compelling option for many practitioners

who care about test-time performance (Xu et al., 2012).

In addition, we believe that our method will find use in ar-

eas beyond machine learning as well. In particular, many

industrial applications may have adjustable processes that

produce unwanted byproducts—such as carbon emissions

in manufacturing, side reactions in drug synthesis, or heat

in computing infrastructures (Azizi et al., 2010)—that must

be kept under certain levels. Our algorithm provides a way

to quickly and cheaply tune these processes so that output is

maximized while maintaining acceptable levels of byprod-

uct.
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