
Vol.:(0123456789)

Machine Learning

https://doi.org/10.1007/s10994-021-06019-1

1 3

Bayesian optimization with safety constraints: safe
and automatic parameter tuning in robotics

Felix Berkenkamp1 · Andreas Krause1 · Angela P. Schoellig2

Received: 2 May 2020 / Revised: 2 May 2020 / Accepted: 3 June 2021

© The Author(s) 2021

Abstract

Selecting the right tuning parameters for algorithms is a pravelent problem in machine
learning that can significantly affect the performance of algorithms. Data-efficient optimi-
zation algorithms, such as Bayesian optimization, have been used to automate this pro-
cess. During experiments on real-world systems such as robotic platforms these methods
can evaluate unsafe parameters that lead to safety-critical system failures and can destroy
the system. Recently, a safe Bayesian optimization algorithm, called SAFEOPT, has been
developed, which guarantees that the performance of the system never falls below a critical
value; that is, safety is defined based on the performance function. However, coupling per-
formance and safety is often not desirable in practice, since they are often opposing objec-
tives. In this paper, we present a generalized algorithm that allows for multiple safety con-
straints separate from the objective. Given an initial set of safe parameters, the algorithm
maximizes performance but only evaluates parameters that satisfy safety for all constraints
with high probability. To this end, it carefully explores the parameter space by exploiting
regularity assumptions in terms of a Gaussian process prior. Moreover, we show how con-
text variables can be used to safely transfer knowledge to new situations and tasks. We pro-
vide a theoretical analysis and demonstrate that the proposed algorithm enables fast, auto-
matic, and safe optimization of tuning parameters in experiments on a quadrotor vehicle.

Keywords Bayesian optimization · Safety constraints · Safe exploration ·
Reinforcementlearning · Robotics

Editors: Daniel Fremont, Mykel Kochenderfer, Alessio Lomuscio, Dragos Margineantu, Cheng Soon-
Ong.

 * Felix Berkenkamp
 fberkenkamp@gmail.com

1 Department of Computer Science, ETH Zurich, Zurich, Switzerland
2 Institute for Aerospace Studies, University of Toronto, Toronto, Canada

http://orcid.org/0000-0002-5179-6606
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-06019-1&domain=pdf

 Machine Learning

1 3

1 Introduction

Reinforcement learning algorithms (Sutton & Barto, 1998) have demonstrated their abil-
ity to find optimal policy parameters by interacting with a system. However, they face
two obstacles in the real world: To solve tasks they often require large amounts of train-
ing data (Lillicrap et al., 2015), which is impractical on physical system. Secondly, they
often operate in a trial and error process that fundamentally relies on trying out the differ-
ent available actions and observing their consequences. This is not practical for real-world
systems, where safety and the ability to operate within constraints imposed by an envi-
ronment are critical prerequisites. For example, in robotics, learning algorithms often face
large prior uncertainties and failures can cause serious damage to the robot and its environ-
ment (Schaal & Atkeson, 2010).

One class of algorithms that is sufficiently data-efficient for use in the real world is
Bayesian optimization (Mockus, 2012). These methods learn a Bayesian model that maps
tuning parameters to the resulting performance objective and use it to evaluate informa-

tive parameters, which leads to data-efficient optimization that can provably find optimal
parameters after only few parameter evaluations (Bull, 2011; Srinivas et al., 2012). These
methods have been successfully applied in experiments on real robots (Lizotte et al., 2007),
but safety is not typically considered.

The SAFEOPT algorithm by Sui et al. (2015) is a Bayesian optimization algorithm that, in
addition to being data-efficient, also considers safety during the learning process. It defines
safety as a minimum performance requirement that cannot be violated when evaluating
new parameters. To this end, it effectively trades off finding the optimal parameters and
learning about the safety of other parameters. However, defining safety in terms of perfor-
mance only is often a restrictive requirement in practice, where the two properties are often
conflicting. For example, the shortest path for a robot may involve flying close to an obsta-
cle, while safety would require keeping a distance.

Contributions In this paper, we present an extension of the SAFEOPT algorithm (Sui
et al., 2015) that considers multiple, arbitrary safety constraints decoupled from the per-
formance objective. This generalization retains the desirable sample-efficient properties of
normal Bayesian optimization, but carefully explores the parameter space in order to maxi-
mize performance while guaranteeing safety with high probability. We extend the theory
of SAFEOPT to account for these additional constraints and show that similar theoretical
guarantees can be obtained for the more general setting. We then relax the assumptions
used in the proofs to obtain a more practical version of the algorithm and additionally show
that the safety guarantees carry over to this case.

The second main contribution next to the theoretical foundation, is an extensive experi-
mental evaluation of the method, where we consider the problem of safely optimizing
linear and nonlinear laws on a quadrotor vehicle. The experiments demonstrate that the
proposed approach is able to safely optimize parameters of a control algorithms while
respecting safety constraints with high probability. Moreover, we show how ideas from
context-based optimization (Krause & Ong, 2011) can be used to safely transfer knowledge
in order to obtain environment-dependent control laws. For example, in our experiments
we optimize a control law for different flying speeds of a quadrotor vehicle.

The experimental results in Sect. 5.3 were previously shown in Berkenkamp et al.
(2016b) and were limited to a safety constraint on performance only and without additional
theoretical results.

Machine Learning

1 3

1.1 Related work

In control theory and robotics, safety is often guaranteed by designing controllers that are
robust with respect to errors in a given dynamical model of the system (Zhou & Doyle,
1998). To avoid the conservatism that comes with designing robust controllers, these meth-
ods can be combined with machine learning in order to improve the model estimate while
guaranteeing that the system remains stable (Berkenkamp & Schoellig, 2015; Berkenkamp
et al., 2017) or never leaves a safe subset of the state space (Ostafew et al. 2016; Aswani
et al. 2013; Akametalu et al. 2014). In the case when the system model is known, but safety
constraints are not, Moldovan and Abbeel (2012), Turchetta et al. (2016) use planning
methods to safely explore the state space. These methods either require or learn a dynamics
model of the system, which can be challenging in practice. In contrast, we do not assume
to have access to a model of the system, but aim to directly optimize the parameters of a
control algorithm, without violating safety constraints.

The objective of learning optimal policies has been extensively studied in the rein-
forcement learning community (Sutton & Barto, 1998). In particular, the area of policy
search considers the objective of optimizing the parameters of control algorithms (Kober
& Peters, 2013). The state of the art methods are based on estimating the gradients of the
performance function (Peters & Schaal, 2006, 2008). As a result, typically multiple evalu-
ations of very similar parameters are conducted on the real system in order to estimate
the gradients, which means the approaches are often not data-efficient. Dalal et al. (2018)
combine these approaches with a known model to ensure safety at the next time step. With-
out a known model, safety in gradient-based policy search has been considered by disal-
lowing exploration into areas of the state space that have not been visited before (Garcia
& Fernández, 2012; Hans et al., 2008). Along those lines, Achiam et al. (2017) propose a
constrained policy optimization algorithm that guarantees constraint satisfaction. In con-
trast, our method is gradient-free, so that it can explore the parameter space globally in
a more data-efficient manner. At the same time, we provide high-probability worst-case
guarantees for not violating safety constraints during the optimization process.

Bayesian optimization algorithms (Jones, 2001; Mockus, 2012) without safety con-
straints have been successfully applied to robotic tasks before. For example, Calandra et al.
(2014a), Lizotte et al. (2007) use Bayesian optimization to optimize the gait of legged
robots and Tesch et al. (2011) optimize the control parameters of a snake-like robot. Marco
et al. (2017) optimize the weighting matrices of an LQR controller for an inverted pen-
dulum by exploiting additional information from a simulator and Calandra et al. (2014b)
compares several different Bayesian optimization methods for bipedal locomotion. While
these examples illustrate the potential of Bayesian optimization methods in robotics, none
of these examples explicitly considers safety as a requirement.

While with known constraints one could constrain the search domain of Bayesian opti-
mization to the feasible region [as in convex optimization (Boyd et al., 2004)], for unknown
constraints we need to actively learn about the a priori unknown constraint. Gelbart et al.
(2014) introduce an algorithm to optimize an unknown function subject to an unknown con-
straint. However, this constraint was not considered to be safety-critical; that is, the algorithm
is allowed to evaluate unsafe parameters. Schreiter et al. (2015) consider safety constraints for
active learning, where the goal is to identify parameters that are safe, rather than optimizing
the process directly, while Sui et al. (2015) present a similar algorithm to safely optimize an
objective function.

 Machine Learning

1 3

Since the results in this paper were made available in Berkenkamp et al. (2016a), there
has been significant follow-up work. Sui et al. (2018) uses our model with multiple con-
straints, but considers a two-stages algorithm that first learns about the safe set and then
aims to find the optimal parameters within this safe set. Turchetta et al. (2019) instead
avoids learning about the safe set explicitly, and only explicitly learns about the safety of
actions when it is required to optimize the performance objective.

2 Problem statement

We consider a given algorithm that is used to accomplish a certain task with a robot. In
general, this algorithm is arbitrary and may contain several components including vision,
state estimation, planning, and control laws. The algorithm depends on tuning parame-
ters � ∈ A in some specified, domain A ⊆ ℝ

d.
The goal is to find the parameters within A that maximize a given, scalar performance

measure, f. For example, this performance measure may represent the negative track-
ing error of a robot (Berkenkamp et al., 2016b), the average walking speed of a bipedal
robot (Calandra et al., 2014a), or any other quantity that can be computed over a finite
time horizon. We can only evaluate the performance measure for any parameter set � on
finite-time trajectories from experiments. The functional dependence of f on � is not known
a priori. In the following, we write the performance measure as a function of the param-
eters �, f ∶ A → ℝ , even though measuring performance requires an experiment on the
physical robot and typically depends on a trajectory of states, control inputs, and external
signals.

We assume that the underlying system is safety-critical; that is, there are constraints
that the system must respect when evaluating parameters. Similarly to the perfor-
mance measure, f (�) , these constraints can represent any quantity and may depend
on states, inputs, or even environment variables. There are q safety constraints of the
form gi(�) ≥ 0, gi ∶ A → ℝ, i = 1… q , which together define the safety conditions. This
is without loss of generality, since any constraint function can be shifted by a constant
in order to obtain this form. The functions gi are unknown a priori but can be estimated
through (typically noisy) experiments for a given parameter set � . For example, in order to
encode a state constraint on an obstacle for a robot, the safety function gi(�) can return the
smallest distance to the obstacle along a trajectory of states when using algorithm param-
eters � . Note that if the functions were known in advance, we could simply exclude unsafe
parameters from the set A.

The overall optimization problem can be written as

The goal is to iteratively find the global maximum of this constrained optimization problem
by, at each iteration n, selecting parameters �

n
 and evaluating (up to noise) the correspond-

ing function values f (�n) and gi(�n) until the optimal parameters are found. In particular,
since the constraints define the safety of the underlying system, only parameters that are
inside the feasible region of (1) are allowed to be evaluated; that is, only parameters that
fulfill these safety requirements on the real system (Fig. 1).

Since the functions f and gi in (1) are unknown a priori, it is not generally possible to
solve the corresponding optimization problem without violating the constraints. The first
problem is that we do not know how to select a first, safe parameter to evaluate. In the

(1)max
�∈A

f (�) subject to gi(�) ≥ 0∀ i = 1,… , q.

Machine Learning

1 3

following, we assume that an initial safe set of parameters S
0
⊆ A is known for which the

constraints are fulfilled. These serve as a starting point for the exploration of the safe region
in (1). In robotics, safe initial parameters with poor performance can often be obtained
from a simulation or domain knowledge.

Secondly, in order to safely explore the parameter space beyond S
0
 , we must be able to

infer whether parameters � that we have not evaluated yet are safe to use on the real sys-
tem. To this end, we make regularity assumptions about the functions f and gi in (1). We
discuss these assumptions in more detail in Sect. 4.2. However, broadly speaking we make
assumptions that allow us to model the functions f and gi as a GP, construct reliable confi-
dence intervals over the domain A , and imply Lipschitz continuity properties. Using these
properties, we are able to generalize safety beyond the initial, safe parameters S

0
 . Given the

model assumptions, we require that the safety constraints hold with high probability over
the entire sequence of experiments.

As a consequence of the safety requirements, it is not generally possible to find the
global optimum of (1). Instead we aim to find the optimum in the part of the feasible region
that is safely reachable from S

0
 . We formalize this precisely in Sect. 4.

Lastly, whenever we evaluate parameters on the real system, we only obtain noisy esti-
mates of both the performance function and the constraints, since both depend on noisy
sensor data along trajectories. That is, for each parameter � the we evaluate, we obtain
measurements f̂ (�) = f (�) + �

0
 and ĝi(�) = gi(�) + �i , where �i, i = 0,… , q , is zero-

mean, �-sub-Gaussian noise1 (sub-Gaussian noise includes Gaussian and Uniform distribu-
tions). Note that while f̂ (�) is a random variable, we use f̂ (�n) to denote the measurement
obtained at iteration n. In general, the noise variables may be correlated, but we do not con-
sider this case in our theoretical analysis in Sect. 4.2. We only want to evaluate parameters
where all safety constraints are fulfilled, so that gi(�n) ≥ 0 for all i ∈ {1,… , q} and n ≥ 1.

3 Background

In this section, we review Gaussian processes (GPs) and Bayesian optimization, which
form the foundation of our safe Bayesian optimization algorithm in Sect. 4. The introduc-
tion to GPs is standard and based on Berkenkamp et al. (2016b) and Rasmussen and Wil-
liams (2006).

1 A random variable X is �-sub-Gaussian if it’s tail probability decreases exponentially fast: there exists a
constant c so that P(|X| > t) ≤ exp(1 − ct

2∕�2) holds for all t ≥ 0 . The family includes Gaussian and uni-
form distributions, c.f. (Eldar & Kutyniok, 2012, Ch. 5).

Fig. 1 Overview of the algorithm. At each iteration n, the algorithm selects safe and informative parameters
at which the performance and the safety constraints are evaluated. Based on the noisy information gained,
the algorithm updates its belief over the functions. This safe optimization process is iterated until the safely
reachable, optimal parameters are found

 Machine Learning

1 3

3.1 Gaussian process (GP)

Both the function f (�) and the safety constraints gi(�) in Sect. 2 are unknown a priori. We
use GPs as a nonparametric model to approximate these unknown functions over their com-
mon domain A . In the following, we focus on a single function, the performance function. We
extend this model to multiple functions in order to represent both performance and constraints
in Sect. 3.1.1.

GPs are a popular choice for nonparametric regression in machine learning, where the goal
is to find an approximation of a nonlinear map, f (�) ∶ A → ℝ , from an input vector � ∈ A
to the function value f (�) . This is accomplished by assuming that the function values f (�) ,
associated with different values of � , are random variables and that any finite number of these
random variables have a joint Gaussian distribution (Rasmussen & Williams, 2006).

A GP is parameterized by a prior mean function and a covariance function k(�, �
�) , which

defines the covariance of any two function values f (�) and f (��) , �, �
�
∈ A . The latter is also

known as the kernel. In this work, the mean is assumed to be zero, without loss of generality.
The choice of kernel function is problem-dependent and encodes assumptions about smooth-
ness and rate of change of the unknown function. A review of potential kernels can be found
in Rasmussen and Williams (2006) and more information about the kernels used in this paper
is given in Sect. 5.

The GP framework can be used to predict the function value f (�∗) for an arbitrary
parameter �∗ ∈ A based on a set of n past observations, {f̂ (�i)}

n
i=1

 , at the chosen parame-
ters D

n
= {�

i
}n

i=1
 . The GP model assumes that observations are noisy measurements of the

true function value f (�) ; that is, f̂ (�) = f (�) + � with � ∼ N(0, �2) . Conditioned on these
observations, the posterior distribution is a GP again with mean and variance

where �̂n =
[

f̂ (�1),… , f̂ (�n)
]T

 is the vector of observed, noisy function values, the covari-
ance matrix �

n
∈ ℝ

n×n has entries [�n](i,j) = k(�i, �j) , i, j ∈ {1,… , n} , and the vector
�

n
(�∗) =

[

k(�∗, �1),… , k(�∗, �
n
)
]

 contains the covariances between the new input �∗ and
the observed data points in D

n
 . The matrix �

n
∈ ℝ

n×n denotes the identity matrix.

3.1.1 GPs with multiple outputs

So far, we have focused on GPs that model a single scalar function. In order to model not
only the performance, f (�) , but also the safety constraints, gi(�) , we have to consider multiple,
possibly correlated functions. In the GP literature, these are usually treated by considering a
matrix of kernel functions, which models the correlation between different functions (Álvarez
et al., 2012). Here instead, we use an equivalent representation by considering a surrogate
function,

which returns either the performance function or the individual safety constraints depend-
ing on the additional input i ∈ I with I = {0,… , q} , where I

g
= {1,… , q} ⊂ I are the

indices belonging to the constraints. The function h(⋅, ⋅) is a single-output function and can

(2)�
n
(�∗) = �

n
(�∗)(�

n
+ �

n
�2)−1

�̂
n
,

(3)�
2

n
(�∗) = k(�∗, �

∗) − �
n
(�∗)(�

n
+ ��

2)−1
�

T

n
(�∗),

(4)h(�, i) =

{

f (�) if i = 0

gi(�) if i ∈ Ig,

Machine Learning

1 3

be modeled as a GP with scalar output over the extended parameter space A × I , where we
use �

n
(�, i) and �

n
(�, i) to denote the GP’s predictions over the extended space. For exam-

ple, a joint kernel over the extended input domain for the performance function f (�) and
one safety constraint g(�) may look like this:

where �ij is the Kronecker delta. This kernel models the functions f (�) and g(�) with inde-
pendent kernels kf and kg respectively, but also introduces a covariance function kfg that
additively models shared components between the two functions. By extending the training
data by the extra parameter i, we can use the normal GP framework and predict function
values and corresponding uncertainties using (2) and (3). When observing the function val-
ues, the index i is added to the parameter set � for each observation. Including noise param-
eters inside the kernel allows to model noise correlation between the individual functions.

Importantly, using this surrogate function rather than the framework of Álvarez et al.,
(2012) enables us to lift theoretical results of Sui et al., (2015) to the more general case
with multiple constraints and provide theoretical guarantees for our algorithm in Sect. 4.2.

In the setting with multiple outputs, at every iteration n, we obtain |I| = q + 1 measure-
ments; one for each function. For ease of notation, we continue to write �

n
 and �

n
 , even

though we have obtained n ⋅ (q + 1) measurements at locations D
n
× I in the extended

parameter space.

3.2 Bayesian optimization

Bayesian optimization aims to find the global maximum of an unknown function (Mockus,
2012). The framework assumes that evaluating the function is expensive, while computa-
tional resources are relatively cheap. This fits our problem in Sect. 2, where each evalua-
tion of the performance function corresponds to an experiment on the real system, which
takes time and causes wear in the robotic system.

In general, Bayesian optimization models the objective function as a random function
and uses this model to determine informative sample locations. A popular approach is to
model the underlying function as a GP, see Sect. 3.1. GP-based methods use the posterior
mean and variance predictions in (2) and (3) to compute the next sample location. For
example, according to the GP-UCB (GP-Upper Confidence Bound) algorithm by Srinivas
et al. (2012), the next sample location is

where �
n
 is an iteration-dependent scalar that reflects the confidence interval of the GP.

Intuitively, (5) selects new evaluation points at locations where the upper bound of the con-
fidence interval of the GP estimate is maximal. Repeatedly evaluating the system at loca-
tions given by (5) improves the mean estimate of the underlying function and decreases
the uncertainty at candidate locations for the maximum, such that the global maximum is
provably found eventually (Srinivas et al., 2012).

While (5) is also an optimization problem, its solution does not require any evalua-
tions on the real system and only uses the GP model. This reflects the assumption of cheap
computational resources. In practice, Bayesian optimization typically focuses on low-
dimensional problems. However, this can be scaled up by discovering a low-dimensional

k((�, i), (��, j)) =

{

�ij kf (�, ��) + kfg(�, ��) if i = 0

�ij kg(�, ��) + kfg(�, ��) if i = 1,

(5)�
n
= argmax

�∈A

�
n−1(�) + �1∕2

n
�

n−1(�),

 Machine Learning

1 3

subspace of A for Bayesian optimization (Djolonga et al., 2013; Wang et al., 2013) or
encoding additional structure in the kernel (Duvenaud et al., 2011).

3.3 Contextual Bayesian optimization

Contextual Bayesian optimization is a conceptually straightforward extension of Bayesian
optimization (Krause & Ong, 2011). It enables optimization of functions that depend on
additional, external variables, which are called contexts. For example, the performance of
a robot may depend on its battery level or the weather conditions, both of which cannot be
influenced directly. Alternatively, contexts can also represent different tasks that the robot
has to solve, which are specified externally by a user. The idea is to include the functional
dependence on the context in the GP model, but to consider them fixed when selecting the
next parameters to evaluate.

For example, given a context � ∈ Z that is fixed by the environment, we can model how
the performance and constraint functions change with respect to different contexts by mul-
tiplying the kernel function k

a
 over the parameters, with another kernel kz ∶ Z × Z → ℝ

over the contexts,

This kernel structure implies that function values are correlated when both parameters and
the contexts are similar. For example, we would expect selecting the same parameters � for
a control algorithm to lead to similar performance values if the context (e.g., the battery
level) is similar.

Since contexts are not part of the optimization criterion, a modified version of (5) has to
be used. It was shown by Krause and Ong (2011) that an algorithm that evaluates the GP-
UCB criterion given a fixed context �

n
,

enjoys similar convergence guarantees as normal Bayesian optimization in Sect. 3.2. Spe-
cifically, after seeing a particular context often enough, the criterion (7) will query param-
eters that are close-to-optimal.

3.4 Safe Bayesian optimization (SAFEOPT)

In this paper, we extend the safe optimization algorithm SAFEOPT (Sui et al., 2015) to mul-
tiple constraints. SAFEOPT is a Bayesian optimization algorithm, see Sect. 3.2. However,
instead of optimizing the underlying performance function f (�) globally over the domain
A , it restricts itself to a safe set of parameters that achieve a certain minimum performance
with high probability. This safe set is not known initially, but is estimated after each func-
tion evaluation. In this setting, the challenge is to find an appropriate evaluation strategy
similar to (5), which at each iteration n not only aims to find the global maximum within
the currently known safe set (exploitation), but also aims to increase the set of control-
lers that are known to be safe (exploration). SAFEOPT trades off between these two sets by
choosing for the next experiment the parameters inside the safe set about whose perfor-
mance we are the most uncertain.

(6)k((�, i, �), (��, i
�
, �

�)) = ka((�, i), (��, i
�)) ⋅ kz(�, �

�).

(7)�
n
= argmax

�∈A

�
n−1(�, �

n
) + �1∕2

n
�

n−1(�, �
n
),

Machine Learning

1 3

4 SAFEOPT‑MC (Multiple Constraints)

In this section, we introduce the SAFEOPT-MC algorithm for multiple constraints and dis-
cuss its theoretical properties. The goal of the algorithm is to solve (1) by evaluating differ-
ent parameters from the domain A without violating the safety constraints. To this end, any
algorithm has to consider two important properties:

 (i) Expanding the region of the optimization problem that is known to be feasible or
safe as much as possible without violating the constraints,

 (ii) Finding the optimal parameters within the current safe set.

For objective i) , we need quantify the size of the safe set. To do this in a tractable manner,
we focus on finite sets A in the following. However, heuristic extensions to continuous
domains exist (Duivenvoorden et al., 2017).

The theoretical guarantees of the algorithm rely on the continuity of the underlying
function. Many commonly used kernels, such as the squared exponential (Gaussian) kernel,
encode Lipschitz-continuous functions with high probability (Ghosal & Roy, 2006). We
make more specific assumptions that ensure deterministic Lipschitz constants in Sect. 4.2.
For now, we assume that f (�) and gi(�) are Lipschitz continuous with Lipschitz constant L
with respect to some norm2.

Since we only observe noisy estimates of both the performance function and the con-
straints, we cannot expect to find the entire safe region encoded by the constraints within a
finite number of evaluations. Instead, we follow Sui et al. (2015) and consider learning the
safety constraint up to some accuracy � . This assumption is equivalent to a minimum slack
of � on the constraints in (1).

As mentioned in Sect. 2, we assume that we have access to initial, safe parame-
ters S

0
⊆ A , for which we know that the safety constraints are satisfied a priori. Starting

from these initial parameters, we ask what the best that any safe optimization algorithm
could hope to achieve is. In particular, if we knew the safety constraint functions gi(⋅) up
to � accuracy within some safe set of parameters S, we could exploit the continuity proper-
ties to expand the safe set to

where R
�
(S) represents the number of parameters that can be classified as safe given that

we know g up to �-error inside S and exploiting the Lipschitz continuity to generalize to
new parameters outside of S. The baseline that we compare against is the limit of repeat-
edly applying this operator on S

0
 ; that is, with Rn

�
(S) = R

�
(Rn−1

�
(S)) and R1

�
(S) = R

�
(S) the

baseline is R̄
�
(S

0
) ∶= lim

n→∞ R
n

�
(S

0
) . This set contains all the parameters in A that could

be classified as safe starting from S
0
 if we knew the constraint function up to � error. This

set does not include all the parameters that potentially fulfill the constraints in (1), but is
the best we can do without violating the safety constraints. Hence the optimal value that we
compare against is not the one in (1), but

(8)
R
�
(S) ∶= S ∪

�

i∈Ig

�
� ∈ A �∃ �� ∈ S ∶ gi(�

�) − � − L‖� − �
�‖ ≥ 0

�
,

2 The functions f and gi can have different Lipschitz constants L
i
 , but we assume a global Lipschitz constant

for ease of notation. Additionally, the theoretical results transfer equivalently to the case of Lipschitz-conti-
nuity with respect to some metric.

 Machine Learning

1 3

which is the maximum performance value over the set that we could hope to classify as
safe starting from the initial safe set, S

0
.

4.1 The algorithm

In this section, we present the SAFEOPT-MC algorithm that guarantees convergence to the
previously set baseline. The most critical aspect of the algorithm is safety. However, once
safety is ensured, the second challenge is to find an evaluation criterion that enables trading
off between exploration, trying to further expand the current estimate of the safe set, and
exploitation, trying to improving the estimate of the best parameters within the current set.

To ensure safety, we construct confidence intervals that contain the true functions f
and gi with high probability. In particular, we use the posterior GP estimate given the data
observed so far. The GP’s confidence intervals for the surrogate function in (4) are defined
as

where �
n
 is a scalar that determines the desired confidence level. This set contains all pos-

sible function values between the lower and upper confidence interval based on the GP
posterior. The probability of the true function value lying within this interval depends on
the choice of �

n
 , as well as on the properties of the functions that we are modelling with

the GP. We provide more details on our assumptions on how to select �
n
 for our theoretical

analysis in Lemma 4.1 and for our experiments in Sect. 4.3.
Rather than defining the lower and upper bounds based on (10), the following analysis

requires that consecutive estimates of the lower and upper bounds are contained within
each other. This assumption ensures that the safe set does not shrink from one iteration
to the next, which we require to prove our results. We relax this assumption in Sect. 4.3.
We define the contained set at iteration n as Cn(�, i) = Cn−1(�, i) ∩ Qn(�, i) , where C0(�, i)
is [0,∞] for all � ∈ S

0
 and ℝ otherwise. This ensures that parameters in the initial safe

set S
0
 remain safe according to the GP model after additional observations. The lower and

upper bounds on this set are defined as li
n
(�) ∶= min C

n
(�, i) and u

i

n
(�) ∶= max C

n
(�, i) ,

respectively. For notational clarity, we write lfn(�) ∶= l0
n
(�) and uf

n(�) ∶= u0

n
(�) for the per-

formance bounds.

(9)f ∗
�
= max

�∈R̄
�
(S0)

f (�),

(10)Qn(�, i) ∶=
[

�n−1(�, i) ± �1∕2

n
�n−1(�, i)

]

,

Machine Learning

1 3

Based on these confidence intervals for the function values and a current safe set S
n−1

 ,
we can enlarge the safe set using the Lipschitz continuity properties,

The set S
n
 contains all points in S

n−1
 , as well as all additional parameters that fulfill the

safety constraints given the GP confidence intervals and the Lipschitz constant.
With the set of safe parameters defined, the last remaining challenge is to trade off

between exploration and exploitation. One could, similar to Schreiter et al. (2015), simply
select the most uncertain element over the entire set. However, this approach is not sample-
efficient, since it involves learning about the entire function rather than restricting evalua-
tions to the relevant parameters. To avoid this, we first define subsets of S

n
 that correspond

to parameters that could either improve the estimate of the maximum or could expand the
safe set. The set of potential maximizers is defined as

which contains all parameters for which the upper bound of the current performance esti-
mate is above the best lower bound. The parameters in M

n
 are candidates for the optimum,

since they could obtain performance values above the current conservative estimate of the
optimal performance.

Similarly, an optimistic set of parameters that could potentially enlarge the safe set is

The function e
n
 enumerates the number of parameters that could additionally be classified

as safe if a safety function obtained a measurement equal to its upper confidence bound.
Thus, the set G

n
 is an optimistic set of parameters that could potentially expand the safe set.

We trade off between the two sets, M
n
 and G

n
 , by selecting the most uncertain element

across all performance and safety functions; that is, at each iteration n we select

(11)
Sn =

�

i∈Ig

�

�∈Sn−1

�
�
� ∈ A � li

n
(�) − L‖� − �

�‖ ≥ 0
�

.

(12)Mn ∶=

{
� ∈ Sn | uf

n
(�) ≥ max

�
�∈Sn

lf
n
(��)

}
,

(13)G
n
∶=

{
� ∈ S

n
| e

n
(�) > 0

}
,

(14)en(�) ∶=
��
�
�
� ∈ A ⧵ Sn �∃i ∈ Ig ∶ ui

n
(�) − L‖� − �

�‖ ≥ 0
���.

(15)�
n
= argmax

�∈G
n
∪M

n

max
i∈I

w
n
(�, i),

(16)w
n
(�, i) = u

i

n
(�) − l

i

n
(�)

 Machine Learning

1 3

as the next parameter set to be evaluated on the real system. The implications of this selec-
tion criterion will become more apparent in the next section, but from a high-level view
this criterion leads to a behavior that focuses almost exclusively on exploration initially,
as the most uncertain points will typically lie on the boundary of the safe set for many
commonly used kernels. This changes once the constraint evaluations return results closer
to the safety constraints. At this point, the algorithm keeps switching between selecting
parameters that are potential maximizers, and parameters that could expand the safe set and
lead to new areas in the parameter space with even higher function values. Pseudocode for
the algorithm is found in Algorithm 1.

We show an example run of the algorithm in Fig. 2. It starts from an initial safe parame-
ter �

0
∈ S

0
 at which we obtain a measurement in Fig. 2a. Based on this, the algorithms uses

the continuity properties of the safety function and the GP in order to determine nearby
parameters as safe (red set). This corresponds to the region where the high-probability con-
fidence intervals of the GP model (blue shaded) are above the safety threshold (grey dashed
line). At the next iteration in Fig. 2b, the algorithm evaluates parameters that are close to
the boundary of the safe set, in order to expand the set of safe parameters. Eventually the
algorithm converges to the optimal parameters in Fig. 2c, which obtain the largest perfor-
mance value that is possible without violating the safety constraints. A local optimization
approach, e.g. based on estimated gradients3, would have gotten stuck in the local optimum
at the initial parameter �

0
.

At any iteration, we can obtain an estimate for the current best parameters from

which returns the best, safe lower-bound on the performance function f.

(17)�̂n = argmax
�∈Sn

lf
n
(�),

Fig. 2 Optimization with the SAFEOPT-MC algorithm after 1, 2 and 10 parameter evaluations. Based on the
mean estimate (blue) and the 2� confidence interval (light blue), the algorithm selects evaluation points for
which g(�) ≥ 0 (black dashed) from the safe set S

n
 (red), which are either potential maximizers M

n
 (green)

or expanders G
n
 (magenta). It then learns about the function by drawing noisy samples from the unknown,

underlying function (light gray). This way, we expand the safe region (red) as much as possible and, simul-
taneously, find the global optimum of the unknown function (17) (cyan circle) (Color figure online)

3 If gradient information is available, it can be incorporated in the GP model too (Solak et al., 2003)

Machine Learning

1 3

Algorithm 1: SafeOpt-MC

Inputs: Domain A,
GP prior k((a, i), (a′, j)),
Lipschitz constant L,
Initial safe set S0 ⊆ A

1 for n = 1, . . . do

2 Sn ←
⋂

i∈Ig

⋃

a∈Sn−1

{

a′ ∈ A | lin(a) − L‖a − a′‖ ≥ 0
}

3 Mn ←
{

a ∈ Sn | uf
n(a) ≥ max

a
′∈Sn

l
f
n(a′)

}

4 Gn ← {a ∈ Sn | en(a) ≥ 0}
5 an ← argmax

a∈Gn∪Mn
maxi∈I wn(a, i)

6 Measurements: f̂(an), ĝi(an) ∀i = 0, . . . , q

7 Update GP with new data

8 end

4.2 Theoretical results

In this section, we show that the same theoretical framework from the SAFEOPT algo-
rithm (Sui et al., 2015) can be extended to multiple constraints and the evaluation cri-
terion (15). Here, we only provide the results and high-level ideas of the proofs. The
mathematical details are provided in Sect. 7. For simplicity, we assume that all function
evaluations are corrupted by the same �-sub-Gaussian noise in this section.

In order to provide guarantees for safety, we need the confidence intervals in (10) to
hold for all iterations and functions. In the following, we assume that the surrogate func-
tion h(�, i) has bounded norm in a reproducing kernel Hilbert space (RKHS, c.f., Christ-
mann and Steinwart (2008)). A RKHS corresponding to a kernel k(⋅, ⋅) includes functions of
the form h(�, i) =

∑

j �jk((�, i), (�j, ij)) with �
i
∈ ℝ and representer points (�j, ij) ∈ A × I .

The bounded norm property implies that the coefficients �j decay sufficiently fast as j
increases. Intuitively, these functions are well-behaved, in that they are regular with respect
to the choice of kernel.

The following Lemma allows us to choose a scaling factor �
n
 for (10), so that we achieve

a specific probability of the true function being contained in the confidence intervals for all
iterations.

Lemma 4.1 (based on Chowdhury and Gopalan (2017)) Assume that h(�, i) has RKHS

norm bounded by B and that measurements are corrupted by �-sub-Gaussian noise. If

�
1∕2

n = B + 4�
√
�(n−1)�I� + 1 + ln(1∕�) , then the following holds for all parameters � ∈ A ,

function indices i ∈ I , and iterations n ≥ 1 jointly with probability at least 1 − �:

Moreover, if the kernel is continuously differentiable, then the corresponding functions
are Lipschitz continuous (Christmann & Steinwart, 2008). Note that Lemma 4.1 does not
make probabilistic assumptions on h – in fact, h could be chosen adversarially, as long as
it has bounded norm in the RKHS. Similar results can be obtained for the Bayesian setting
where the function h is assumed to be drawn from the GP prior (Srinivas et al., 2012).

(18)|
| h(�, i) − �

n−1(�, i) || ≤ �1∕2

n
�

n−1(�, i).

 Machine Learning

1 3

The scaling factor �
n
 in Lemma 4.1 depends on the information capacity �

n
 asso-

ciated with the kernel k. It is the maximum amount of mutual information that we
can obtain about the GP model of h(⋅) from n noisy measurements �̂

D
 at parame-

ters D = {(�1, i1),…},

Intuitively, it quantifies a best case scenario where we can select the measurements in the
most informative manner possible. The information capacity �

n
 has a sublinear dependence

on n for many commonly-used kernels and can numerically approximated up to a small
constant factor for any given kernel (Srinivas et al., 2012).

Since the confidence intervals hold with probability 1 − � and the safe set is not
empty starting from S

0
 , it is possible to prove that parameters within the safe set S

n
 are

always safe with high probability. In order for the algorithm to compete with our base-
line, we must additionally ensure that the algorithm learns the true function up to � con-
fidence in both the sets M

n
 and G

n
 . The number of measurements required to achieve

this depends on the information capacity �
n
 , since it encodes how much information can

be obtained about the true function from n measurements. We use the sublinearity of �
n

in order to bound the number of samples required to estimate the function up to � accu-
racy. We have the following result:

Theorem 4.1 Assume that h(�, i) has bounded norm in an RKHS and that the measurement

noise is �-sub-Gaussian. Also, assume that S
0
≠ ∅ and gi(�) ≥ 0 for all � ∈ S

0
 and i ∈ Ig .

Choose �
n
 as in Lemma 4.1, define �̂

n
 as in (17), and let n∗(�, �) be the smallest positive

integer satisfying

where c̃ = 8∕ log(1 + �
−2) . For any � > 0 and � ∈ (0, 1) , when running Algorithm 1 the fol-

lowing inequalities jointly hold with probability at least 1 − � :

1. Safety: ∀n ≥ 1,∀i ∈ Ig ∶ gi(�n) ≥ 0

2. Optimality: ∀n ≥ n∗
, f (�̂n) ≥ f ∗

�
− �

Proof Main idea: safety follows from Lemma 4.1, since accurate confidence intervals
imply that we do not evaluate unsafe parameters. For the optimality, the main idea is that,
since we evaluate the most uncertain element in M

n
∪ G

n
 , the uncertainty about the maxi-

mum is bounded by w
n
(�

n
, i

n
) . The result follows from showing that, after a finite num-

ber of evaluations, either the safe set expands or the maximum uncertainty within M
n
∪ G

n

shrinks to � . See Sect. 7 for derivations and details. ◻

Theorem 4.1 states that, given the assumptions we made about the underlying func-
tion, Algorithm 1 explores the state space without violating the safety constraints and,
after at most n∗ samples, finds an estimate that is �-close to the optimal value over the
safely reachable region. The information capacity �|I|n∗ , grows at a faster rate of |I|n
compared to n in SAFEOPT, since we obtain |I| observations at the same parameters set � ,

(19)�
n
= max

D⊆A×I,|D|≤n

I(�̂D;h).

(20)
n
∗

�
n∗
�|I|n∗

≥
c̃(|R̄0(S0)| + 1)

�2
,

Machine Learning

1 3

while the SAFEOPT analysis assumes every measurement is optimized independently.
However, �|I|n remains sublinear in n, see Sect. 7.

4.2.1 Contexts

In this section, we show how the theoretical guarantees derived in the previous section
transfer to contextual Bayesian optimization. In this setting, part of the variables that influ-
ence the performance, the contexts, are fixed by an external process that we do not neces-
sarily control. Since the contexts are part of the kernel function in (6), we make explicit
assumptions about how smoothly the functions vary with the context. In normal Bayesian
optimization, it was shown by Krause and Ong (2011) that an algorithm that optimizes the
GP-UCB criterion in (7) for a fixed context converges to the global optimum after repeat-
edly seeing the corresponding context.

Intuitively, the fact that part of the variables that influence the performance, the con-
texts, are now fixed by an external process should not impact the algorithm on a funda-
mental level. However, safety is a critical issue in our experiments and, in general, one
could always select an adversarial context for which we do not have sufficient knowledge to
determine safe controller parameters. As a consequence, we make the additional assump-
tion that only ‘safe’ contexts are visited; that is, we assume the following:

Assumption 1 For any n ≥ 1 , the context �
n
∈ Z is selected such that S

n
(�

n
) ≠ �.

Here, S
n
(�

n
) denotes the safe set for the given context �

n
 . Intuitively, Assumption 1

ensures that for every context there exists at least one parameter choice that is known to
satisfy all safety constraints. This assumption includes the case where safe initial param-
eters for all contexts are known a priori and the case where the algorithm terminates and
asks for help from a domain-expert whenever a context leads to an empty safe set.

A trivial extension of SAFEOPT-MC to contexts is to run |Z| independent instances of
Algorithm 1, one for each context. This way, it is sufficient to repeatedly see a context
several times to apply the previous results to the safe contextual optimization case. One
can apply the previous analysis to this setting, but it would fail to yield guarantes that hold
jointly for all contexts.

In order to obtain stronger results that hold jointly across all contexts in Z , we adapt the
information capacity (worst-case mutual information) �

n
 to consider contexts,

Unlike in (19), the mutual information is maximized across contexts in (21). As a result,
we can use Lemma 4.1 to obtain confidence intervals that hold jointly across all contexts.

A second challenge is that contexts are chosen in an arbitrary order. This is in stark con-
trast to the parameters �

n
 , which are chosen according to (15) in order to be informative.

This means that any tight finite sample bound on Algorithm 1 must necessarily depend on
the order of contexts. The following theorem accounts for both of these challenges.

Theorem 4.2 Under the assumptions of Theorem 4.1 and Assumption 1. Choose �
n
 as in

Lemma 4.1, where �
n
 is now the worst-case mutual information over contexts as in (21).

For a given context order (�1, �2,…) and any context � ∈ Z , let

(21)�
n
= max

D⊆A×Z×I,|D|≤n

I(�̂D;h), .

 Machine Learning

1 3

be the number of times that we have observed the context � up to iteration n∗ and � is the

indicator function. Let n∗(�) be the smallest positive integers such that

where c̃ = 8∕ log(1 + �
−2) . We denote the information capacity for a fixed context � by

�
n
(�) . That is, with h

�
(�, i) = h(�, i, �) it is defined as �

n
(�) = maxD⊆A×I,|D|≤n

I(�̂
� D

;h
�
) . For

any � > 0 and � ∈ (0, 1) , let f ∗
�
(�) = max

�∈R̄
�
(S0)

f (�, �) . Then, when running Algorithm 1

the following inequalities jointly hold with probability at least 1 − � :

1. ∀n ≥ 1, i ∈ Ig ∶ gi(�n, �n) ≥ 0

2. ∀� ∈ Z, n ≥ n∗(�) ∶ f (�̂n, �) ≥ f ∗
�
(�) − �

Proof For a fixed context, �
n
= � ∀n , we have n∗(�) = n(�) and the results follow directly as

in Theorem 4.1. Otherwise, the only difference in the proofs is that � depends on the infor-
mation capacity over contexts, making sure that the confidence intervals are valid across
contexts. By visiting contexts in Z ⧵ {�} , we obtain more measurements and � increases,
which in turn increases the upper bound on the number of samples required at context � .
 ◻

Theorem 4.2 states that the contextual variant of Algorithm 1 enjoys the same safety
guarantees as the non-contextual version. Additionally, it shows that, after gaining enough
information about a particular context, it can identify the optimal parameters. In practice,
this upper bound is conservative, since it does not acount for knowledge transfer accross
contexts. In practice, correlations between contexts significantly speed up the learning pro-
cess. For example, in Fig. 3 we show a contextual safe optimization problem with two
contexts. Even though the algorithm has only been able to explore the parameter space
at the first context (� = 0 , left function), the correlation between the functions means that
information can be transferred to the as-of-yet unobserved context (� = 1 , right function).

(22)n(�) =

n
∗(�)
∑

n=1

�
�=�

n

(23)
n(�)

�
n∗(�) �n(�)|I|(�)

≥
c̃(|R̄0(S0(�))| + 1)

�2
,

Fig. 3 Example run of the context-dependent SAFEOPT-MC algorithm. For the first six samples, the algo-
rithm only sees the context � = 0 (left function) and obtains measurements there (red crosses). However, by
exploiting correlations between different contexts, the algorithm can transfer knowledge about the shape of
the function and safe set over to a different context, � = 1 (right function). This enables the algorithm to be
significantly more data-efficient (Color figure online)

Machine Learning

1 3

This knowledge transfer significantly improves data-efficiency and the number of evalua-
tions required by the algorithm.

4.3 Practical implementation

In this section, we discuss possible changes to Algorithm 1 that make the algorithm
more practical, at the expense of loosing some of the theoretical guarantees. One chal-
lenge in applying Algorithm 1 in practice, is defining a suitable Lipschitz constant. In
particular, specifying the wrong constant can lead to conservativeness or unsafe param-
eters being evaluated. Moreover, smoothness assumptions are already encoded by the
kernel choice, which is more intuitive to specify than Lipschitz constants on their own.
In practice, we use only the GP model to ensure safety (Berkenkamp et al., 2016b); that
is, we define li

n
(�) = min Qn(�, i) and ui

n
(�, i) = max Qn(�, i) in terms of the confidence

intervals of the GP directly. Thus, we can define the safe set without a Lipschitz con-
stant as

While it is difficult to prove the full exploration of the safely reachable set as in Theo-
rem 4.1, the resulting algorithm remains safe:

Lemma 4.2 With the assumptions of Lemma 4.1, S
0
≠ ∅ , and gi(�) ≥ 0 for all � ∈ S

0

and i ∈ Ig , when running Algorithm 1 with the safe set defined as in (24), the following

holds with probability at least 1 − �:

Proof The confidence intervals hold with probability 1 − � following Lemma 4.1. Since S
n

in (24) is defined as the set of parameters that fulfill the safety constraint and the safe set is
never empty since S

0
≠ ∅ , the claim follows. ◻

Similarly, the set of expanders can be defined in terms of the GP directly, by adding
optimistic measurements and counting the number of new parameters that are classified
as safe, see Berkenkamp et al. (2016b) for details. However, this potentially adds a large
computational burden.

The parameter �
n
 , which determines the GP’s confidence interval in Lemma 4.1, may

be impractically conservative for experiments. The theoretical safety results also hold
when we replace �

n
 in �

n
 by the empirical mutual information gained so far, I(�̂

D
n
×I

, h) .
Empirically, depending on the application, one may also consider setting �

n
 to a con-

stant value. This roughly corresponds to bounding the failure probability per iteration,
rather than over all iterations.

Learning all the different functions, f and gi , up to the same accuracy � may be restric-
tive if they are scaled differently. A possible solution is to either scale the observed data,
or to scale the uncertainties in (15) by the prior variances of the kernels for that specific
output. This enables (15) to make more homogeneous decisions across different scales.

(24)Sn = S
0
∪
{
� ∈ A | ∀i ∈ Ig ∶ li

n
(�) ≥ 0

}
.

(25)∀n ≥ 1, ∀i ∈ Ig ∶ gi(�n) ≥ 0.

 Machine Learning

1 3

5 Experiments

In this section, we demonstrate Algorithm 1 (with the changes discussed in Sect. 4.3) in
experiments on a quadrotor vehicle, a Parrot AR.Drone 2.0.

A Python implementation of the SAFEOPT-MC algorithm that builds on GPy (2012), a
GP library, is available at http:// github. com/ befel ix/ SafeO pt. Videos of the experiments can
be found at

• Section 5.3: http:// tiny. cc/ icra16_ video
• Section 5.4: https:// youtu. be/ rLmwY toE3yg
• Section 5.5: https:// youtu. be/ 4xC4O SiIDGk

5.1 Experimental setup

During the experiments, measurements of all vehicle states are estimated from position
and pose data provided by an overhead motion capture camera system. The quadrotor’s
dynamics can be described by 12 states: positions � = (x, y, z) , velocities �̇ = (ẋ, ẏ, ż) , ZYX
Euler angles (�, �,�) , and body angular velocities (�

x
,�

y
,�

z
) . The control inputs � are

the desired roll and pitch angles �
des

 and �
des

 , the desired z-velocity ż
des

 , and the desired
yaw angular velocity �

z,des , which in turn are inputs to an unknown, proprietary, on-board
controller.

The position dynamics in the global coordinate frame are

where R
ZYX

 is the rotation matrix from the body frame to the inertial frame, � = (0, 0, c)
is the mass-normalized thrust, and � = (0, 0, g) is the gravitational force. The goal of the
controller is to track a reference signal. We assume that z-position and the yaw angle are
controlled by fixed control laws and focus on the position control in x- and y direction. We
use two different control laws in the following experiments.

The most simple control law that can be used for this setting is a PD-controller, defined
as

where � = (k1, k2) are the two tuning parameters. Intuitively, a larger parameter k
1
 encour-

ages tracking reference changes more aggressively, while k
2
 is a damping factor that

encourages moderate velocities.
A more sophisticated approach to control quadrotor vehicles is to use estimates of the

angles and accelerations to solve for the thrust c. We use loop shaping on the horizontal
position control loops so that they behave in the manner of a second-order systems with
time constant � and damping ratio � . Based on a given desired reference trajectory, com-
manded accelerations are computed as

(26)�̈ = RZYX(�, �,�)� − �,

(27)�des = k1(xk
− xdes) + k2(ẋ − ẋdes),

(28)�des = k1(yk − ydes) + k2(ẏ − ẏdes),

(29)ẍ
c
=

1

�2
(xdes − x) +

2�

�
(ẋdes − ẋ),

http://github.com/befelix/SafeOpt
http://tiny.cc/icra16_video
https://youtu.be/rLmwYtoE3yg
https://youtu.be/4xC4OSiIDGk

Machine Learning

1 3

From the commanded accelerations, we then obtain the control inputs for the desired roll
and pitch angles by solving (26) for the angles. Here, the tuning parameters are � = (�, �) .
For details regarding the controllers see Schoellig et al. (2012); Lupashin et al. (2014).

The quadrotor was controlled using the ardrone_autonomy and vicon_bridge packages
in ROS Hydro. Computations for the SAFEOPT-MC algorithm in Algorithm 1 were con-
ducted on a regular laptop and took significantly less than one second per iteration. As
a result, experiments could be conducted continuously without interruptions or human
interventions.

5.2 Kernel selection

Algorithm 1 critically depends on the GP model for the performance and constraint func-
tions. In this section, we review the kernel used in our experiments and the kind of models
that they encode. A more thorough review of kernel properties can be found in Rasmussen
and Williams (2006).

In our experiments, we use the Matérn kernel with parameter � = 3∕2 (Rasmussen &
Williams, 2006),

which encodes that mean functions are one-times differentiable. This is in contrast to
the commonly used squared exponential kernels, which encode smooth (infinitely dif-
ferentiable) functions. With the Matérn kernel, the GP model is parameterized by three
hyperparameters: measurement noise �2 in (2) and (3), the kernel’s prior variance �2 , and
positive lengthscales � ∈ R

A

+
 , which are the diagonal elements of the diagonal matrix � ,

� = diag(�) . These hyperparameters have intuitive interpretations: the variance of the
measurement noise �2 corresponds to the noise in the observations, which includes any
randomness in the algorithm and initial conditions, and random disturbances. The prior
variance �2 determines the expected magnitude of function values; that is, |f (�)| ≤ � with
probability 0.68 according to the GP prior. Lastly, the lengthscales � determine how quickly
the covariance between neighboring values deteriorates with their distance. The smaller the
lengthscales, the faster the function values can change from one parameter set to the next.
In particular, the high-probability Lipschitz constant encoded by this kernel depends on the
ratio between the prior variance and the lengthscales, �∕�.

When using GPs to model dynamic systems, typically a maximum likelihood estimate
of the hyperparameters is used based on data; see Ostafew et al. (2016) for an example.
For Bayesian optimization, the GP model is used to actively acquire data, rather than only
using it for regression based on existing data. This dependence between the kernel hyper-
parameters and the acquired data is known to lead to poor results in Bayesian optimization
when using a maximum likelihood estimate of the hyperparameters during data acquisi-
tion (Bull, 2011). In particular, the corresponding GP estimate is not guaranteed to con-
tain the true function as in Lemma 4.1. In this work, we critically rely on these confi-
dence bounds to guarantee safety. As a consequence, we do not adapt the hyperparameters

(30)ÿ
c
=

1

�2
(y

des
− y) +

2�

�
(ẏ

des
− ẏ).

(31)k(�, ��) = �
2
�

1 +
√

3 r(�, ��)
�

exp
�

−
√

3 r(�, ��)
�

,

(32)r(�, �
�) =

√

(� − ��)T�−2(� − ��),

 Machine Learning

1 3

as more data becomes available, but treat the kernel as a prior over functions in the true
Bayesian sense; that is, the kernel hyperparameters encode our prior knowledge about the
functions that we model and are fixed before experiments begin. While this requires intui-
tion about the process, if we chose the parameters more conservatively than required (e.g.,
short lengthscales), the safety guarantees still hold (c.f., Bull (2011)) but the optimization
becomes less data-efficient. As such, safety can be ensure by picking a conservative model
at the cost of optimization efficiency.

5.3 Linear control

In this section, we use SAFEOPT-MC to optimize the parameters of the linear control law
in (27). The entire control algorithm consists of this control law together with the on-board
controller and state estimation.

The goal is to find controller parameters that maximize the performance during a
1-meter reference position change. For an experiment with parameters �

n
 at iteration n , the

performance function is defined as

where, to compute the cost c, the states � = (x − 1, ẋ,�,�) and the input u are weighted by
positive semi-definite matrices � and R. The subscript k indicates the state measurement at
time step k in the trajectory and the time horizon is 5 s (N = 350). Performance is defined
as the cost improvement relative to 95% of the initial controller cost. The safety constraint
is defined only in terms of the performance; that is, the constraint is g(�) = f (�) ≥ 0 , which
encodes that we do not want to evaluate controller parameters that perform significantly
worse than the initial parameters.

While the optimal controller parameters could be easily computed given an accurate
model of the system, we do not have a model of the dynamics of the proprietary, on-board
controller and the time delays in the system. Moreover, we want to optimize the perfor-
mance for the real, nonlinear quadrotor system, which is difficult to model accurately. An
inaccurate model of the system could be used to improve the prior GP model of the perfor-
mance function, with the goal of achieving faster convergence. In this case, the uncertainty
in the GP model of the performance function would account for inaccuracies in the system
model.

We define the domain of the controller parameters as [−0.6, 0.1]2 , explicitly including
positive controller parameters that certainly lead to crashes. In practice, one would exclude
parameters that are known to be unsafe a priori. The initial controller parameters are
(−0.4,−0.4) , which result in a controller with poor performance. Decreasing the controller
gains further leads to unstable controllers.

The parameters for the experiments were set as follows: the length-scales were set
to 0.05 for both parameters, which corresponds to the notion that a 0.05–0.1 change in
the parameters leads to very different performance values. The prior standard deviation, � ,
and the noise standard deviation, � , are set to 5% and 10% of the performance of the inital
controller, f (�

0
) , respectively. The noise standard deviation, � , mostly models errors due

to initial position offsets, since state measurements have low noise. The size of these errors

(33)f (�n) = c(�n) − 0.95 c(�0),

(34)c(�
n
) = −

N
∑

k=0

�T

k
��

k
+ Ru

2

k
,

Machine Learning

1 3

depends on the choice of the matrices � and R. By choosing � as a function of the initial
performance, we account for the � and R dependency. Similarly, � specifies the expected
size of the performance function values. Initially, the best we can do is to set this quan-
tity dependent on the initial performance and leave additional room for future, larger per-
formance values. For the GP model, we choose �1∕2

n
= 2 to define the confidence interval

in (10).
The resulting, estimated performance function after running Algorithm 1 for 30 experi-

ments is shown in Fig. 4. The unknown function has been reliably identified. Samples are

Fig. 4 GP mean estimate of the performance function after 30 evaluations. The algorithm adaptively
decides which parameters to evaluate based on safety and informativeness. In the bottom-left corner, there
is the magnified section of the first three samples, which are close together to determine the location of the
initial, safe region. The maximum, magnified in the top-left corner, also has more samples to determine the
precise location of the maximum. Other areas are more coarsely sampled to expand the safe region

Fig. 5 The quadrotor controller performance is evaluated during a 5 s evaluation interval, where a 1 m refer-
ence position change must be performed. The trajectories correspond to the optimization routine in Fig. 4.
The initial controller (blue) performs poorly but is stable. In contrast, the optimized controller (red) shows
an optimized, smooth, and fast response. The trajectories of other controller parameters that were evaluated
are shown in gray (Color figure online)

 Machine Learning

1 3

spread out over the entire safe set, with more samples close to the maximum of the func-
tion and close to the initial controller parameters. No unsafe parameters below the safety
threshold were evaluated on the real system.

Typically, the optimization behavior of Algorithm 1 can be roughly separated into three
stages. Initially, the algorithm evaluates controller parameters close to the initial parameters in
order for the GP to acquire information about the safe set (see lower-left, zoomed-in section in
Fig. 4). Once a region of safe controller parameters is determined, the algorithm evaluates the
performance function more coarsely in order to expand the safe set. Eventually, the controller
parameters are refined by evaluating high-performance parameters that are potential maximiz-
ers in a finer grid (see upper-left, zoomed-in section in Fig. 4). The trajectories of the initial,
best and intermediate controllers can be seen in Fig. 5.

5.4 Nonlinear control

In the previous section, we showed how to optimize the performance of a linear control law
subject to a simple constraint on performance. In this section, we optimize the nonlinear con-
troller in (29) and (30) and show how more complex constraints can be used.

We use the same task as in the previous section, but this time the goal is to minimize
the root-mean-square error (RMSE) over a time horizon of 5 s (N = 350 samples) during a
1-meter reference position change in x-direction. We define the performance function,

Fig. 6 Mean estimate of the root-mean-square error when optimizing the parameters of the nonlinear con-
trol law for a step response, subject to safety constraints. The algorithm carefully evaluates only safe param-
eter combinations, until the safe region cannot be expanded further without violating constraints. Without
the safety constraint, the algorithm explores a larger region of the parameter space (light blue) and eventu-
ally evaluates an unsafe parameter set (Color figure online)

Machine Learning

1 3

as the performance relative to 75% of the performance of the initial parame-
ters �0 = (0.9, 0.8) . We define the GP model of this performance function as follows: in
this experiment, measurement noise is minimal, since the positions are measured accu-
rately by the overhead camera system. However, to capture errors in the initial position, we
define � = 0.05c(�

0
) . We assume that we can improve the initial controller by roughly 20% ,

so we set � = 0.2c(�
0
) . The lengthscales are set to 0.05 in order to encourage cautious

exploration. These parameters turned out to be conservative for the real system. Notice that
the cost is specified relative to c(�

0
) instead of f (�

0
) as in Sect. 5.3. Since c(�

0
) > f (�

0
) ,

these hyperparameters are more conservative, so that we require more evaluations on the
real system. The reason for this more conservative choice is that the nonlinear controller
is expected to have a less smooth performance function, unlike the one for linear control,
which is expected to be roughly quadratic.

If, as in the previous section, one were to set the safety constraint to g
1
(�) = f (�) , the

algorithm would classify the blue shaded region in Fig. 6 as safe. This region includes time
constants as low as � = 0.3 , which encourage highly aggressive maneuvers, as would be
expected from a performance function that encourages changing position as fast as pos-
sible. However, these high gains amplify noise in the measurements, which can lead to
crashes; that is, the performance-based constraint cannot properly encode safety. Notice
that the blue shaded area does not correspond to full exploration, since the experiment was
aborted after the first, serious crash. The reason for the unsafe exploration is that the RMSE
performance function in (36) does not implicitly encode safety the same way as weighting
of state and input errors in Fig. 4 does, where high control gains are penalized due to the
control cost. In particular, this means that if the gains are chosen too high so that the robot
crashes, we have an abrupt drop in performance that violates the theoretical assumptions
that allow us to use a GP model for exploration. To avoid this, we need to specify addi-
tional safety constraints.

One indication of unsafe behavior in quadrotors are high angular velocities when the
quadrotor oscillates around the reference point. We define an additional safety constraint on
the maximum angular velocity max

k
|�

x,k| ≤ 0.5 rad/s by setting g2(�) = 0.5 − maxk |�x,k| .
The corresponding hyperparameters are selected as �

2
= 0.1 , l = 0.2 , and � = 0.25 . The

measurement noise can be chosen to be relatively small here, since it corresponds to a
single measurement of angular velocity. Note that it is difficult to perform the step maneu-
ver with an angular velocity lower than 0.4 rad/s , so that typical values of g

2
 are smaller

than 0.1.
With this additional safety constraint, the algorithm explores the parameter space and

stops before the safety constraints are violated, as can be seen in Fig. 6. Rather than explor-
ing smaller time constants � (higher gains), the algorithm evaluates larger damping ratios,
which allow slightly smaller values of � and therefore higher performance without violat-
ing the safety constraints. The optimal parameters are to the top-left of the safe set, where
small time constants encourage tracking the reference aggressively, while the increased
damping ratio ensures a moderate angular velocity.

(35)f (�n) = c(�n) − 0.75 c(�0),

(36)c(�
n
) =

1
√

N

�
N�

k=1

‖�
k
− �des,k‖2

2

�1∕2

,

 Machine Learning

1 3

5.5 Circle trajectory

In this section, we use the same nonlinear controller and cost function as in the previous
section, but aim to optimize the RMSE with respect to a circle trajectory of radius 1 m at
a speed of 1 m/s . The reference is defined as a point moving along the circle at the desired
speed. Feasibility of such motions has been analyzed in Schoellig et al. (2011).

In order to ensure good tracking behavior, we define safety as a constraint on the maxi-
mum RMSE of 0.2 m . Additionally, we use the same constraint on the maximum angu-
lar velocity around the x and y axis of 0.5 rad/s as before. The yaw-angle is set so that
the quadrotor always points to the center of the circle, which ideally should lead to zero

Fig. 7 The trajectories (gray)
resulting from iteratively opti-
mizing the controller param-
eters for a unit circle reference
trajectory at 1 m/s (black). The
trajectory with the initial param-
eters (blue) has poor tracking
performance, while the opti-
mized parameters (red) perform
significantly better. The flight is
safe, i.e., only safe parameters are
evaluated (Color figure online)

Fig. 8 The mean estimate of the performance function for the circle trajectory in Fig. 7 for a speed of 1 m/s
(left) and 1.8 m/s (right). Extending the kernel with a context for speed allows to transfer knowledge to dif-
ferent speeds and leads to speed-dependent optimal control parameters, speeding up the learning for higher
speeds

Machine Learning

1 3

angular velocity. Deviations from this are an indication of unsafe behavior. We use the
same kernel hyperparameters as in Sect. 5.4.

The trajectories that result from running the optimization algorithm are shown in Fig. 7.
The initial controller parameters lead to very poor performance. In particular, the initial
time constant is too large, so that the quadrotor lags behind the reference. As a result, the
quadrotor flies a circle of smaller radius. In contrast, the resulting optimized trajectory (in
red) is the best that can be obtained given the safety constraints and controller structure
above. The mean estimate of the performance function after the experiments can be seen in
Fig. 8a. The optimal parameters have smaller time constants, so that the position is tracked
aggressively. Since the reference point moves of 1 m/s, these aggressive controller param-
eters do not lead to unsafe behavior. During the entire optimization, only safe parameters
that keep the vehicle within the constraints on RMSE and angular velocity are evaluated.

5.6 Context-dependent optimization

In this section, we show how the knowledge about good controller parameters at low
speeds can be used to speed up the safe learning at higher speeds.

In our circle experiment, the quadrotor tracked a moving reference. As this reference
moves with high velocities, the quadrotor gets pushed to its physical actuator limits and
starts to lag behind the reference. This causes the circle that is flown by the quadrotor to
have a smaller radius than the reference trajectory. In this section, the goal is to maximize
the speed of the reference trajectory subject to the safety constraints of the previous experi-
ment in Sect. 5.5. One way to achieve this goal, is to add the speed of the reference point to
the performance function. However, this would lead to more experiments, as the algorithm
will explore the safe parameter space for every velocity. Instead, here we define the trajec-
tory speed as a context, which is set externally. In particular, we set

Fig. 9 Trajectories with optimal parameters for speeds of 1 m/s (red) and 1.8 [m/s] (green) when tracking
the black reference. At slower speeds there exist aggressive controller parameters that allow the quadrotor
to track the reference almost perfectly. At higher speeds, actuator saturation limits the achievable perfor-
mance. Due to the safe optimization framework the maximum speed can be found that does not deviate
more from the reference trajectory than is allowed by the safety constraint. The corresponding performance
functions can be seen in Fig. 8 (Color figure online)

 Machine Learning

1 3

that is, we select the maximum velocity for which there are safe parameters known. While
here we select the context manually, in practice contexts can be used to model any external,
measurable variables, such as the battery level, see Sect. 3.3.

In order to transfer knowledge about good controller parameters from the slow speed in
Sect. 5.5 to higher speeds, we model how performance and constraints vary with desired
speed by defining a kernel kz(ẋdes, ẋ�

des
) over contexts. We use the same kernel structure

as in (6) and hyperparameters � = 1 and l = 0.25 . Based on the data from Sect. 5.5, the
extended model allows us to determine speeds for which safe controller parameters are
known.

Starting from the data of the previous experiments in Sect. 5.5, we run SAFEOPT-MC
using the extended kernel with the additional speed context determined by (37). This allows
us to find optimal parameters for increasingly higher speeds, which satisfy the constraints.
We can safely increase the speed up to 1.8 m/s. We show the mean performance function
estimates for two speeds in Fig. 8. For lower speeds, the best controller parameters track
the reference position more aggressively (low �). For higher speeds, this behavior becomes
unsafe as the quadrotor lags behind the reference point. Instead, the optimal parameters
shift to higher time constants (lower gains). Additionally, as expected, high speeds lead to
higher reference tracking errors. Increasing the reference velocity any further causes the
performance constraint to be violated.

The trajectories that result from applying the optimal parameters for a speed of 1 m/s
and the maximum safe speed of 1.8 m/s can be seen in Fig. 9. For the relatively slow speed
of 1 m/s the quadrotor can track the circle well using aggressive parameters. For the higher
speed, the reference trajectory moves too fast for the quadrotor to track perfectly within
the actuator limits, so that the best parameters just barely satisfy the safety constraint on
the average deviation from the reference. Overall, this approach allows us to find context-
dependent parameters, while remaining within the safety constraints.

6 Conclusion and future work

We presented a generalization of the Safe Bayesian Optimization algorithm of Sui et al.
(2015) that allows multiple, separate safety constraints to be specified and applied it to non-
linear control problems on a quadrotor vehicle. Overall, the algorithm enabled efficient and
automatic optimization of parameters without violating the safety constraints, which would
lead to system failures. Currently, the algorithm is mostly applicable to low-dimensional
problems due to the computational budren of optimizing (15) and the statistical problem of
defining suitable GP priors in high-dimensions. While interesting progress has been made
in this direction in the standard Bayesian optimization case, future work could explore this
in the safety-critical case.

7 Proofs

In this section, we provide the proofs for Theorem 4.1 and Lemma 4.2.
Since we consider the surrogate function h(a, i) in (4), we obtain q + 1 individual

measurements at each iteration, each with individual noise. A measure of how difficult it

(37)zn = argmax
v∈ℝ, �∈A

v subject to: gi(�, v) ≥ 0, ∀i ∈ Ig,

Machine Learning

1 3

is to learn an accurate GP model of a function is given by the information capacity. This
corresponds to the maximum amount of mutual information between a scalar function h
and measurements �̂

D
 at a set of parameters D of size n. The measurements �̂

D
 are cor-

rupted by zero-mean, Gaussian noise. The information capacity is then defined as

which is the maximum amount of information we can obtain about the function h from n
measurements. The information gain is known to be sublinear in n for many commonly
used kernels (Srinivas et al., 2012). Intuitively, the first samples for the GP model provide a
lot of information, since each sample improves the prior significantly. After some iterations
the domain A is covered with samples in D , so that additional samples are more correlated
with previous data points in D , rendering the samples less informative. The more prior
information we encode in the GP prior, the less information can be gained from the same
number of samples.

In our setting, we obtain |I| = q + 1 measurements at every iteration step n, each with
different, independent noise. The mutual information with regards to these multiple
measurements at parameters Ā ⊂ A can be bounded with

where Ā × I is the cartesian product that means we obtain one measurement for every
function indexed by i ∈ I at each parameter in Ā . The first inequality bounds the mutual
information gained by Algorithm 1 by the worst-case mutual information, while the sec-
ond inequality bounds this again by the worst-case mutual information when optimizing
over the |I| measurements at each iteration step individually. Intuitively, obtaining multiple
optimal samples does not fundamentally change the properties of the information gain, but
accelerates the rate at which information can be obtained in the worst case by |I|.

In the following, we assume that h(�, i) has bounded RKHS norm. Lemma 4.1 pro-
vides requirements for �

n
 , which will be used in the following to prove the results.

Lemma 4.1 (based on Chowdhury and Gopalan (2017)) Assume that h(�, i) has RKHS

norm bounded by B and that measurements are corrupted by �-sub-Gaussian noise. If

�
1∕2

n = B + 4�
√
�(n−1)�I� + 1 + ln(1∕�) , then the following holds for all parameters � ∈ A ,

function indices i ∈ I , and iterations n ≥ 1 jointly with probability at least 1 − �:

Proof Directly follows from Chowdhury and Gopalan (2017). The only difference is that
we obtain |I| measurements at every iteration, which causes the information capacity � to
grow at a faster rate. ◻

(38)�
n
∶= max

D⊂A×I,|D|=n

I(�̂D;h),

(39)I(�̂Ā×I;h) ≤ max
Ā⊂A,|Ā|≤n

I(�̂Ā×I;h),

(40)≤ max
D⊂A×I,|D|≤n|I|

I(�̂D;h),

(41)= �|I|n,

(18)|
| h(�, i) − �

n−1(�, i) || ≤ �1∕2

n
�

n−1(�, i).

 Machine Learning

1 3

Note Where needed in the following lemmas, we implicitly assume that the assump-
tions of Lemma 4.1 hold, and that �

n
 is defined as above. Moreover, we use the defini-

tion for C(�, i) as the intersection of the confidence intervals Q as in Sect. 4.1.

Corollary 7.1 For �
n
 as above, the following holds with probability at least 1 − �:

Proof From Lemma 4.1 we know that the true functions are contained in Qn(�, i) for all
iterations n with probability at least 1 − � . As a consequence, the true functions will be
contained in the intersection of these sets with the same probability. ◻

Corollary 7.1 gives a choice of �
n
 , which ensures that all the function values of h

are contained within their respective confidence intervals with high probability. In the
remainder of the paper, we follow the outline of the proofs in Sui et al. (2015), but
extended them to account for multiple constraints.

We start by showing the dynamics of important sets and functions. Most importantly,
the upper confidence bounds are decreasing, lower confidence bounds increasing with
the number of iterations, since the sets C

n+1
⊆ C

n
 for all iterations n.

Lemma 7.1 The following hold for any n ≥ 1 :

 (i) ∀� ∈ A,∀i ∈ I, u
i

n+1
(�) ≤ u

i

n
(�),

 (ii) ∀� ∈ A,∀i ∈ I, l
i

n+1
(�) ≥ l

i

n
(�),

 (iii) ∀� ∈ A,∀i ∈ I, w
n+1(�, i) ≤ w

n
(�, i),

 (iv) S
n+1

⊇ S
n
⊇ S

0
,

 (v) S ⊆ R ⇒ R
�
(S) ⊆ R

�
(R),

 (vi) S ⊆ R ⇒ R̄
�
(S) ⊆ R̄

�
(R).

Proof (i), (ii), and (iii) follow directly from their definitions and the definition of C
n
(�) .

 (iv) Proof by induction. Consider the initial safe set, S
0
 . By definition of C

0
 we have for

all � ∈ S
0
 and i ∈ I that

 It then follows from the definition of S
n
 that � ∈ S

1
.

 For the induction step, assume that for some n ≥ 2 , S
n−1

⊆ S
n
 and let � ∈ S

n
 .

This means that for all i ∈ Ig , ∃�
i
∈ S

n−1, li
n
(�

i
) − L‖�

i
− �‖ ≥ 0 by the defini-

tion of the safe set. But, since S
n−1

⊆ S
n
 , this implies that �

i
∈ S

n
 , ∀i ∈ Ig . Fur-

thermore, by part (ii), li
n+1

(�) ≥ l
i

n
(�

i
) . Therefore, we conclude that for all i ∈ Ig ,

l
i

n+1
(�

i
) − L‖�

i
− �‖ ≥ 0 , which implies that � ∈ S

n+1
.

 (v) Let � ∈ R
�
(S) . Then, by definition, for all i ∈ Ig , ∃�i ∈ S, gi(�i) − L‖�i − �‖ ≥ 0 . But,

since S ⊆ R , it means that �i ∈ R∀i ∈ Ig , and, therefore, gi(�i) − L‖�i − �‖ ≥ 0 for
all i ∈ Ig also implies that � ∈ R

�
(R).

 (vi) This follows directly by repeatedly applying the result of part (v).

 ◻

∀n ≥ 1, ∀i ∈ I, ∀� ∈ A, h(�, i) ∈ C
n
(�, i).

l
i

1
(�) − L‖� − �‖ = l

i

1
(�) ≥ l

i

0
(�) ≥ 0.

Machine Learning

1 3

Using the previous results, we start by showing that, after a finite number of iterations,
the safe set has to expand if possible. As a first step, note that the set of expanders and
maximizers are contained in each other as well if the safe set does not increase:

Lemma 7.2 For any n
1
≥ n

0
≥ 1 , if S

n
1
= S

n
0
 , then, for any n, such that n

0
≤ n < n

1
 , it

holds that

Proof Given the assumption that S
n
 does not change, both G

n+1
⊆ G

n
 and M

n+1
⊆ M

n

follow directly from the definitions of G
n
 and M

n
 . In particular, for G

n
 , note that for any

� ∈ S
n
 , ei

n
(�) is decreasing in n for all i ∈ Ig , since ui

n
(�) are decreasing in n. For M

n
 , note

that max
�
�∈Sn

l
f
n(�

�) is increasing in n, while uf
n(�) is decreasing in n (see Lemma 7.1 (i),

(ii)). ◻

When running the SAFEOPT-MC algorithm, we repeatedly choose the most uncertain
element from G

n
 and M

n
 . Since these sets are contained in each other if the safe set does

not expand, we gain more information about these sets with each sample. Since the infor-
mation gain is bounded, this allows us to bound the uncertainty in terms of the information
gain over the entire set:

Lemma 7.3 For any n
1
≥ n

0
≥ 1 , if S

n
1
= S

n
0
 and c̃ ∶= 8∕ log(1 + �

−2) , then, for any n,
such that n

0
≤ t ≤ n

1
 , it holds for all i ∈ I that

Proof Given Lemma 7.2, the definition of �
n
∶= argmax

�∈G
n
∪M

n

(w
n
(�)) , and the fact that,

w
i

n
(�

n
) ≤ 2�

1∕2

n max∈∈I
�

n−1(�n
, i) = 2�

1∕2

n (�
n
, i

n
) , the proof is completely analogous to that

of Lemma 5.3 by Srinivas et al. (2012). We only highlight the main differences here, which
results from having several functions.

which following (Srinivas et al., 2012, Lemma 5.4) leads to

where D̄
n
= {�

n
, i

n
} . Now using monotonicity of the mutual information, we have that

by (41). ◻

G
n+1

∪ M
n+1

⊆ G
n
∪ M

n
.

w
n
(�

n
, i) ≤

√
c̃�

n
�|I|n

n − n0

.

(42)w
i

n
(�

n
) ≤ 2�1∕2

n
max
∈∈I

�
n−1(�n

, i),

(43)

n∑

j=1

w2

j
(�j, ij) ≤ �

1∕2

|I|nI(�̂
D̄n

;h),

(44)

n∑

j=1

w2

j
(�j, ij) ≤ c̃�

1∕2

|I|nI(�̂
Dn×I

;h),

(45)≤ c̃�
1∕2

|I|n
�|I|n

 Machine Learning

1 3

Corollary 7.2 For any n ≥ 1 , if c̃ is defined as above, N
n
 is the smallest positive integer sat-

isfying
N

n

�
n+N

n

�|I|(n+N
n
)

≥
c̃

�2
 , and S

n+N
n
= S

n
 , then, for any � ∈ G

n+N
n
∪ M

n+N
n
 , and for all

i ∈ I it holds that

Note Where needed in the following lemmas, we assume that c̃ and N
n
 are defined as

above.
That is, after a finite number of evaluations N

n
 the most uncertain element within

these sets is at most � . Given that the reachability operator in (8) is defined in terms of
the same accuracy, it allows us to show that after at most N

n
 evaluations, the safe set has

to increase unless it is impossible to do so:

Lemma 7.4 For any n ≥ 1 , if R̄
�
(S

0
) ⧵ S

n
≠ ∅ , then R

�
(S

n
) ⧵ S

n
≠ ∅.

Proof Assume, to the contrary, that R
�
(S

n
) ⧵ S

n
= ∅ . By definition, R

�
(S

n
) ⊇ S

n
 , therefore

R
�
(S

n
) = S

n
 . Iteratively applying R

�
 to both sides, we get in the limit R̄

�
(S

n
) = S

n
 . But then,

by Lemma 7.1 (iv) and (vi), we get

which contradicts the lemma’s assumption that R̄
�
(S

0
) ⧵ S

n
≠ ∅ . ◻

Lemma 7.5 For any n ≥ 1 , if R̄
�
(S

0
) ⧵ S

n
≠ ∅ , then the following holds with probability at

least 1 − �:

Proof By Lemma 7.4, we get that, R
�
(S

n
) ⧵ S

n
≠ ∅ , Equivalently, by definition, for all

i ∈ Ig

Now, assume, to the contrary, that S
n+N

n
= S

n
 (see Lemma 7.1 (iv)), which implies that

� ∈ A ⧵ S
n+N

n
 and �I ∈ Sn+Nn

∀i ∈ Ig . Then, we have for all i ∈ Ig

Therefore, by definition, e
n+N

n

(�
i
) > 0 , which implies �i ∈ Gn+Nn

, ∀i ∈ Ig.
Finally, since S

n+N
n
= S

n
 and �i ∈ Gn+Nn

∀i ∈ Ig , we know that for all
i ∈ I, w

n+N
n

(��, i) ≤ � . (Corollary 7.2). Hence, for all i ∈ Ig,

This means we get � ∈ S
n+N

n
 , which is a contradiction. ◻

w
n+N

n

(�, i) ≤ �.

(46)R̄
�
(S0) ⊆ R̄

�
(S

n
) = S

n
,

S
n+N

n
⊋ S

n
.

(47)∃� ∈ R
�
(Sn) ⧵ Sn, ∃�i ∈ Sn ∶ gi(�i) − � − L‖�i − �‖ ≥ 0.

ui
n+Nn

(�i) − L‖�i − �‖ ≥ gi(�i) − L‖� − �‖ by Lemma 4.1

≥ gi(�i) − � − L‖� − �‖

≥ 0. by (47)

li
n+Nn

(�i) − L‖�i − �‖ ≥ gi(�i) − w(�i, i) − L‖a − �i‖ by Lemma 4.1

≥ gi(�) − � − L‖a − �i‖ by Corollary 7.2

≥ 0 by (47).

Machine Learning

1 3

Intuitively, repeatedly applying the previous result leads to full safe exploration
within a finite domain A . In particular, it follows that if S

n+N
n
= S

n
 , then the safely

reachable set has been fully explored to the desired accuracy. From this it follows, that
the pessimistic estimate in (17) is also �-close to the optimum value within the safely
reachable set, R̄

�
(S

0
):

Lemma 7.6 For any n ≥ 1 , if S
n+N

n
= S

n
 , then the following holds with probability at least

1 − �:

Proof Let �∗ ∶= argmax
�∈Sn+Nn

f (�) . Note that �∗ ∈ M
n+N

n

 , since

We will first show that f (�n+Nn
) ≥ f (�∗) − � . Assume, to the contrary, that

Then, we have

which is a contradiction.
Finally, since S

n+N
n
= S

n
 , Lemma 7.5 implies that R̄

�
(S

0
) ⊆ S

n
= S

n+N
n
 . Therefore,

 ◻

Corollary 7.3 For any n ≥ 1 , if S
n+N

n
= S

n
 , then the following holds with probability at

least 1 − �:

Proof This is a direct consequence of the proof of the preceding lemma, combined with the
facts that both S

n+N
n
+n�

 and lf
n+Nn+n�

(�n+Nn+n�) are increasing in n′ (by Lemma 7.1 (iv) and
(ii) respectively), which imply that max

�∈Sn+Nn+n�
l
f

n+Nn+n�
(�) can only increase in n′ . ◻

f (�n+Nn
) ≥ max

�∈R̄
�
(S

0
)
f (�) − �.

u
f

n+Nn
(�∗) ≥ f (�∗) by Lemma 4.1

≥ f (�) by definition of �∗

≥ l
f

n+Nn
(�) by Lemma 4.1

≥ max
�∈Sn+Nn

l
f

n+Nn
(�). by definition of �

(48)f (�n+Nn
) < f (�∗) − �.

l
f

n+Nn
(�∗) ≤ l

f

n+Nn
(�) by definition of �

≤ f (�) by Lemma 4.1

< f (�∗) − � by (48)

≤ u
f

n+Nn
(�∗) − � by Lemma 4.1

≤ l
f

n+Nn
(�∗), by Corollary 7.2 and �

∗ ∈ Mn+Nn

max
�∈R̄� (S0)

f (�) − � ≤ max
�∈Sn+Nn

f (�) − � R̄
�
(S0) ⊆ Sn+Nn

= f (�∗) − � by definition of �∗

≤ f (�n+Nn
) proven above.

∀n� ≥ 0, f (�n+Nn+n�) ≥ max
�∈R̄

�
(S0)

f (�) − �.

 Machine Learning

1 3

Moreover, since we know the true function is contained within the confidence inter-
vals, we cannot go beyond the safe set if we knew the function perfectly everywhere, R̄

0
:

Lemma 7.7 For any n ≥ 0 , the following holds with probability at least 1 − �:

Proof Proof by induction. For the base case, n = 0 , we have by definition that S
0
⊆ R̄

0
(S

0
).

For the induction step, assume that for some n ≥ 1 , S
n−1

⊆ R̄
0
(S

0
) . Let � ∈ S

n
 , which, by

definition, means that for all i ∈ Ig ∃�i
∈ S

n−1
 , such that

Then, by definition of R̄
0
 and the fact that �

i
∈ R̄

0
(S

0
) for all i ∈ Ig , it follows that

� ∈ R̄
0
(S

0
) . ◻

The previous results is enough to show that we eventually explore the full safe set by
repeatedly applying Lemma 7.5:

Lemma 7.8 Let n
∗ be the smallest integer, such that n

∗ ≥ |R̄
0
(S

0
)|T

n∗
 . Then, there exists

n
0
≤ n

∗ , such that S
n

0
+T

n0

= S
n

0
.

Proof Assume, to the contrary, that for any n ≤ n
∗ , S

n
⊊ S

n+T
n
 . (By Lemma 7.1 (iv), we

know that S
n
⊆ S

n+T
n
 .) Since N

n
 is increasing in n, we have

which implies that, for any 0 ≤ k ≤ |R̄
0
(S

0
)| , it holds that |S

kTn∗
| > k . In particular, for

k∗ ∶= |R̄
0
(S

0
)| , we get

which contradicts S
k∗T

⊆ R̄
0
(S

0
) by Lemma 7.7. ◻

Corollary 7.4 Let n
∗ be the smallest integer, such that

n
∗

�
n∗
�|I|n∗

≥
c̃|R̄

0
(S

0
)|

�2
 . Then, there

exists n
0
≤ n

∗ , such that S
n

0
+T

n0

= S
n

0
.

Proof This is a direct consequence of combining Lemma 7.8 and Corollary 7.2. ◻

Since we showed that we completely explore the safe set and that we remain safe
throughout the exploration procedure, we are ready to state the main results:

Lemma 7.9 If h is L-Lipschitz continuous, then, for any n ≥ 0 , the following holds with

probability at least 1 − � for all i ∈ Ig:

Proof We will prove this by induction. For the base case n = 0 , by definition, for any
� ∈ S

0
 and i ∈ Ig , gi(�) ≥ 0.

S
n
⊆ R̄

0
(S

0
).

li
n
(�i) − L‖�i − �‖ ≥ 0

⇒ gi(�i) − L‖�i − �‖ ≥ 0. by Lemma 4.1

S0 ⊊ S
n0
⊆ S

T
n∗
⊊ S

T
n∗
+T

T
n∗

⊆ S2T
n∗
⊊ ⋯ ,

|S
k∗T

| > |R̄
0
(S

0
)|

∀� ∈ Sn, gi(�) ≥ 0.

Machine Learning

1 3

For the induction step, assume that for some n ≥ 1 , for any � ∈ S
n−1

 and for all i ∈ Ig ,
gi(�) ≥ 0 . Then, for any � ∈ S

n
 , by definition, for all i ∈ Ig , ∃�i

∈ S
n−1

,

 ◻

Theorem 4.1 Assume that h(�, i) has bounded norm in an RKHS and that the measurement

noise is �-sub-Gaussian. Also, assume that S
0
≠ ∅ and gi(�) ≥ 0 for all � ∈ S

0
 and i ∈ Ig .

Choose �
n
 as in Lemma 4.1, define �̂

n
 as in (17), and let n∗(�, �) be the smallest positive

integer satisfying

where c̃ = 8∕ log(1 + �
−2) . For any � > 0 and � ∈ (0, 1) , when running Algorithm 1 the fol-

lowing inequalities jointly hold with probability at least 1 − � :

1. Safety: ∀n ≥ 1,∀i ∈ Ig ∶ gi(�n) ≥ 0

2. Optimality: ∀n ≥ n∗
, f (�̂n) ≥ f ∗

�
− �

Proof The first part of the theorem is a direct consequence of Lemma 7.9. The second part
follows from combining Corollary 7.3 and Corollary 7.4. ◻

Acknowledgements This research was supported in part by SNSF Grant 200020_159557, NSERC Grant
RGPIN-2014-04634, and the Connaught New Researcher Award.

Funding Open Access funding provided by ETH Zurich.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Achiam, J., Held, D., Tamar, A., & Abbeel, P. (2017). Constrained policy optimization. In Proceedings of

the international conference on machine learning (ICML), 1705.10528.
Akametalu, A. K., Kaynama, S., Fisac, J. F., Zeilinger, M. N., Gillula, J. H., & Tomlin, C. J. (2014). Reacha-

bility-based safe learning with Gaussian processes. In Proceedings of the IEEE conference on decision

and control (CDC) (pp. 1424–1431).
Álvarez, M. A., Rosasco, L., & Lawrence, N. D. (2012). Kernels for vector-valued functions: A review.

Foundations and Trends in Machine Learning, 4(3), 195–266.

0 ≤ li
n
(�i) − L‖�i − �‖

≤ gi(�i) − L‖�i − �‖ by Lemma 4.1

≤ gi(�) by L-Lipschitz-continuity.

(20)
n
∗

�
n∗
�|I|n∗

≥
c̃(|R̄0(S0)| + 1)

�2
,

http://creativecommons.org/licenses/by/4.0/

 Machine Learning

1 3

Aswani, A., Gonzalez, H., Sastry, S. S., & Tomlin, C. (2013). Provably safe and robust learning-based
model predictive control. Automatica, 49(5), 1216–1226.

Berkenkamp, F., Krause, A., Angela, P., & Schoellig (2016a). Bayesian optimization with safety constraints:
Safe and automatic parameter tuning in robotics. arXiv: 16020 4450 [csRO]

Berkenkamp, F., & Schoellig, A. P. (2015). Safe and robust learning control with Gaussian processes. In
Proceedings of the European control conference (ECC) (pp. 2501–2506).

Berkenkamp, F., Schoellig, A. P., & Krause, A. (2016b). Safe controller optimization for quadrotors with
Gaussian processes. In IEEE international conference on robotics and automation (ICRA) (pp.
493–496).

Berkenkamp, F., Turchetta, M., Schoellig, A. P., & Krause, A. (2017). Safe model-based reinforcement
learning with stability guarantees. In Neural information processing systems (NeurIPS) (pp. 908–918).

Boyd, S., Boyd, S. P., & Vandenberghe, L. (2004). Convex optimization. Cambridge University Press.
Bull, A. D. (2011). Convergence rates of efficient global optimization algorithms. Journal of Machine

Learning Research, 12, 2879–2904.
Calandra, R., Gopalan, N., Seyfarth, A., Peters, J., & Deisenroth, M. P. (2014a). Bayesian gait optimization

for bipedal locomotion. In Learning and intelligent optimization (pp 274–290). Springer.
Calandra, R., Seyfarth, A., Peters, J., Deisenroth, M. P. (2014b). An experimental comparison of Bayesian

optimization for bipedal locomotion. In 2014 IEEE international conference on robotics and automa-

tion (ICRA) (pp. 1951–1958).
Chowdhury, S. R., & Gopalan, A. (2017). On kernelized multi-armed bandits. In Proceedings of the 34th

international conference on machine learning, PMLR, proceedings of machine learning research (Vol.
70, pp. 844–853).

Christmann, A., & Steinwart, I. (2008). Support vector machines. Information science and statistics.
Springer.

Dalal, G., Dvijotham, K., Vecerik, M., Hester, T., Paduraru, C., & Tassa, Y. (2018). Safe exploration in con-
tinuous action spaces. arXiv preprint arXiv: 18010 8757

Djolonga, J., Krause, A., & Cevher, V. (2013). High-dimensional Gaussian process bandits. Advances in

Neural Information Processing Systems, 26, 1025–1033.
Duivenvoorden, R. R., Berkenkamp, F., Carion, N., Krause, A., & Schoellig, A. P. (2017). Constrained

Bayesian optimization with particle swarms for adaptive controller tuning. In Proceedings of the IFAC

(international federation of automatic control) world congress (pp. 12306–12313).
Duvenaud, D. K., Nickisch, H., & Rasmussen, C. E. (2011). Additive Gaussian processes. Advances in Neu-

ral Information Processing Systems, 24, 226–234.
Eldar, Y. C., & Kutyniok, G. (2012). Compressed sensing: Theory and applications. Cambridge University

Press.
Garcia, J., & Fernández, F. (2012). Safe exploration of state and action spaces in reinforcement learning.

Journal of Artificial Intelligence Research, 45, 515–564.
Gelbart, M.A., Snoek, J., Adams, R.P. (2014). Bayesian optimization with unknown constraints. In Proceed-

ings of the Conference on Uncertainty in Artificial Intelligence (UAI) (pp. 250–259).
Ghosal, S., & Roy, A. (2006). Posterior consistency of Gaussian process prior for nonparametric binary

regression. The Annals of Statistics, 34(5), 2413–2429.
Hans, A., Schneegaß, D., Schäfer, A. M., & Udluft, S. (2008). Safe exploration for reinforcement learning.

In ESANN (pp. 143–148). Citeseer.
Jones, D. R. (2001). A taxonomy of global optimization methods based on response surfaces. Journal of

Global Optimization, 21(4), 345–383.
Kober, J., & Peters, J. (2013). Reinforcement learning in robotics: A survey. The International Journal of

Robotics Research, 32(11), 1238–1274.
Krause, A., & Ong, C. S. (2011). Contextual Gaussian process bandit optimization. In Proceedings of neu-

ral information processing systems (NIPS) (pp. 2447–2455).
Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., & Wierstra, D. (2015). Con-

tinuous control with deep reinforcement learning. arXiv: 15090 2971 [cs, stat] 1509.02971
Lizotte, D. J., Wang, T., Bowling, M. H., & Schuurmans, D. (2007). Automatic gait optimization with

Gaussian process regression. In Proceedings of the twentieth international joint conference on artifi-

cial intelligence (IJCAI) (Vol. 7, pp. 944–949).
Lupashin, S., Hehn, M., Mueller, M. W., Schoellig, A. P., Sherback, M., & D’Andrea, R. (2014). A plat-

form for aerial robotics research and demonstration: The Flying Machine Arena. Mechatronics, 24(1),
41–54.

Marco, A., Berkenkamp, F., Hennig, P., Schoellig, A. P., Krause, A., Schaal, S., & Trimpe, S. (2017). Vir-
tual vs. real: Trading off simulations and physical experiments in reinforcement learning with Bayesian

http://arxiv.org/abs/160204450
http://arxiv.org/abs/180108757
http://arxiv.org/abs/150902971

Machine Learning

1 3

optimization. In Proceedings of the IEEE international conference on robotics and automation (ICRA)
(pp. 1557–1563).

Mockus, J. (2012). Bayesian approach to global optimization: Theory and applications. Springer
Moldovan, T. M., & Abbeel, P. (2012). Safe exploration in Markov decision processes. In Proceedings of

the international conference on machine learning (ICML) (pp. 1711–1718).
Ostafew, C. J., Schoellig, A. P., & Barfoot, T. D. (2016). Robust constrained learning-based NMPC enabling

reliable mobile robot path tracking. The International Journal of Robotics Research (IJRR), 35(13),
1547–1536.

Peters, J., & Schaal, S. (2006). Policy gradient methods for robotics. In Proceedings of the IEEE/RSJ inter-

national conference on intelligent robots and systems (pp. 2219–2225).
Peters, J., & Schaal, S. (2008). Reinforcement learning of motor skills with policy gradients. Neural Net-

works, 21(4), 682–697.
Rasmussen, C. E., & Williams, C. K. (2006). Gaussian processes for machine learning. Cambridge MA:

MIT Press.
Schaal, S., & Atkeson, C. G. (2010). Learning control in robotics. IEEE Robotics & Automation Magazine,

17(2), 20–29.
Schoellig, A., Wiltsche, C., & D’Andrea, R. (2012). Feed-forward parameter identification for pre-

cise periodic quadrocopter motions. In Proceedings of the American control conference (ACC) (pp.
4313–4318).

Schoellig, A. P., Hehn, M., Lupashin, S., & D’Andrea, R. (2011). Feasiblity of motion primitives for cho-
reographed quadrocopter flight. In Proceedings of the American control conference (ACC) (pp.
3843–3849).

Schreiter, J., Nguyen-Tuong, D., Eberts, M., Bischoff, B., Markert, H., & Toussaint, M. (2015). Safe explo-
ration for active learning with Gaussian processes. In Machine learning and knowledge discovery in

databases (Vol. 9286, pp. 133–149). Springer International Publishing.
Solak, E., Murray-Smith, R., Leithead, W. E., Leith, D. J., & Rasmussen, C. E. (2003). Derivative observa-

tions in Gaussian process models of dynamic systems. In S. Becker, S. Thrun , K. Obermayer (eds)
Proceedings of neural information processing systems (NIPS) (pp. 1057–1064). MIT Press.

Srinivas, N., Krause, A., Kakade, S. M., & Seeger, M. (2012). Gaussian process optimization in the bandit
setting: No regret and experimental design. IEEE Transactions on Information Theory, 58(5), 3250–
3265 ((0912.3995)).

Sui, Y., Gotovos, A., Burdick, J. W., & Krause, A. (2015). Safe exploration for optimization with Gauss-
ian processes. In Proceedings of the international conference on machine learning (ICML) (pp.
997–1005).

Sui, Y., Zhuang, B. J., & Yue, Y. (2018). Stagewise safe Bayesian optimization with Gaussian processes. In
International conference on machine learning (pp. 4781–4789).

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. MIT press.
Tesch, M., Schneider, J., & Choset, H. (2011). Using response surfaces and expected improvement to opti-

mize snake robot gait parameters. In Proceedings of the IEEE/RSJ international conference on intel-

ligent robots and systems (IROS) (pp. 1069–1074).
The GPy authors (2012) GPy: A Gaussian process framework in Python. https:// github. com/ Sheffi eldML/

GPy
Turchetta, M., Berkenkamp, F., & Krause, A. (2016). Safe exploration in finite markov decision processes

with Gaussian processes. In Neural information processing systems (NeurIPS) (pp. 4305–4313).
Turchetta, M., Berkenkamp, F., & Krause, A. (2019). Safe exploration for interactive machine learning. In

Neural information processing systems (NeurIPS).
Wang, Z., Zoghi, M., Hutter, F., Matheson, D., & De Freitas, N. (2013). Bayesian optimization in high

dimensions via random embeddings. In Proceedings of the international joint conference on artificial

intelligence (IJCAI) (pp. 1778–1784). AAAI Press.
Zhou, K., & Doyle, J. C. (1998). Essentials of robust control, (Vol. 104). Prentice Hall.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://github.com/SheffieldML/GPy
https://github.com/SheffieldML/GPy

	Bayesian optimization with safety constraints: safe and automatic parameter tuning in robotics
	Abstract
	1 Introduction
	1.1 Related work

	2 Problem statement
	3 Background
	3.1 Gaussian process (GP)
	3.1.1 GPs with multiple outputs

	3.2 Bayesian optimization
	3.3 Contextual Bayesian optimization
	3.4 Safe Bayesian optimization (SafeOpt)

	4 SAFEOPT-MC (Multiple Constraints)
	4.1 The algorithm
	4.2 Theoretical results
	4.2.1 Contexts

	4.3 Practical implementation

	5 Experiments
	5.1 Experimental setup
	5.2 Kernel selection
	5.3 Linear control
	5.4 Nonlinear control
	5.5 Circle trajectory
	5.6 Context-dependent optimization

	6 Conclusion and future work
	7 Proofs
	Acknowledgements
	References

