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Bayesian Outlier Detection

with Dirichlet Process Mixtures

Matthew S. Shotwell∗ and Elizabeth H. Slate†

Abstract. We introduce a Bayesian inference mechanism for outlier detection

using the augmented Dirichlet process mixture. Outliers are detected by forming

a maximum a posteriori (MAP) estimate of the data partition. Observations that

comprise small or singleton clusters in the estimated partition are considered out-

liers. We offer a novel interpretation of the Dirichlet process precision parameter,

and demonstrate its utility in outlier detection problems. The precision parameter

is used to form an outlier detection criterion based on the Bayes factor for an

outlier partition versus a class of partitions with fewer or no outliers. We further

introduce a computational method for MAP estimation that is free of posterior

sampling, and guaranteed to find a MAP estimate in finite time. The novel meth-

ods are compared with several established strategies in a yeast microarray time

series.

Keywords: partition, optimization, Bayes factor

1 Introduction

Outliers are often accommodated at the expense of model complexity. For example,
Box and Tiao (1968) formulate separate models for ‘good’ and ‘bad’ observations. The
outlier detection task is to evaluate the evidence favoring a complex model over a simpler
one that does not accommodate outliers. Bayesian model selection techniques involving
the Bayes factor and related quantities have been utilized in this context by Petit (1992),
Hoeting et al. (1996), and Bayarri and Morales (2003).

A common outlier paradigm dictates that most observations in an experiment arise
uniformly from a single stochastic process, and a small number of outliers are generated
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by a different process. Alternatively, each observation may be thought to arise from one
of a multitude of heterogeneous processes, and observations arising from infrequently
realized processes are considered outliers. The latter notion of outlying observations is
naturally approached from a clustering, or partitioning perspective, where the goal is
to distinguish observations generated by different processes.

Several clustering methods have been considered in the context of outlier detec-
tion, including the Partitioning Around Medoids (PAM), Clustering Large Applications
(CLARA), and k-means algorithms (Kaufman and Rousseeuw 1990; Al-Zoubi 2009;
Hautamaki et al. 2004). In these methods, the number of clusters is fixed. However,
selecting the number of clusters is not trivial. Clustering methods used in this manner
are criticized for lack of clear outlier detection criteria. That is, the criteria are not
probabilistic, or not easily deduced from the procedure (Ben-Gal 2005).

The Dirichlet process mixture (DPM) model has enjoyed popularity in method-
ological and applied research. The tendency for DPM models to agglomerate similar
observations is an exploited feature. Their utility in outlier detection problems was
noted previously by Quintana and Iglesias (2003), and Quintana (2004), who develop a
sophisticated decision theory in order to balance model complexity and optimal param-
eter estimation. Their method is illustrated in the context of outlier detection.

The DPM induces a prior distribution over the data partition. Hence, inference on
statistics of the data partition, such as the number of clusters, is a consequence of the
posterior distribution. Manipulation of the Dirichlet process precision parameter yields
a simple and intuitive criterion for outlier detection with DPM models, which is the
principal contribution of this article.

Markov chain Monte Carlo (MCMC) methods are the primary means for summa-
rizing posterior quantities in DPM models (MacEachern 1994; Escobar and West 1995;
Ishwaran and James 2001; Green and Richardson 2001). In applications where the DPM
is used for partitioning or outlier detection, it may be unnecessary to draw representative
samples from a posterior distribution. In these cases, simpler and more computationally
efficient methods are available.

This paper describes a simple mechanism for outlier detection using Dirichlet process
mixtures. Since DPMs may be constructed from a broad class of statistical models, these
methods establish a uniform outlier detection criterion for all such models. We motivate
the MAP estimator for the data partition and develop an explicit outlier detection
criterion in Section 2. In Section 3, we discuss the literature on computational methods
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for DPMs and describe a novel stochastic alternative for MAP estimation. The methods
are illustrated using a microarray gene expression dataset in Section 4. The remainder
of this section provides additional background and motivation for the Dirichlet process
mixture model.

1.1 Dirichlet Process Mixtures

The Dirichlet process, also known as the Ferguson distribution was developed as a
probability distribution on the space of probability distributions (Ferguson 1973). The
notion of a distribution over distributions was motivated by problems in Bayesian den-
sity estimation. Coincidentally, Ferguson (1961) had considered the problem of outlier
detection earlier, though not in the context of the namesake distribution.

Suppose G0 is a probability distribution, and G is a random probability distribu-
tion, both with support in space B. Then G is distributed according to a Dirich-
let process with base distribution G0, and precision parameter α > 0, if for all fi-
nite r = 1, 2, . . . ,m < ∞ and measurable partitions {B1, . . . , Br} of B, the vector
{G(B1), . . . , G(Br)} has a Dirichlet distribution with parameter {αG0(B1), . . . , αG0(Br)}.
The precision parameter α determines how precisely {G(B1), . . . , G(Br)} vary about the
Dirichlet mean {αG0(B1), . . . , αG0(Br)}. In notation, G ∼ DP(α, G0).

Consider a sequence of random variables θ = {θj}n
j=1, drawn independently from a

DP distributed probability distribution such that

θj ∼ G

G ∼ DP(α, G0).

Then the posterior distribution of G is a Dirichlet process with precision α+n and base
distribution

α

α + n
G0 +

1
α + n

n∑

j=1

δθj ,

where δθ is the Dirac probability mass function, placing all mass at θ. In this way, α is
interpreted as a ‘prior sample size’, or the strength of prior belief in the base measure
G0.

The Polya urn scheme (Blackwell and MacQueen 1973) is a generative construction
for {θj}n

j=1, identified by marginalizing with respect to the DP-distributed measure G.



668 Outlier Detection with DPMs

The Polya urn yields the following sequence of conditional density functions:

p(θj |θ1:(j−1)) ∝ αG0(θj) +
j−1∑

k=1

δθk
, (1)

where θ1:(j−1) = {θ1, . . . , θj−1}. Formula (1) captures the essence of the Polya urn
scheme and motivates how clustering occurs among draws from a DP-distributed prob-
ability distribution. That is, equation (1) assigns positive probability where θj is iden-
tical to θk for some θk ∈ θ1:(j−1). We say that θj and θk are clustered when they take
identical values.

Antoniak (1974) used the Polya urn construction to further characterize the DP
precision parameter α through the expected number of distinct values among {θj}n

j=1,
denoted r. Antoniak gives the expression:

E[r] =
n∑

j=1

α

(α + j − 1)
. (2)

The expected number of clusters is monotonic in α. Hence, from the Polya urn per-
spective, α regulates how often distinct values arise in the sequence {θj}n

j=1.

Consider a random sample y = {y1, . . . , yn}, where f(yj |θj) is a probability density
function indexed by θj , then

yj |θj ∼ f(yj |θj)

θj ∼ G

G ∼ DP (α, G0)

constitutes a Dirichlet Process Mixture model. Conditional on θj , yj are independent
from the remaining sample observations. The posterior density function for θj |θ1:(j−1)

is then

p(θj |θ1:(j−1), yj) ∝ αG0(θj)f(yj |θj) +
j−1∑

k=1

δθk
(θj)f(yj |θk). (3)

Escobar and West (1995) proposed a posterior sampling algorithm based on this form
of the conditional posterior distribution.

1.2 Augmented Dirichlet Process Mixtures

The posterior mass function for θ = {θ1, . . . , θn} is a product of the n terms given by
expression (3). For even moderate n this product is intractable. The augmented con-
struction of the DPM yields a more tractable conditional posterior mass function. The
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parameter θ decomposes into two components, φ = {φ1, . . . , φr} and z = {z1, . . . , zn},
where φ is the set of r unique values in θ and z is the set of n cluster membership
variables such that zj = k if and only if θj = φk. The variable z represents the partition
of n observations into r clusters and is later referenced as the data partition variable. In
practice, z is usually written and coded as a vector of labels, often integers. However,
the partition z is invariant under permutations of the cluster labels.

Conditioning on z, the posterior density function for φ is given by

p(φ1, . . . , φr|z,y) ∝
r∏

k=1

G0(φk)L(φk|y(k)),

where L(φk|y(k)) is the likelihood function and y(k) = {yj : zj = k, j = 1, . . . , n} is
the set of observations assigned to the kth cluster. The number of observations in y(k)

is later denoted n(k). Conditional on z, the distinct {φ1, . . . , φr} are independent a
posteriori. In hierarchical notation, the augmented DPM may be written

yj |zj = k ∼ f(yj |φk)

φk ∼ G0

p(z) ∝ αr
r∏

k=1

Γ(n(k)), (4)

where the prior mass function p(z) is obtained from the Polya urn representation of
the DPM. The augmented DPM is a special type of product partition model (Hartigan
1990, PPM).

Variants of the augmented Dirichlet process mixture have been exploited in the
Gibbs sampling algorithms of MacEachern (1994), Bush and MacEachern (1996), and
MacEachern and Müller (1998), among others. The posterior distribution over the
data partition variable z may be approximated by sequentially sampling from the full
conditional distributions with mass functions

p(zj |z−j ,y) ∝





∫
αf(yj |φ)G0(φ)dφ zj 6= zi for all zi ∈ z−j∫
n

(k)
−j f(yj |φ)L(φ|y(k)

−j )G0(φ)dφ zj = zi = k for some zi ∈ z−j

, (5)

where notation with subscript −j indicates all but the jth observation. This method is
later referenced as the Polya urn Gibbs sampler.

The augmented DPM formulation makes the data partition explicit and simplifies the
notions of splitting and merging clusters. A single cluster whose member observations
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have been redistributed into exactly two new clusters is said to have undergone a ‘split’
operation. Two clusters whose observations are reassigned to a single new cluster are
said to have undergone a ‘merge’ operation.

2 Outlier Detection

Consider a data partition zo consisting of ro clusters, of which zero or more are outlier
clusters, where an outlier cluster contains no ¿ n or fewer observations. Let Mo be
the union of all partitions formed by any sequence of merge operations on the clusters
of the partition zo. Hence, each partition zm ∈ Mo consists of fewer clusters, and the
size of each cluster is the sum of one or more cluster sizes of zo. Conversely, zo may
be formed by a sequence of split operations on the clusters of a partition zm ∈ Mo.
Since Mo contains all the partitions that result from a merge operation on the outlier
clusters of zo, the outlier detection problem may be cast as a decision between zo and
the members of Mo.

The cost of making a poor decision about zo, given the true partition zT , is encoded
by a loss function. In the terminology of Berger (1985), zT is the true state of nature
at the time of an experiment. The conditional Bayes decision principle prescribes that
the Bayes estimate, or Bayes decision minimizes the expected value of the loss function
with respect to the posterior distribution of the unobserved state of nature z (Berger
1985; Hogg et al. 2005).

The zero-one loss function

L (z, zT ) =

{
1 z 6= zT

0 z = zT

,

yields the decision principle of largest posterior mass, and the Bayes estimator ẑ that
maximizes the marginal posterior distribution over z. Hence, ẑ is the maximum a
posteriori (MAP) estimate of zT .

Statistical decision making on the basis of largest posterior mass is independently
intuitive and useful. Hence, the zero-one loss function is often used implicitly. However,
Lau and Green (2007) argue for an alternative Bayes decision principle designed to
recover the true partition. The corresponding loss function is a weighted count of all
observation pairs that cluster discordantly between the estimated and true partition.
For equal weights, this is equivalent to maximizing the expected Rand (1971) index
between the estimated and true partition. The following discussions assume the decision
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principle of largest posterior mass. Alternative decision principles may also yield useful
criteria for outlier detection.

Under the decision principle of largest posterior mass, outliers are detected only when
an outlier partition zo satisfies the posterior condition p(zo)p(y|zo) > p(zm)p(y|zm) for
all zm ∈Mo. Substituting (4) for p(z) and rearranging gives the equivalent condition,

p(y|zo)
p(y|zm)

>
1
αv

∏rm

k=1 Γ(n(k)
m )

∏ro

k=1 Γ(n(k)
o )

, (6)

where v is the difference in the number of clusters between zo and zm, v = ro − rm.

The left-hand side of (6) is the Bayes factor for an outlier model zo versus a model
zm ∈ Mo, denoted BFo/m. A criterion for outlier detection is made by imposing a
minimum value on BFo/m. That is, outliers are detected only when the Bayes factor
favoring an outlier partition exceeds the lower bound.

The second ratio on the right-hand side of (6) takes a minimum value of one for
all zm ∈ Mo. For proof, consider that each n

(·)
m is the sum of one or more n

(k)
o for

k = 1 . . . ro. The ratio is then a product of rm multinomial coefficients, each taking a
minimum value of one. Hence, the quantity 1/αv forms a lower bound on the Bayes
factor favoring an outlier partition zo versus any partition zm ∈Mo. The lower bound
is conservative because the second ratio on the right-hand side of (6) is often much
greater than one. An exact criterion may be computed for any pair of partitions zo and
zm ∈Mo by substitution in inequality (6).

Fixing the value of α ensures that outliers are detected only when the associated
(integrated) likelihood is at least 1/αv times that of any partition formed by a sequence
of v merge operations on the outlier partition. In this context, the inverse precision
parameter 1/α is interpreted as the minimum Bayes factor required to detect a partition
with outliers. We recommend Jeffreys’ scale of evidence for Bayes factors (Jeffreys 1961;
Efron and Gous 2001) as a guide for selecting and interpreting the value of 1/α.

For the criterion to be valid, an estimated partition ẑ need only have greater posterior
mass than any partition formed by a sequence of merge operations on the estimate. Note
that a MAP estimate automatically satisfies this requirement. However, for many outlier
detection problems, satisfying this requirement is much less complex. In addition, this
property implies a certain robustness under poorly computed MAP estimates. Hence,
an estimate that does not fully maximize the marginal posterior mass function may still
satisfy the outlier detection criterion.
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2.1 Finite Mixture Comparison

Consider the marginal likelihood p(y|z) as a classification likelihood in the finite mixture
model framework. Fraley and Raftery (2002) propose an outlier detection strategy
by optimizing the associated Bayesian Information Criterion (BIC). The BIC is given
by − 1

2BIC(y|z) = logp(y|z) − ρ
2rlog(n), where r is the number of distinct clusters

(i.e. mixture components), and ρ is the fraction of free parameters per cluster. The
model-based clustering strategy identifies outlier clusters by maximizing − 1

2BIC(y|z),
or equivalently p(y|z)n− ρ

2 r. Hence, for an outlier partition zo and a partition zm ∈
Mo (defined in the preceding discussion), outliers are detected in the finite mixture
framework when

p(y|zo)
p(y|zm)

> n
ρ
2 v. (7)

Fraley and Raftery (2002) point to results supporting the appropriateness of opti-
mizing the BIC in classification problems, including consistency (in the classical sense)
for the number of clusters. Note that optimizing the BIC also imposes a lower bound
on the Bayes factor favoring the outlier partition. Indeed, by fixing the DPM precision
parameter such that

1
αv

= n
ρ
2 v,

the evidence required to detect outliers using the DPM method is at least that imposed
by the BIC.

By changing the prior distribution over data partitions from that given in (4) to
p(z) ∝ αr and taking α = n−ρ/2, the posterior mass function is identical to the BIC
penalized classification likelihood. Hence, the corresponding MAP estimate is identical
to the estimate obtained by optimizing the BIC. This property is used in Section 4
to draw comparison between the proposed DPM method, and the finite mixture/BIC
strategy.

2.2 Marginal Likelihood Concerns

Recent work in Bayesian nonparametrics has cast doubt on the utility of some traditional
parametric modeling strategies in semiparametric and nonparametric models. The find-
ings of Wang and Dunson (2011) suggest that partition estimation for nonparametric
applications is sensitive to over-fitting under marginal likelihood models. The authors
recommend a pseudo-marginal likelihood (PML), or a product of the conditional pre-
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dictive ordinates (Geisser 1980, CPO), which imposes a leave-one-out cross-validation
strategy to avoid over-fitting. Although we develop an outlier detection criterion in the
context of a marginal likelihood p(y|z), a pseudo-marginal likelihood and the associated
pseudo Bayes factor may be substituted. However, the value of 1/α should be carefully
selected to reflect comparison of PMLs.

Bush et al. (2010) further warn that strategies to address prior sensitivity in paramet-
ric models may not be appropriate in semiparametric models. MacEachern and Guha
(2011) recently explained a related paradox, where a posterior distribution under a semi-
parametric model is more concentrated than that of a corresponding parametric model,
even when the semiparametric prior distribution is less concentrated. These concerns
are directed toward semiparametric and nonparametric models where the likelihoods
of interest are marginal with respect to the data partition. In contrast, the likelihood
terms of inequality (6) are conditional on a data partition, and marginal with respect
to all other parameters. In this sense, the outlier detection criterion draws comparison
between two nested parametric models, rather than semiparametric or nonparametric
models.

For the Bayes factor of inequality (6), the numerator likelihood always has more
terms, with equal or fewer observations contributing to each cluster-specific likelihood.
Consequently, the contribution of prior information is weighted more strongly in the
numerator than in the denominator. Where prior information is informative, the im-
balance of prior contribution may be a useful shrinkage mechanism in clusters of the
numerator partition. When the prior is not intended to be informative, the effect may
be weakened by selecting a diffuse or improper prior. In specific cases, especially in
conjugate models, the contribution of the prior to the marginal likelihood may be ex-
amined directly, and suitably adjusted to reflect prior belief. We return to this point in
an applied context in Section 4.

3 Estimation

Computational methods for summarizing posterior quantities in Dirichlet process mix-
tures are varied in design and purpose. The data partition induced by the DPM is
often a nuisance in nonparametric applications. Estimates of the partition need not be
optimal in order to yield good nonparametric predictions. A variety of computational
strategies exploit this property to reduce the computational burden associated with
nonparametric and semiparametric inference in DPMs.
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Most recently, Wang and Dunson (2011) propose a sequential update and greedy
search (SUGS), and compare their method with others in this paradigm, including
predictive recursion (Newton 2002), variational approximation (Blei and Jordan 2006),
and sequential importance sampling (MacEachern et al. 1999). Wang and Dunson
(2011) evaluate the method on the criteria of computing speed and the Kullback-Leibler
divergence between a density used to simulate data, and a predictive density computed
conditional on the partition estimate. The authors demonstrate that SUGS gives fast
‘reasonable’ partition estimates for use in nonparametric inference. Direct comparison
of SUGS on other criteria unfairly ignores the purpose of its design.

The authors of the SUGS method suggest multiple random initializations to com-
bat order dependence in the partition estimate. As a minor adaptation of the SUGS
method, we propose to substitute the multiple random initialization steps with Polya
urn Gibbs updates. We refer to the resulting optimization strategy as SUGS++. In
order to emphasize the variability in computational strategies, we return to the SUGS
and SUGS++ methods in Section 4.

The outlier detection criterion presented in Section 2 requires the estimated data
partition to have greater posterior mass than any partition formed by a sequence of
merge operations on its clusters. This condition may not hold when a MAP estimate is
poorly computed and subsequent inferences may be invalid.

A MAP estimator for the data partition variable z is generally not available in closed
form. The data partition in a DPM has support over the number of possible partitions of
n observations, or the nth Bell number (Bell 1934; Rota 1964). Hence, enumerative op-
timization is not currently feasible for n much larger than ten. Reasonable approximate
solutions are the subject of active research.

Heard et al. (2006) extend the simple agglomerative method of Ward (1963) in
order to compute the MAP estimate in an augmented DPM. The method initially
partitions all observations into distinct clusters. At each subsequent step, two clusters
are merged such that the posterior mass of the resulting partition is largest. This
process is repeated until only one cluster remains. Of the partitions considered during
the merging process, that with greatest posterior mass is taken as the MAP estimate.
The Bayesian hierarchical clustering method (Heller and Ghahramani 2005; Xu et al.
2009) is another extension of the agglomerative method where the criterion for merging
is based on a statistical hypothesis test rather than the largest increase in posterior mass.
Fraley and Raftery (2002) recommend hierarchical agglomeration for initial model-based
classification.
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The Polya urn Gibbs sampler sequentially samples from the full conditional distribu-
tions of the cluster membership variables {z1, . . . , zn}. However, the sequential nature
of the Gibbs sampler makes it somewhat slow to mix in the space of partitions. The
Metropolis-Hastings methods of Green and Richardson (2001), and Jain and Neal (2004,
2007) are designed to improve MCMC mixing by traversing the space of data partitions
using ‘split’ and ‘merge’ operations.

Posterior sampling methods generate a consistent sequence of MAP estimates, but
are somewhat wasteful in this context because they approximate the entire posterior
distribution. In other words, an MCMC posterior sampling strategy will unnecessarily
explore regions of lower density in order to satisfy a detailed balance with the posterior
distribution. The stochastic method presented below utilizes the concept of ‘split’ and
‘merge’ operations to sequentially approximate the MAP estimate without the added
complexity and computational expense of ensuring the chain is ergodic. However, care
is taken to guarantee the MAP estimate is found in a finite number of iterations.

An iterative partition estimator may be initialized using the SUGS or agglomerative
methods. However, the agglomerative method always requires O(n2) evaluations of the
posterior mass function.

Updating the stochastic algorithm involves repeated ‘explode’ and ‘merge’ steps. At
the ‘explode’ step, a subsample is selected uniformly at random from all observations.
The subsample observations are then each distributed uniformly at random to an ex-
isting or new cluster. If the ‘explode’ step does not result in an increase in posterior
probability, the subsample observations are ‘merged’ with one of the remaining clusters
in a sequentially optimal manner. That is, a merge occurs where the resulting change
in posterior probability is largest. If the ‘merge’ step does not result in an increase in
posterior probability, the subsample observations are returned to their original clusters.
The algorithm pseudocode at iteration t is

1: set z′ = z(t)

2: draw nJ from {1, . . . , n}
3: draw vector J of length nJ from {1, . . . , n} w/o replacement
4: for j in J do

5: draw z′j from {1, . . . , n} (explode step)
6: end for

7: if p(z′|y) > p(z(t)|y) then

8: return z′
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9: end if

10: for j in J do

11: set z′j to maximize p(z′j |z′−j ,y) (merge step)
12: end for

13: if p(z′|y) > p(z(t)|y) then

14: return z′

15: else

16: return z(t)

17: end if

where random draws are made uniformly from the appropriate support. The algorithm
is terminated when a designated number of iterations has failed to improve the value
of p(z(t)|y). The ‘explode’ step of this update algorithm guarantees the MAP estimate
will be obtained in a finite number of iterations (see Appendix 6.1). Hence, alternative
‘merge’ steps may be considered without loss of this property. In addition, this approach
to computing the MAP estimate is amenable to simple but efficient schemes for parallel
computing. In particular, mutually exclusive subspaces of the partition space may be
searched in parallel.

The stochastic algorithm assumes the marginal posterior mass function p(z(t)|y) is
computable. However, computationally efficient use of the stochastic method requires
an analytical solution for p(z(t)|y). In practice, this requires conjugacy in the data
likelihood parameter φ. Monte Carlo approximation of p(z(t)|y) significantly reduces
performance of the stochastic method versus other methods.

4 Illustration

The yeast cell cycle dataset was collected and analyzed by Spellman et al. (1998) in a
time-series of microarray experiments with synchronized cultures of the baker’s yeast
Saccharomyces cerevisiae. Spellman et al. identified 800 ‘cell cycle-regulated’ yeast
genes. Each of these was then assigned to one of 5 cell cycle phases based on the
similarity of its expression profile to that of other genes known to be associated with a
particular cell cycle phase.

The yeast cell cycle data have been reanalyzed by Luan and Li (2003), Ng et al.
(2006), and Ray and Mallick (2006) among others. In particular, Ray and Mallick
used a Dirichlet process mixture of wavelet models, where the goal was to capture the
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cluster structure in a manner similar to the original analysis of Spellman. They used
posterior sampling methods to summarize the model posterior distribution and form
a Monte Carlo estimate for the conditional likelihood of the observations, given the
data partition. The data partition they present is that which maximizes the conditional
likelihood estimate, rather than a MAP estimate.

The goal of the present analysis is not to reproduce the results of other analyses
of these data, but to identify outliers in the clusters produced by the original analysis
of Spellman et al. (1998). The results of this analysis might be useful for refining hy-
potheses concerning the gene regulatory mechanisms, or for discovering novel regulatory
mechanisms common to a cell cycle phase.

For most cell cycle-regulated yeast genes, expression is periodic. In fact, Spellman
et al. (1998) were primarily concerned with clustering the phases of expression profiles
under a Fourier transform. Alternatively, the Dirichlet process mixture of linear models
may be modified to accommodate a nonlinear or periodic profile by projecting the time
covariate onto the w−dimensional space generated by a set of nonlinear and periodic
basis functions. Notationally, let Φ(xj) = [Φ1(xj),Φ2(xj), . . . , Φw(xj)] be the set of
w linearly independent basis functions evaluated at time xj . For the yeast cell cycle
dataset, the DPM of these transformed linear models is given by

yij ∼ N(Φ(xj)βi, κi)

(βi, κi) ∼ G

G ∼ DP (α, G0)

G0 = Ngq(m0, s0Iq, a0/2, 2/b0), (8)

for i = 1 . . . n and j = 1 . . . q, where yij is a gene expression value for the ith gene
collected at the jth time point xj in minutes, and Ngq is the multivariate normal-
gamma distribution (Bernardo and Smith 1994, pp. 118, 136, and 140). In order to
capture the nonlinear and periodic nature of the expression profiles, the set of basis
functions was selected from the power and sine functions. The first five power functions
with non-negative integer exponents were selected to account for non-periodic trends in
the expression profile. Five sine functions were selected so that their wavelengths were
equal to the estimated cell cycle period (66 minutes) from Spellman et al. (1998), and
whose phases were offset by one-fifth the range of the time covariate.

Let {γ1, . . . , γr} and {τ1, . . . , τr} be the r unique values among {β1, . . . , βn} and
{κ1, . . . , κn} respectively. Conditional on the data partition variable z and the ob-
servations y = {y1, . . . , yn}, the unique pairs {(γ1, τ1), . . . , (γr, τr)} are independent
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and multivariate normal-gamma distributed. The conditional posterior distribution for
(γk, τk) is given by

γk, τk|z,y ∼ Ngq(mk,Sk, ak/2, 2/bk),

where mk and τkSk are the mean vector and precision matrix of the multivariate normal
component, and ak/2 and 2/bk are the shape and scale parameters for the gamma
component. The posterior density function p(z|y) is proportional to

p(z|y) ∝ αr
r∏

k=1

Γ(n(k))Γ(ak/2)
(bk/2)(ak/2)|Sk|(1/2)

.

The quantities mk, Sk, ak/2, and 2/bk are posterior statistics of z and y given by

Sk = s0Iq + X(k)′X(k)

mk = S−1
k (s0m0 + X(k)′y(k))

ak = a0 + qn(k)

bk = b0 + y(k)′y(k) + s0m′
0m0 −m′

kSkmk, (9)

for i = 1 . . . n and j = 1 . . . q, where y(k) is the vector formed by concatenating all of
the yij in the kth cluster, X(k) is the matrix formed by joining as rows all the xij of the
kth cluster, and n(k) is the number of observations assigned to the kth cluster.

The explicit formulations in equation block (9) are a consequence of the conjugacy in
the data likelihood and base prior G0, and make clear the contribution of hyperparame-
ters m0, s0, a0, and b0. Clearly, the contribution of the prior is greater for clusters with
few observations. In models where many clusters are possible, partition estimates may
be highly sensitive to the value of hyperparameters. Within the confines of conjugacy,
the relative contribution of G0 may be reduced arbitrarily by setting each hyperparam-
eter close to zero. There are no such obvious countermeasures for nonconjugate DPMs,
and we recommend careful consideration of prior sensitivity in these cases.

The R (R Development Core Team 2011) package profdpm was used to analyze the
gene expression profiles within each of the five original clusters produced by Spellman
et al. (1998). The R code used to transform the time covariate is available in Appendix
6.2. The prior parameters were set as a0 = 0.001, b0 = 0.001, m0 = [0, . . . , 0], and
s0 = 1. The precision parameter α was set to 1/150, which imposes the requirement
of ‘very strong’ evidence in favor of a split operation that results in an outlier cluster
(Efron and Gous 2001).
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Fixing the value of α and n induces a prior distribution over the number of clusters
r, with mean given by expression (2). For α = 1/150, the prior expected number of
clusters ranges from 1.03 in cell cycle phase S (n = 69), to 1.04 in phase G1 (n = 297).
Drawing further from Antoniak (1974), we note that for fixed α and n, multiple clusters
(r > 1) arise with probability

P (r > 1) = 1− P (r = 1)

= 1−
n∏

j=2

(
1− α

α + j − 1

)
.

For α = 1/150, the prior probability that r > 1 ranges from 0.03 in phase S, to 0.04 in
phase G1. Hence, requiring ‘very strong’ evidence to detect outlier clusters is sufficient
for expressing prior belief that the number of clusters is concentrated near unity.

The agglomerative method (Heard et al. 2006; Ward 1963) was initially used to
compute the MAP estimate for the data partition in each phase. The SUGS (Wang and
Dunson 2011), SUGS++, Polya urn Gibbs sampler (MacEachern 1994), and stochastic
methods detailed in Section 3 were each used independently to compute a MAP estimate.
In the Gibbs approach, the MAP estimate was taken to be the sampled partition with
largest posterior mass. The Gibbs and stochastic algorithms were each initialized using
the agglomerative method, and evaluated for at most 50000 iterations. The SUGS
method was applied in random observation order per the recommendation of Wang and
Dunson (2011). The SUGS++ implementation consisted of a single SUGS evaluation,
followed by 30 Polya urn Gibbs updates. An outlier cluster was taken to be any cluster
consisting of three or fewer observations.

The finite mixture/BIC strategy was emulated by using the prior distribution over
data partitions as described in section 2. Note that Fraley and Raftery (2002) rec-
ommend an expectation-maximization technique for model-based clustering. However,
because the choice of optimization strategy may be confounding, the stochastic method
proposed in Section 3 was used to compute the corresponding partition estimate.

For each phase, Table 1 lists the number of clusters, number of outlier observations,
number of outlier clusters, unnormalized log posterior values for each MAP estimate, and
the Rand (Rand 1971) index between the stochastic estimate and each other partition
estimate. Larger Rand indices indicate greater agreement between the two partitions,
where a Rand index of one indicates perfect agreement. The stochastic method yielded
MAP estimates with uniformly greatest posterior mass. However, for most phases the
Gibbs method also performs well.



680 Outlier Detection with DPMs

Partitions estimated under the finite mixture/BIC strategy exhibit fair agreement
with that estimated using the stochastic DPM method. However, the number of identi-
fied outliers is generally greater, illustrating that the evidence required to detect outliers
is somewhat less than the ‘very strong’ requirement imposed by the DPM strategy.

The MAP estimation results illustrate a multi-way balance among utility, computa-
tional expense, accuracy, and stochasticity. For instance, the Gibbs method and other
MCMC methods yield good posterior estimates and have high utility in applications
beyond MAP estimation. However, the utility of MCMC methods comes with greater
computational expense. The agglomerative and stochastic methods have less utility,
but offer less computational burden. The agglomerative method is deterministic, but
does not guarantee accurate MAP estimates. The SUGS method generates partition
estimates quickly, but is not competitive with respect to log posterior mass. However,
the SUGS++ results indicate that the SUGS strategy may be modified to accommodate
MAP estimation with little or no additional computational burden. The fair agreement
in Rand index between the SUGS and ‘Stochastic’ partitions may partially explain why
the SUGS method yields reasonable predictions in nonparametric applications, despite
having smaller posterior mass.

Figure 1 illustrates the MAP data partition for 297 genes regulated in the G1 phase.
The MAP data partition for the G1 phase consisted of 12 outlier clusters accounting
for 19 outlier observations. In order to illustrate inference using the outlier detection
criterion presented in Section 2, consider the set of data partitions that might be formed
by merging the outlier cluster in the upper righthand corner of Figure 1 with one of the
remaining clusters. Specifying α = 1/150 ensures that the Bayes factor for the MAP
partition versus any such partition takes a value greater than 150. Hence, there is ‘very
strong’ evidence for the decision to identify this cluster as an outlier.

Figure 2 summarizes the five MAP estimates by collapsing clusters according to the
outlier cluster size rule (i.e. clusters having n(k) ≤ 3 are labeled outliers). Because
distinct clusters have dissimilar mean expression profiles, collapsed observations in the
‘non-outlier’ and ‘outlier’ panels of Figure 2 may appear inhomogeneous. This reflects
the possibility that multiple outlier and non-outlier clusters are present in each panel,
and does not indicate poor sensitivity or specificity to detect outliers.

The distinction between outlier and non-outlier clusters is made on the basis of clus-
ter size. That is, small clusters are considered outliers, for some notion of smallness
in a particular data problem (e.g. nk smaller than 1% of n). More importantly, when
α = 1/150, there is ‘very strong’ evidence that gene expression profiles assigned to dif-
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Figure 1: Gene expression profiles from the ‘alpha’ synchronized experiment for 297
genes regulated in the G1 phase of the cell cycle (Spellman et al. 1998). Each panel
represents a cluster of genes identified by the MAP estimated data partition. Light gray
lines give the expression profiles for each gene. Black lines give the profile posterior mean
function for each cluster. The values of n are the number of expression profiles presented
in each panel.

ferent clusters in the MAP estimate indeed arose from distinct processes. This property
holds regardless of what size cluster is considered small.
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Figure 2: Gene expression profiles from the ‘alpha’ synchronized experiment for 791
‘cell cycle-regulated’ genes identified by Spellman et al. (1998). Light gray lines give
the expression profiles for each gene. The values of n are the number of expression
profiles presented in each panel. Panels in the leftmost column represent the original
clusters of Spellman et al. The center and rightmost panels are collated from multiple
distinct clusters of the estimated data partition according to the outlier cluster size rule
(n ≤ 3).
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5 Conclusion

The outlier detection criterion of Section 2 offers an inference mechanism that evaluates
the Bayes factor between an estimated (MAP) outlier partition, and a broad class of
partitions formed by merging outlier clusters. However, the criterion makes no compari-
son with partitions outside this class. In particular, there is no guarantee that partitions
formed by a sequence of merge and split operations will satisfy the criterion.

The stochastic MAP estimation algorithm of Section 3 avoids the complexity and
expense of posterior sampling. As a result, this method has computational efficiency on
par with popular non-Bayesian optimization methods. Still, more tailored strategies are
welcome. The work of Dahl (2009) is a pioneering example, where the MAP estimate in
a restricted class of augmented DPMs may be found in only n(n+1)/2 posterior evalu-
ations. Adapting methods from the computer science literature, such as branching and
bounding (Laursen 1993), and simulated annealing (Kirkpatrick et al. 1983) may also
be fruitful. Because parallel computeing is gaining favor over serial computing, there is
a growing need for computational strategies that exploit sophisticated parallelization in
multicore and cluster computing environments. Wilkinson (2008) identifies concurrency
and simplicity as important qualities in the future of statistical computing.
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6 Appendix

6.1 Algorithm Consistency

Suppose {z(t)} is a sequence of estimates for the data partition MAP estimator zMAP.
Let qt be the nonzero probability that z(t) takes on the value zMAP. That is, with prob-
ability qt, p(z(t)|y) ≥ p(z′|y) for all z′. However, the algorithm of Section 3 stipulates
that p(z(t)|y) ≥ p(z(t−1)|y). This implies that qt ≥ qt−1. Let T be the smallest value
of t such that z(t) = zMAP. It is shown that limT ′→∞ p(T < T ′) = 1. This probability
is expressed

p(T < T ′) = 1− p(T ≥ T ′)

= 1− p(T = T ′)− p(T > T ′)

= 1− qT ′

T ′−1∏
t=0

(1− qt)−
T ′∏
t=0

(1− qt).

Since qt is a nonzero probability and qt ≥ qt−1 for all t, the limit of p(T < T ′) as T ′

approaches infinity is one.

6.2 Covariate Transformation

The following R code was used to transform a time covariate x onto the space spanned
by a collection of power and sine functions.

transform <- function( x, wl = 66/119 ) {

cbind( rep(1, length(x)),

x, x^2, x^3, x^4,

sin(x/wl*2*pi),

sin(x/wl*2*pi+pi/5),

sin(x/wl*2*pi+2*pi/5),

sin(x/wl*2*pi+3*pi/5),

sin(x/wl*2*pi+4*pi/5) )

}
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Phase Method n r no ro logp(ẑ|y) Rand

M SUGS 193 163 187 162 2455 0.87
M SUGS++ 193 28 24 13 3056 0.88
M Agglo 193 25 18 11 3075 0.97
M Sampler 193 25 18 11 3075 0.97
M Stochastic 193 26 18 12 3083 −
M Finite/BIC 193 34 28 13 − 0.89

MG1 SUGS 113 96 105 94 1035 0.90
MG1 SUGS++ 113 23 20 13 1355 0.93
MG1 Agglo 113 21 21 12 1366 0.98
MG1 Sampler 113 21 21 12 1366 0.98
MG1 Stochastic 113 21 21 12 1371 −
MG1 Finite/BIC 113 29 24 16 − 0.94

G1 SUGS 297 224 268 217 3206 0.79
G1 SUGS++ 297 30 32 18 4570 0.88
G1 Agglo 297 26 27 15 4515 0.79
G1 Sampler 297 29 29 17 4600 0.89
G1 Stochastic 297 25 19 12 4643 −
G1 Finite/BIC 297 35 25 13 − 0.83

G2 SUGS 119 91 101 87 1837 0.80
G2 SUGS++ 119 17 10 6 2131 0.84
G2 Agglo 119 18 20 12 2178 0.99
G2 Sampler 119 18 20 12 2178 0.99
G2 Stochastic 119 18 20 12 2179 −
G2 Finite/BIC 119 24 20 11 − 0.83

S SUGS 69 58 69 58 904 0.85
S SUGS++ 69 13 7 6 1092 0.95
S Agglo 69 14 12 9 1099 0.96
S Sampler 69 13 8 6 1100 0.95
S Stochastic 69 13 9 8 1102 −
S Finite/BIC 69 21 16 11 − 0.90

Table 1: Optimization results by cell cycle phase and optimization/modeling method.
The ‘Agglo’ method is the agglomerative method of Ward (1963). The ‘Sampler’ method
is the Polya urn Gibbs sampler. The ‘Stochastic’ method is the method presented in Sec-
tion 3. The values under no and ro are the numbers of outlier observations and clusters
respectively. The second column from the right contains the unnormalized log posterior
mass at the estimate ẑ rounded to the nearest integer. The rightmost column holds the
Rand index between the stochastic MAP estimate and each other partition estimate.
Rows corresponding to the ‘Finite/BIC’ method describe the partition estimated using
the model-based clustering method of Fraley and Raftery (2002).


