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Existing parallel MRI methods are limited by a fundamental

trade-off in that suppressing noise introduces aliasing artifacts.

Bayesian methods with an appropriately chosen image prior

offer a promising alternative; however, previous methods with

spatial priors assume that intensities vary smoothly over the

entire image, resulting in blurred edges. Here we introduce an

edge-preserving prior (EPP) that instead assumes that intensi-

ties are piecewise smooth, and propose a new approach to

efficiently compute its Bayesian estimate. The estimation task

is formulated as an optimization problem that requires a non-

convex objective function to be minimized in a space with

thousands of dimensions. As a result, traditional continuous

minimization methods cannot be applied. This optimization task

is closely related to some problems in the field of computer

vision for which discrete optimization methods have been de-

veloped in the last few years. We adapt these algorithms, which

are based on graph cuts, to address our optimization problem.

The results of several parallel imaging experiments on brain and

torso regions performed under challenging conditions with high

acceleration factors are shown and compared with the results

of conventional sensitivity encoding (SENSE) methods. An em-

pirical analysis indicates that the proposed method visually

improves overall quality compared to conventional methods.
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The use of multiple coils in MRI to reduce scan time (and
thus motion artifacts) has become quite popular recently.
Current parallel imaging techniques include, inter alia,
sensitivity encoding (SENSE) (1–3), simultaneous acquisi-
tion of spatial harmonics (SMASH) (4,5), and generalized
autocalibrating partially parallel acquisitions (GRAPPA)
(6). A good comparative review was presented in Ref. 7.
While all of these methods are mathematically similar,
SENSE is the reconstruction method that performs exact
matrix inversion (8) and is the focus of this work. These
schemes use multiple coils to reconstruct (unfold) the
unaliased image from undersampled data in SnFourier or

k-space. Successful unfolding relies on receiver diversity
(i.e., each coil “sees” a slightly different image because
each coil has a different spatial sensitivity profile).

Unfortunately, the conditioning of the encoding system
becomes progressively worse with increasing acceleration
factors. Therefore conventional parallel imaging methods,
especially at accelerations above 3, suffer from a funda-
mental noise limitation in that unfolding is achieved at the
cost of noise amplification. This effect depends on the coil
geometry and acceleration factor, and is best captured in
terms of the g-map, which is a spatial mapping of the noise
amplification factor. Reconstructed data can be further
degraded in practice by inconsistencies between encoding
and decoding sensitivity due to physiological motion, mis-
alignment of coils, and insufficient resolution of sensitiv-
ity calibration lines. In this paper we propose a novel
Bayesian approach whereby an edge-preserving spatial
prior is introduced to reduce noise and improve the un-
folding performance of parallel imaging reconstruction.
The resulting estimation task is formulated as an optimi-
zation problem whose solution is efficiently obtained by
graph-based algorithms.

Methods to reduce noise and artifacts can be grouped
into two classes: 1) those that handle sensitivity errors
using a maximum-likelihood (9) or total least squares (10)
approach, and 2) those that exploit some prior information
about the imaging target via regularization. While regular-
ization is generally effective for solving ill-posed prob-
lems, existing methods rarely exploit the spatial depen-
dencies between pixels. Most techniques either impose
minimum norm solutions (as in regularized SENSE (11–
13)), or require a prior estimate of the target. Temporal
priors for multiframe imaging have been reported (14–16),
and a generalized series model was developed with the use
of reduced-encoding imaging with generalized-series re-
construction (RIGR) (17,18). The limitations of these reg-
ularization techniques are clear: regularized SENSE makes
unrealistic assumptions about the image norm, while
methods that rely on a prior estimate of the imaging target
(called the mean or reference image) (12,13,17,18) must be
carefully registered to the target. In practice, the use of
such strong reference priors is vulnerable to errors in their
estimation, leading to reconstruction artifacts. Temporal
priors are obviously restricted to dynamic imaging. Even
though the minimum norm prior reduces noise, it is un-
satisfactory for de-aliasing in parallel imaging because it
can be shown by simple algebra that it favors a solution
with equally strong aliases. For example, suppose we have
an underdetermined aliasing system y � x1 � x2. Then
the minimum norm solution is x � x2 � y/2, which
amounts to alias energy being equal to the desired signal
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energy. This is why conventional regularization tech-

niques are good at reducing noise but countereffective for

removing aliasing. The introduction of spatial priors is

essential for the latter task. This is possible within the

Tikhonov regularization framework (13), as long as it is

assumed that intensities vary smoothly over the entire

imaging target.

Our approach uses a spatial prior on the image that

makes much more realistic assumptions regarding smooth-

ness. Our prior model is quite general and has very few

parameters; hence, little or no effort is required to find this

prior, in contrast to image-based or temporal priors. The

primary challenge in our formulation is a computational

one: Unlike regularized SENSE, there is no closed-form

solution, and we need to minimize a nonconvex objective

function in a space with thousands of dimensions. How-

ever, we developed an efficient algorithm to solve this

problem by relying on some powerful discrete optimiza-

tion techniques that were recently developed in the com-

puter-vision community (19,20,39).

We apply an edge-preserving prior (EPP) that assumes

that voxel intensity varies slowly within regions but (in

contrast to smoothness-enforcing Tikhonov regularization)

can change discontinuously across object boundaries (21).

Since our piecewise smooth model imposes relationships

only between neighboring voxels, it can be used for a very

wide range of images (for instance, it is applicable to any

MR image regardless of contrast or modality). EPPs have

been studied quite extensively in the fields of statistics

(22), computer vision (21,23,24), and image processing

(25), and are widely considered to be natural image mod-

els.

The computational challenge of EPPs is too difficult for

conventional minimization algorithms, such as conjugate

gradients or steepest descent. However, EPPs have become

widely used in the field of computer vision in the last few

years, due primarily to the development of powerful opti-

mization techniques based on graph cuts (19,20). Graph

cuts are discrete methods whereby the optimization task is

reformulated as the problem of finding a minimum cut on

an appropriately constructed graph1. The minimum-cut

problem, in turn, can be solved very efficiently by modern

graph algorithms (26).

While graph-cut algorithms can only be applied to a

restricted set of problems (19), they have proved to be

extremely effective for applications such as stereo match-

ing (20), where they form the basis for most of the top-

performing algorithms (27). Although standard graph-cut

algorithms (19,20) cannot be directly applied to minimize

our objective function, we have developed a graph-cut

reconstruction technique based on a subroutine from Ham-

mer et al. (36) that is quite promising. Preliminary parallel

imaging results indicate the potential and promise of this

algorithm, which we call “edge-preserving parallel imag-

ing with graph-cut minimization” (EPIGRAM).

THEORY

Summary of Parallel Imaging

Suppose the target image is given by X(r), where r is the 2D
spatial vector, and k is a point in k-space. The imaging
process for each coil l (from L coils) is given by

Yl�k� ��dre�i2�rkSl�r�X�r� [1]

where y1 is the (undersampled) k-space data seen by the
l-th coil, and Sl is its sensitivity response. For Cartesian
sampling it is well known that Eq. [1] reduces to folding in
image space, such that each pixel p in Yl, the Fourier
transform of y1, results from a weighted sum of aliasing
pixels in X. If phase-encoding steps are reduced by R
times, the N � M image will fold over into N/R � M aliased
coil outputs. This can be easily verified by discretizing Eq.
[1] and taking the Fourier transform. For i�1, K, N; ı̄ �1, K,
N/R; j�1, K, M; define p�(i, j), p̄�(ı̄, j).We then have

Yl�p̄� � �
�p��p̄

Sl�p�X�p� [2]

where we denote [p] � (mod(i, N/R), j). Note that as de-
fined, p� spans the pixels of Yl, and p spans the pixels of X.
This process is depicted in Fig. 1. Over the entire image
this has a linear form:

y � Ex [3]

where vector x � {xp�p � P} is a discrete representation of
the intensities of the target image X(r), p indexes the set P

1A graph is a set of objects called “nodes” joined by links called “edges.” The
relationship between graph cuts and optimization problems is described in
more detail at the end of this section, and in Refs. 19 and 20.

FIG. 1. Schematic of the pixelwise aliasing process for a single pair

of aliasing pixels p and p	, for 2� acceleration using three coils. The

aliased observations Yl are obtained by a weighted sum of the

aliasing pixels, weighted by coil sensitivity values Sl. To simplify the

figure, aliasing is shown in the horizontal direction. [Color figure can

be viewed in the online issue, which is available at www.interscience.

wiley.com.]
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of all pixels of the image, and vector y contains the aliased
images “seen” by the receiver coils. Matrix E encodes coil
sensitivity responses and is a L � R block-diagonal matrix
of the form shown in Fig. 2.

SENSE takes a least-squares approach via the pseudo-
inverse of E:

x̂SENSE � �EHE��1EHy [4]

This is the maximum-likelihood estimate under the as-
sumption of additive white Gaussian noise (28). Unfortu-
nately, inverse problems of this form become progressively
ill-posed with increasing acceleration, leading to noise
amplification and insufficient de-aliasing in many cases.
To reduce these effects and stabilize the inversion in
SENSE, a Tikhonov-type regularization is introduced
(10,13):

x̂regSENSE � arg min
x


�Ex � y�2
� �2�A�x � xr��

2� [5]

where the first term enforces agreement with observed
data, and the second penalizes nonsmooth solutions
through an appropriate matrix A and some prior reference
image xr. Its closed-form solution is

x̂regSENSE � xr � �EHE � �2AHA��1EH�y � Exr� [6]

Equations [4] and [6] can both be computed very quickly
for the Cartesian case because they readily break up into
independent L � R sub-problems (for the standard choice

of A � I, the identity matrix). If there is no reference image
(i.e., xr � 0), then with A � I this computes the minimum
norm solution (11), while more general Tikhonov forms of
A impose global smoothness.

Bayesian Reconstruction

Even with regularization there is a noise/unfolding limit. If
� is too small, there will be insufficient noise reduction. If
� is too high, noise will be removed but residual aliasing
will occur. This fundamental aliasing/noise limit cannot
be overcome unless more information about the data is
exploited. This naturally suggests a Bayesian approach,
which was the subject of a recent work (29). Given the
imaging process (Eq. [3]), observation y, and the prior
probability distribution Pr(x) of the target image x, Bayes-
ian methods maximize the posterior probability:

Pr�x�y�Pr�y�x� � Pr�x� [7]

The first right-hand term, called the likelihood function,
comes from the imaging model (Eq. [3]), and the second
term is the prior distribution. In the absence of a prior, this
reduces to maximizing the likelihood, as performed by
SENSE. Assuming that n � y � Ex is white Gaussian noise,
Eq. [3] implies a simple Gaussian distribution for Pr(y/x):

Pr�y�x�e��y�Ex�2
[8]

Similarly, we can write the prior, without loss of gener-
ality, as

Pr�x�e�G�x� [9]

Depending on the term G(x), this form can succinctly
express both the traditional Gaussianity and/or smooth-
ness assumptions, as well as more complicated but pow-
erful Gaussian or Gibbsian priors modeled by Markov ran-
dom fields (MRFs) (23,24). The posterior is maximized by

x̂MAP � � arg min
x

��y � Ex�2
� G�x�� [10]

which is the maximum a posteriori (MAP) estimate. Con-
ventional image priors impose spatial smoothness; hence,
this can be viewed as the sum of a data penalty and a
smoothness penalty. The data penalty forces x to be com-
patible with the observed data, and the smoothness pen-
alty G(x) penalizes solutions that lack smoothness. Tradi-
tionally, only smoothness penalties of the kind G(x) �

�Ax�2 have been used, where A is a linear differential
operator. This corresponds to Eq. [6] if the reference image
xr � 0, and is commonly known as Tikhonov regulariza-
tion (28).

However, this smoothness penalty assumes that intensi-
ties vary smoothly across the entire image. Such an as-
sumption is inappropriate for most images because al-
though most image data change smoothly, they have dis-
continuities at object boundaries. As a result, the
Tikhonov smoothness penalty causes excessive edge blur-
ring, while we seek an edge-preserving G. To illustrate

FIG. 2. The L � R block-diagonal structure of matrix E. Each

sub-block sensitivity-encodes one aliasing band in the image. Ma-

trix E is a concatenation over all coil outputs, as shown by the coil

labels. [Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]
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this, we show in Fig. 3 a single noisy image row and two
possible strategies to denoise it. The difference in perfor-
mance between global smoothing (obtained by Gaussian
blurring) and edge-preserving smoothing (via median fil-
tering) is obvious: although both denoise the signal, one
oversmooths sharp transitions while the other largely pre-
serves them.

EPPs in MRI

A natural class of edge-preserving smoothness penalties is

GEP�x� � �
�p,q��Nss

V�xp, xq� [11]

The spatial neighborhood system Ns consists of pairs of
adjacent pixels, usually the eight-connected neighbors.
The separation cost V(xp, xq) gives the cost to assign in-
tensities xp and xq to neighboring pixels p and q, and the

form of this prior can be justified in terms of MRFs (23).
Typically, V has a nonconvex form, such as V(xp, xq) � �

min(�xp � xq�, K), for some metric � � � and constants K, �.
Such functions effectively assume that the image is piece-
wise smooth rather than globally smooth. Figure 4 shows
two possible choices of V: the right one preserves edges,
and the left one does not. For MR data the truncated linear
model appears to work best, and seems to present the best
balance between noise suppression (due to the linear part)
and edge-preservation (due to truncation of penalty func-
tion). Therefore, neighboring intensity differences within
the threshold K will be treated as noise and penalized
accordingly. However, larger differences will not be fur-
ther penalized, since they occur, most likely, from the
voxels being separated by an edge. Note that this is very
different from using a traditional convex distance, such as
the L2 norm, which effectively forbids two adjacent pixels
from having very different intensities, for the separation
cost. Although the L2 separation cost does not preserve
edges, it is widely used because its convex nature vastly
simplifies the optimization problem.

A possible problem with the truncated linear penalty is
that it can lead to some loss of texture, since the Bayesian
estimate will favor images with piecewise smooth areas
over those with textured areas. In the Discussion we point
out examples of this feature and suggest ways to mitigate
it.

Parallel Imaging As Optimization

The computational problem we face is to efficiently min-
imize

�y � Ex�2
� GEP�x� [12]

From Ref. 4 we know that E has a diagonal block structure
and decomposes into separate interactions between R
aliasing voxels, according to Eq. [2]. Let us first define for
each pixel p� � (ı�, j) in Yl the set of aliasing pixels in X that
contribute to Yl (p� ), as follows: For image X of size M � N
undergoing R-fold acceleration, aliasing occurs only in the
phase-encode direction, between aliasing pixels. Then

�y � Ex�2
� �

p̄

�
l
�Yl�p̄� � �

�p��p̄

Sl�p�xp�2

[13]

FIG. 3. Typical performance of edge-preserving and edge-blurring

reconstruction on a noisy image row. Image b was obtained by

globally smoothing via a Gaussian kernel, and image c was ob-

tained with an edge-preserving median filter. [Color figure can be

viewed in the online issue, which is available at www.interscience.

wiley.com.]

FIG. 4. Two natural separation cost functions for

spatial priors. The L2 cost on the left usually causes

edge blurring due to an excessive penalty for high-

intensity differences, whereas the truncated linear

potential on the right is considered to be edge-

preserving and robust. For MR data, the truncated

linear model appears to work best. While the L2

separation cost does not preserve edges, its con-

vex nature vastly simplifies the optimization prob-

lem.
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This can be intuitively understood by examining the alias-
ing process depicted in Fig. 1. After some rearrangement,
this expands to

�y � Ex�2
� �

p̄

�
l

Yl
2�p̄� � �

p
��

l

Sl
2�p��xp

2

� 2�
p
��

l

Sl�p�Yl��p���xp � 2 �
�p,p	��Na

��
l

Sl�p�Sl�p	��xpxp	

[14]

where we define the aliasing neighborhood set Na � {(p,
p	), [p] � [p	], p � p	} over all aliasing pairs. Grouping
terms under single pixel and pairwise interactions, we get

�y � Ex�2
� a2

� �
p

b�p�xp
2

� 2 �
p

c�p�xp

� 2 �
�p,p	���a

d�p, p	�xpxp	

for appropriately chosen functions b(p), c(p), and d(p,p	).
The first term is a constant and can be removed from the
objective function, the next two terms depend only on a
single pixel, and the last term depends on two pixels (both
from the aliasing set) at once. This last term, which we will
refer to as a “cross term,” arises due to the nondiagonal
form of our system matrix E.

To perform edge-preserving parallel imaging, we need to
minimize our objective function:

Ex) � a2
� �

p

b�p�xp
2

� 2 �
p

c�p�xp � 2 �
�p,p	���a

d�p, p	�xpxp	

� �
�p,q���s

V�xp, xq� [15]

Let us first consider the simpler case of our objective
function that would arise if E were diagonal. In this case
there would be no cross terms (i.e., d(p,p	) � 0), which
appears to simplify the problem considerably. Yet even
this simplification results in a difficult optimization prob-
lem. There is no closed-form solution, the objective func-
tion is highly nonconvex, and the space over which we are
minimizing has thousands of dimensions (one dimension
per pixel). Worse still, minimizing such an objective func-
tion is almost certain to require an exponentially large
number of steps2.

If E were diagonal, however, the objective function
would be in a form that has been extensively studied in the
computer-vision field (10,20,27), where significant recent
progress has been made. Specifically, a number of power-
ful methods have been designed that employ a discrete
optimization technique called “graph cuts” (20), which we
briefly summarize in the next section. Graph cuts are a
powerful means of minimizing E(x) in Eq. [15], and can be

easily applied as long as E is diagonal (19). The presence of
off-diagonal entries in E gives rise to cross terms in our
objective function, making traditional graph-cut algo-
rithms (19,20) inapplicable, and requires an extension, as
described in Materials and Methods.

Optimization With Graph Cuts

One can minimize objective functions similar to Eq. [15]
by computing the minimum cut in an appropriately de-
fined graph using the graph-cut technique. This technique
was first used for images by Greig et al. (30), who used it to
optimally denoise binary images. A recent series of papers
(19,20) extended the method significantly, and it can now
be used for problems such as stereo matching (20,31) and
image/video synthesis (32) in computer vision, as well as
medical image segmentation (33) and fMRI data analysis
(34).

The basic idea is to first discretize the continuous pixel
intensities xp into a finite discrete set of labels L � {1, K,
Nlabels}. Since we focus on MR reconstruction problems,
we will assume that the labels are always intensities and
use the terms interchangeably; however, graph-cut algo-
rithms are employed for a wide variety of problems in
computer vision and graphics, and often use labels with a
more complex meaning. Then instead of minimizing over
continuous variables xp, we minimize over individual la-
bels � � L, allowing any pixel in the image to take the label
�. In practice the dynamic range of intensities may have to
be reduced for computational purposes, although this is
not a requirement of our technique. The most powerful
graph-cut method is based on expansion moves. Given a
labeling x � {xp�p � P} and a label �, an �-expansion � �

{�p�p�P} is a new labeling whereby �p is either xp or �.
Intuitively, one constructs � from x by giving some set of
pixels the label �. The expansion-move algorithm picks a
label �, finds the lowest cost �, and moves there. This is
pictorially depicted in Fig. 5.

The algorithm converges to a labeling where there is no
�-expansion that reduces the value of the objective func-
tion E for any �. The key subroutine in the expansion move
algorithm is to compute the �-expansion � that minimizes
E. This can be viewed as an optimization problem over
binary variables, since during an �-expansion each pixel
either keeps its old label or moves to the new label �. This
is also shown in Fig. 5. An �-expansion � is equivalent to
a binary labeling

�p � 	 xp iff bp � 0
� iff bp � 1 [16]

Just as for a labeling � there is an objective function E, for
a binary labeling b there is an objective function B. More
precisely, assuming � is equivalent to b, we define B by

B�b� � E���

We have dropped the arguments x, � for clarity, but the
equivalence between the �-expansion � and the binary
labeling b clearly depends on the initial labeling x and
on �.

2More precisely, it was shown in Ref. 20 to be NP-hard, which means that it
is in a class of problems that are widely believed to require exponential time
in the worst case.
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In summary, the problem of computing the �-expansion
that minimizes E is equivalent to finding the b that mini-
mizes the binary objective function B. The exact form of B
will depend on E. The minimization of E proceeds via
successive binary minimizations corresponding to expan-
sion moves. The binary minimization subroutine is some-
what analogous to the role of line-searching in the conju-
gate-gradient algorithm, where a local minimum is repeat-
edly computed over different 1D search spaces. With
graph cuts, however, the binary subroutine efficiently
computes the global minimum over 2�P� candidate solu-
tions, where �P� is the number of pixels in the image.
Therefore, in contrast to traditional minimization algo-
rithms, such as conjugate gradients, trust region, simulated
annealing, etc. (28), graph cuts can efficiently optimize
highly nonconvex objective functions that arise from edge-
preserving penalties (19).

Consider a binary objective function of the form

B�b� � �
p

B1�bp� � �
p,q

B2�bp, bq� [17]

Here B1 and B2 are functions of binary variables. The
difference is that B1 depends on a single pixel, while B2

depends on pairs of pixels. Graph-cut methods minimize B
by reducing the computation of a minimum cut on an
appropriately constructed graph. The graph consists of
nodes that are voxels of the image as well as two special
terminal nodes, as shown in Fig. 6. The voxel nodes are
labeled p, q, r, etc., and terminal nodes are indicated as S
and T. All nodes are connected to both terminals via edges,
each of which have weights obtained from the B1 terms
above. Nodes are also connected to each other via edges
with weights obtained from the pairwise interaction
term B2.

One can solve the binary optimization problem by find-
ing the minimum cut on this graph (20). A cut is defined as
a partition of the graph into two connected subgraphs,
each of which contains one terminal. The minimum cut
minimizes the sum of the weights of the edges between the
subgraphs. Fast algorithms to find the minimum cut using
max-flow methods (26) are available. It was shown in Ref.
19 that the class of B that can be can be minimized exactly
by computing a minimum cut on such a graph satisfies the
condition

B2�0, 0� � B2�1, 1� � B2�1, 0� � B2�0, 1� [18]

If B2(x, y) satisfies Eq. [18], then it is said to be “submodu-
lar” with respect to x and y, and a function B is called
submodular if it consists entirely of submodular terms3.
Single-variable terms of the form of B1 are always sub-
modular. We will refer to the set of all pixel pairs for
which B2(bp, bq) are submodular as the submodular set S.

Previous applications of graph cuts were designed for
diagonal E. This leads to no cross terms, and thus B1 comes
solely from the data penalty and B2 comes only from the
smoothness penalty. It was shown in Ref. 20 that if the
separation cost is a metric, then B2 satisfies Eq. [18]. Many
edge-preserving separation costs are metrics, including the
truncated cost V used here and shown in Fig. 2b (see Ref.
20 for details). However, the situation is more complicated
in parallel MR reconstruction, where E is nondiagonal. As

3Some authors (21) use the term “regular” instead of “submodular.”

FIG. 6. Graph construction to minimize a given binary objective

function. The graph consists of nodes corresponding to image

voxels, as well as two special “terminal” nodes S and T. Edges

between nodes represent single-voxel (B1) and pairwise (B2) cost

terms. A minimum cut on this graph solves the binary minimization

problem. [Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]

FIG. 5. The expansion move algorithm. Start with the initial labeling of the image shown by different shades “light”, “medium” and “dark”

in (a), assuming only 3 labels. Note that here labels correspond to intensities, although this need not be the case in general. First find the

expansion move on the label “dark” that most decreases objective function E, as shown in (b). Move there, then find the best “light”

expansion move, etc. Done when no a-expansion move decreases the cost, for any label �. Corresponding to every expansion move (b)

is a binary image (c), where each pixel is assigned 1 if its label changes, and 0 if it does not.
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a result, the data penalty has pairwise interactions due to
the presence of the cross terms d(p, p	) in Eq. [15]. This
also follows from Fig. 1, which shows how this data pen-
alty arises from the joint effect of both aliasing voxels p
and p	 in the image.

It was previously shown (35) that the binary optimiza-
tion problem arising from Eq. [15] is in general submodu-
lar only for a small subset of all cross terms. This necessi-
tates the use of a subroutine (from Ref. 36) to accommodate
cross terms arising in MR reconstruction, as described in
the next section.

MATERIALS AND METHODS

New MR Reconstruction Algorithm Based on Graph Cuts

The subroutine we use to find a good expansion move is
closely related to relaxation methods for solving integer
programming problems (26). In these methods, if the linear
programming solution obeys the integer constraints, it
solves the original integer problem. We compute an expan-
sion move by applying the algorithm of Hammer et al. (36),
which was introduced in the field of computer vision in
early 2005 by Kolmogorov and Rother (39). The theoretical
analysis and error bounds presented in Ref. 40 help ex-
plain the strong performance of this construction for MR
reconstruction.

For each pixel p, we have a binary variable bp that is 1 if
p acquired the new label �, and 0 otherwise. We introduce
a new binary variable b̃p, which has the opposite interpre-
tation (i.e., it will be 0 if p acquires the new label �, and 1
otherwise). We call a pixel “consistent” if b̃p � 1 � bp .
Instead of our original objective function B(b), we mini-
mize a new objective function B̃(b, b̃), where b̃ is the set of
new binary variables b̃ � {b̃p�p�P}. B̃(b, b̃) is constructed
so that b̃ � 1 � bf B̃(b, b̃) � B(b) (in other words, if every
pixel is consistent, the new objective function will be the
same as the old one). Specifically, we define our new
objective function by

2 � B̃�b, b̃� � �
p

�B1�bp� � B1�1 � b̃p�� � �
�p,q���

�B2�bp, bq�

� B2�1 � b̃p, 1 � b̃q�� � �
�p,q��S

�B2�bp, 1 � b̃q�

� B2�1 � b̃p, bq�� [19]

Here the functions B1( � ) and B2( � ) come from our original
objective function B in Eq. [17].

Importantly, our new objective function B̃(b, b̃) is sub-
modular. The first summation only involves B1( � ), while
for the remaining two terms simple algebra shows that

B2�b, b	� is submodularf B2�1 � b, 1 � b	� is submodular

B2�b, b	� is non-submodularf both B2�b, 1 � b	�

and B2�1 � b, b	� are submodular

As a result, the last two summations in Eq. [19] contain
only submodular terms. Thus B̃(b, b̃) is submodular, and
can be easily minimized using the binary graph-cut sub-
routine. In summary, minimizing B̃(b, b̃) is exactly equiv-

alent to minimizing our original objective function B, as
long as we obtain a solution in which every pixel is con-
sistent. We note that our technique is not specific to MR
reconstruction, but can compute the MAP estimate of an
arbitrary linear inverse system under an edge-preserving
prior GEP.

While we cannot guarantee that all pixels are consistent,
in practice this is true for the vast majority of pixels (typ-
ically well over 95%). In our algorithm we simply allow
pixels that are not consistent to keep their original labels
rather than acquire the new label �. However, even if there
are pixels that are not consistent, this subroutine has some
interesting optimality properties. It is shown in Ref. 36
that any pixel that is consistent is assigned its optimal
label. As a result, our algorithm finds the optimum expan-
sion move for the vast majority of pixels.

Convergence Properties

We investigated the convergence properties of the pro-
posed technique using simulated data from a Shepp-Logan
phantom, with intensities quantized to integer values be-
tween 0 and 255. We computed the objective function (Eq.
[15]) achieved after each iteration for 3� acceleration and
eight coils.

In Vivo Experiments: Setup and Parameters

High-field-strength (4 Tesla) structural MRI brain data
were obtained using a whole-body scanner (Bruker/Sie-
mens Germany) equipped with a standard birdcage, eight-
channel, phased-array, transmit/receive head coil local-
ized cylindrically around the superior–inferior (S-I) axis.
Volumetric T1-weighted images (1 � 1 � 1 mm3 resolu-
tion) were acquired using a magnetization-prepared rapid
gradient-echo (MPRAGE) sequence with TI/TR � 950/
2300 ms timing and a flip angle of 8°. The total acquisition
time for an unaccelerated data set was about 8:00 min. In
a separate study, images of the torso region were acquired
using a gradient-echo sequence with a flip angle of 60° and
TE/TR of 3.3/7.5 ms on a GE 1.5T Excite-11 system. Sev-
eral axial and oblique slices of full-resolution data (256 �

256) were acquired with an eight-channel upper body coil
arranged cylindrically around the torso.

To allow quantitative and qualitative performance eval-
uations, we acquired all data at full resolution and with no
acceleration. The aliased images for acceleration factors of
3–5 were obtained by manually undersampling in k-space.
In each case we also computed the full rooted sum of
squares (RSOS) image after dividing the coil data by the
relative sensitivity maps obtained from calibration lines.
We used the self-calibrating strategy for sensitivity estima-
tion, whereby the center of k-space is acquired at full
density and used to estimate low-frequency (relative) sen-
sitivity maps. We used the central 40 densely sampled
calibration lines for this purpose. These lines were multi-
plied by an appropriate Kaiser-Bessel window to reduce
ringing and noise, zero-padded to full resolution, and
transformed to the image domain. We estimated the rela-
tive sensitivity by dividing these images by their RSOS. To
avoid division by zero, we introduced a small threshold in
the denominator, which amounted to 5% of the maximum
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intensity. This also served effectively to make the sensi-
tivity maps have zero signal in background regions. How-
ever, further attempts to segment background/foreground
from these low-frequency data proved unreliable in some
cases, and we did not implement background segmenta-
tion.

Algorithmic parameters were chosen empirically. It was
sufficient to quantize intensity labels to Nlabels � 256,
since the resulting quantization error is much smaller than
observed noise. Since the computational cost of EPIGRAM
grows linearly with Nlabels, fewer labels are preferable.
Model parameters were varied (geometrically) over the
range K � [Nlabels/20, Nlabels/2], � � [0.01 � max(x),
1 � max(x)] to find the best values. However, we found that
the performance was rather insensitive to these choices,
and therefore used the same parameters for all cases
shown in this paper. Graph-cut algorithms are typically
insensitive to initialization issues, and we chose the zero
image as an initial guess. All reconstructions were ob-
tained after 20 iterations. Regularized SENSE reconstruc-
tion was for comparison with our method. We chose the
regularization factor � after visually evaluating image
quality with a large range of values in the region � � [0.01,
0.6]. The images that gave the best results are shown in the
next section, along with those obtained with a higher
regularization. We obtained the latter to observe the noise
vs. aliasing performance of SENSE.

Quantitative Performance Evaluation

In addition to the visual evidence presented in the next
section, we conducted a quantitative performance evalua-
tion of the reconstructed in vivo data. For in vivo data the
problem of ascertaining noise estimates or other perfor-
mance measures is challenging due to the nonavailability
of an accurate reference image. Unfortunately, none of the
reconstruction methods we implemented (RSOS, regular-
ized SENSE, and EPIGRAM) are unbiased estimators of the
target. This makes it difficult to directly estimate noise
performance, and the traditional root mean square error
(RMSE) becomes inadequate. We follow instead a recent
evaluation measure for parallel imaging methods proposed
by Reeder et al. (37), which provides an unambiguous and
fair comparison of SNR and geometry factor. Two separate
scans of the same target with identical settings are ac-
quired, and their sum and difference are obtained. The
local signal level at each voxel is computed by averaging
the sum image over a local window, and the noise level is
obtained from the standard deviation (SD) of the difference
image over the same window. Then

SNR �

mean�Sum image�


2 stdev�Diff image�

Here the mean and SD are understood to be over a local
window (in this case a 5 � 5 window around the voxel in
question). This provides unbiased estimates that are di-
rectly comparable across different reconstruction meth-
ods. We perform a similar calculation, with a crucial dif-
ference: instead of acquiring two scans, we use a single
scan but add random uncorrelated Gaussian noise in the

coil outputs to obtain two noisy data sets. This halves the
acquisition effort without compromising estimate quality,
since uncorrelated noise is essentially what the two-scan
method also measures. Reeder et al. (37) explained that
their method can be erroneous for in vivo data because
motion and other physiological effects can seriously de-
grade noise estimates. While our modification achieves the
same purpose, it does not suffer from this problem, and
hence should be more appropriate for in vivo data. The
SNR calculation also allows the geometry factor, or g-
factor, maps for each reconstruction method to be ob-
tained. For each voxel p and acceleration factor R:

g�p, R� �

SNRRSOS�p�

SNR�p�
R

where SNRRSOS is the SNR of the RSOS reconstruction.
The SNR and g-map images appeared quite noisy due to
the division step and estimation errors, and we had to
smooth them for better visualization.

Comparing EPIGRAM and Regularized SENSE

SNR and g-factor maps obtained by the method described
by Reeder et al. (37) and above are well suited for unbiased
reconstructions like unregularized SENSE because they
provide comparable measures of noise amplification.
Reeder et al. (37) demonstrated conclusively that the two-
scan method gives comparable estimates to those obtained
voxelwise by using hundreds of identical scans. Unfortu-
nately, neither the SNR nor the g-factor can serve as a
single measure of performance in the case of biased recon-
structions like regularized SENSE and EPIGRAM, or in-
deed any Bayesian estimate. This is because there are now
two quite different sources of degradation: noise amplifi-
cation and aliasing. While the former can be measured
accurately by SNR and g-maps using the above technique,
the latter cannot. All regularization or Bayesian ap-
proaches come with external parameters, which can be
thought of as “knobs” available to the user (� for SENSE
and � for EPIGRAM). Depending on how much the user
tweaks those knobs, it is possible to achieve any desired
degree of noise performance. To illustrate this, we show in
the Results section the effect of �, the regularization pa-
rameter in SENSE. We demonstrate that any desired g-
factor can be achieved by making � large enough. There-
fore, for a proper comparison of reconstruction methods, it
is important to fix either aliasing quality or noise quality,
and then compare the other measure. In this section we
adopt the following approach: we turn the “knobs” until
both EPIGRAM and regularized SENSE produce approxi-
mately similar g-maps and mean g-values. We then visu-
ally evaluate how each method performed in terms of
aliasing and overall reconstruction quality. In each case
we tabulate the mean SNR and g-values achieved by the
given settings. The results are given below.

RESULTS

Convergence Result

The convergence behavior of the objective function (Eq.
[15]) against the number of iterations for R � 3, L � 8 is
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shown in Fig. 7. As is typical of graph-cut algorithms (31),
most of the improvement takes place in the first few (ap-
proximately five) iterations. In our initial implementation
of EPIGRAM, which was written primarily in MATLAB,
an iteration takes about 1 min on this data set. Since
EPIGRAM is almost linear in the number of nodes, the

total running time approximately scales as N2, the image
size.

In Vivo Results

The best parameter values were consistent across all in
vivo data sets we tried: K � Nlabels/7, � � 0.04 � max(x).
The results of several brain imaging experiments with
these parameter values are displayed in Figs. 8 and 9.
Figure 8 shows the reconstruction of a MPRAGE scan of a
central sagittal slice, with an undersampling factor R � 4
along the anterior–posterior (A-P) direction. The RSOS
reference image is shown in Fig. 8a, regularized SENSE
with (empirically obtained optimal) � � 0.08 is shown in
b, regularized SENSE with � � 0.16 is shown in c, and
EPIGRAM is shown in d. Reduced noise is visually notice-
able in the EPIGRAM reconstruction compared to both
SENSE reconstructions. Higher regularization in SENSE
caused unacceptable aliasing, as observed in Fig. 8c. We
note that the unregularized (i.e., standard) SENSE results
were always worse than those of regularized SENSE, and
consequently are not shown. Another sagittal scan result is
shown in Fig. 9, this time from the left side of the patient.
Image support is smaller, allowing 5� acceleration. The
optimally regularized SENSE output (b) with � � 0.1 is
noisy at this level of acceleration, and � � 0.2 (c) intro-
duced significant aliasing, especially along the central
brain region. EPIGRAM (d) exhibits some loss of texture,
but on the whole appears to outperform SENSE.

A set of torso images acquired on a GE 1.5T scanner
using a GRE sequence and acceleration factor of 3 (along

FIG. 7. Convergence behavior of the modified graph-cut algorithm

(EPIGRAM) for acceleration factor R � 3, L � 8 coils, on GRE torso

data. The vertical axis shows the value of objective function (Eq.

[15]) achieved after each outer iteration, which represents a single

cycle through Nlabels � 256 expansion moves. [Color figure can be

viewed in the online issue, which is available at www.interscience.

wiley.com.]

FIG. 8. Brain A: In vivo brain re-

sult with R � 4, L � 8. Views were

acquired vertically. a: Reference

image. b: SENSE regularized with

� � 0.08. c: SENSE regularized

with � � 0.16. d: EPIGRAM re-

construction.
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the A-P direction) were resolved from 40 sensitivity cali-
bration lines (Fig. 10). Various slice orientations (both
axial and oblique) were used. These data also show the
practical limitation of SENSE when an inadequate number
of calibration lines are used for sensitivity estimation. The
reconstruction quality of SENSE is poor as a result of the
combination of ill-conditioning of the matrix inverse and
calibration error. SENSE exhibits both high noise and re-
sidual aliasing. In fact, what appears at first sight to be
uncorrelated noise is, upon finer visual inspection, found
to arise from unresolved aliases, as the background in Fig.
10b clearly indicates. EPIGRAM was able to resolve alias-
ing correctly and suppress noise, without blurring sharp
edges and texture boundaries. To demonstrate the perfor-
mance of these methods more clearly, we show in Fig.
10d–f zoomed-in versions of the images in Fig. 10a–c.

Next we demonstrate the trade-off between noise and
aliasing performance. Figure 11 shows another torso slice
along with associated g-maps computed as specified in
Materials and Methods. We investigate the effect of vari-
ous regularizations of SENSE. The leftmost column (a and
e) shows the SENSE result and its g-map for � � 0.1.
Clearly, there is inadequate noise suppression (some re-
gions of the image have a g-factor as high as 6). It is easy to
reduce noise amplification by increasing regularization. In

the next column, results for � � 0.3 are shown. The g-map
has become correspondingly flatter, but the reconstruction
indicates that this was achieved at the cost of introducing
some aliasing in the image. The rightmost column shows
EPIGRAM results, which indicate significantly lower g-
values and lower aliasing artifacts. In the third column we
show that with an appropriate choice of � it is possible to
match the EPIGRAM g-map (c.f., Fig. 11g and h). However,
with this choice of � � 0.5, SENSE yields unacceptable
aliasing. Table 1 shows the mean SNR and g-factor values
for EPIGRAM and various regularizations of SENSE.

We observe that the regularization needed in SENSE to
match the EPIGRAM g-values (approximately � � 0.5 in
almost all cases) yields unacceptable aliasing. Instead, a
more modest � must be chosen empirically. The standard
RMSE criterion does not really help here. In Fig. 12 we
plot the average over all our torso data of the RMSE for
various regularization factors. For this data set, the opti-
mum � in terms of RMSE was found to be around 0.25,
although in practice the best visual quality was observed
below this value, at around 0.1–0.15. This suggests that
the RMSE measure does not capture reconstruction quality
very accurately, and in particular seems to underempha-
size the effect of residual aliasing. In all experimental data
shown in this section, the optimum regularization for

FIG. 9. Brain B: In vivo brain re-

sult with R � 5, L � 8. Views were

acquired vertically. a: Reference

image. b: SENSE regularized with

� � 0.1. c: SENSE regularized

with � � 0.2. d: EPIGRAM recon-

struction.
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SENSE was obtained empirically for each data set by vi-
sual inspection as much as possible. To give an idea of the
visual quality corresponding to a certain � value, Fig. 12
also shows a portion of the resulting SENSE reconstruc-
tion. The mean SNRs and g-factors for all reconstruction
examples presented here are summarized in Table 2. Non-
regularized SENSE data are not shown, because they were
always worse than regularized SENSE data.

In all of these examples there are regions in the EPI-
GRAM data with some loss of texture, as well as regions of
low signal that appear to have been “washed out” by a
uniform value. Both effects result from the piecewise
smooth assumption imposed by the prior. We discuss
ways to mitigate this problem below, but note that it is
typical of most applications in which MRF priors are ap-
plied.

FIG. 10. Cardiac A: In vivo result with R � 3, L � 8. Views were acquired horizontally. a: Reference image. b: SENSE regularized with � �

0.16 (optimal). c: EPIGRAM reconstruction. Zoomed-in portions of a–c are shown in d–f.

FIG. 11. Cardiac B: In vivo result with R � 3, L � 8, showing the effect of regularization on g-factor maps. Views were acquired horizontally.

a and e: SENSE reconstruction and its g-map for � � 0.1. There is inadequate noise suppression, with a g-factor as high as 6. Results for

� � 0.3 are shown in b and f. The g-maps has become correspondingly flatter, but at the cost of aliasing. The rightmost column (d and

h) shows EPIGRAM results, which indicate significantly lower g-values as well as lower aliasing artifacts. SENSE with � � 0.5 (c and g)

matches the EPIGRAM g-map but yields unacceptable aliasing.
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DISCUSSION AND CONCLUSIONS

The experimental data shown above indicate that EPI-
GRAM shows promise for providing improved perfor-
mance and visual quality. This is a direct result of our use
of a powerful EPP model, and the efficient implementation
of the associated Bayesian problem using graph-cut algo-
rithms. An exhaustive clinical evaluation is needed to
further characterize the method and identify specific clin-
ical applications, and such work is ongoing. It is also
desirable to develop appropriate quantitative measures for
comparing the reconstruction performance of various
methods. Conventional measures, such as SNR and g-fac-
tors maps, do not serve this purpose well. We have argued
that looking solely at the reduction in noise as a measure of
regularization performance is inadequate because it does
not account for the introduction of concomitant aliasing
artifacts (e.g., see Fig. 11). In fact, g-factor maps on their
own might mislead one to conclude that large regulariza-
tions are always good because they produce small g-fac-
tors. Further work is therefore needed to devise more

suitable quantitative measures of performance, such as a
statistically sound diagnostic score obtained blindly from
a panel of experts.

We currently do not consider sensitivity errors or tem-
poral information, but such information can be easily in-
corporated within our objective function. In particular, the
use of graph-cut minimization for temporal or multidi-
mensional data is very attractive. The graph-cut-based
cost-minimization approach should be readily generaliz-
able to other parallel imaging methods, such as GRAPPA.
Since GRAPPA also performs essentially a least-squares fit
via the optimization of some objective function, its imple-
mentation using graph-cut-based minimization appears
possible. Currently the method is implemented only for
Cartesian sampling. Extending EPIGRAM to non-Cartesian
trajectories is an interesting but challenging task.

A shortcoming of our method is the possible loss of
texture due to the piecewise smooth assumption. In this
work the model parameters K,� were determined heuristi-
cally and assumed to be constant over the entire image. An
inappropriate choice of either of these parameters can
adversely affect the reconstructed data. If � is too large, it
will force low signal areas to become uniformly zero, or
remove informative texture from nonsmooth regions. Both
of these effects can be observed in our example reconstruc-
tions. Decreasing � can remove this to some extent, but the
most effective approach may be an adaptive and locally
varying choice of parameters. Although our experimenta-
tion produced the best results for the chosen truncated
linear prior model, other models (e.g., truncated quadratic
or piecewise linear) are possible. The power of the trun-
cated linear model appears to be well substantiated by
research in computer vision; however, future work in MR
could conceivably yield better edge-preserving models
that preserve textures and low signal regions. Further work
on different prior models and their parameters will most
likely improve the results shown here. However, it is im-
portant to note that the EPIGRAM algorithm can continue
to be used in its current form because it is formulated for
arbitrary objective functions of the kind shown in Eq. [15].

FIG. 12. Average RMSE of regularized SENSE reconstruction of

torso data. The optimum was observed at around 0.25, although

visual quality was found to be best for smaller values, in the region

[0.1–0.2]. Three example torso reconstructions are also shown.

Observe that as regularization increases, residual aliasing artifacts

and blurring both become worse. Also note that nonregularized

SENSE (i.e., � � 0) gives a substantially worse RMSE.

FIG. 13. Plot of the SNRs achieved by EPIGRAM and SENSE for

various data sets. SNR values were taken from Table 2. Observe

that large � gives higher SNR, but, as demonstrated by the dis-

played images, this comes at the cost of unacceptable aliasing.

[Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]

Table 1

Mean Reconstructed SNR and Mean g-Factor Values of

Reconstructed Data for Various Regularization Factors, with R �

3 and L � 8*

Cardiac B Brain A

Mean SNR Mean g Mean SNR Mean g

RSOS 42 1.0 59 1.0

SENSE, � � 0.1 15 3.3 21 3.7

SENSE, � � 0.3 18 2.3 26 2.5

SENSE, � � 0.5 24 1.4 30 1.9

EPIGRAM 36 1.4 40 1.85

*Two datasets, Cardiac B and Brain A were used. The means are

over object foreground. RSOS mean g value is 1 by definition.
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It is also noteworthy that Bayesian reconstruction can
sometimes produce images that appear different from or
even better than the best available reconstruction (in our
case the RSOS). This is an interesting case of a Bayesian
estimate fitting the prior better than the best RSOS esti-
mate. This is a well known phenomenon in Bayesian es-
timation, and can be explained by the fact that our MRF
prior models the target image—not the RSOS reconstruc-
tion. Another example of this can be seen in the g-factor
maps of EPIGRAM, which show some regions with g � 1.
This counterintuitive phenomenon results from the fact
that the prior imposes smoothness to such an extent that
the Bayesian estimate becomes less noisy than the unac-
celerated image in some places. In the extreme case when
�,� � �, both SENSE and EPIGRAM will simply reproduce
their respective priors and we will have g � 0 everywhere!
Of course, such a result will be of no real use since it is
independent of the observed data.

Comparison With Other Prior-Driven Approaches

It is instructive to compare our EPP model with other prior
models. Some very interesting and impressive results from
dynamic imaging models (e.g., RIGR) were presented in
Refs. 17 and 18, which used a powerful generalized series
to model k-space truncation, and dynamic and static parts
of the MR data. Our Bayesian approach is an interesting
counterpoint to that body of work. RIGR imposes a priori
constraints in the form of a detailed generalized series
model. This approach works best for dynamic imaging and
requires a good, well-registered, high-resolution reference
image. This technique certainly has significant value for
many imaging situations, but it suffers from high sensitiv-
ity to modeling errors, patient motion, and the difficulty of
obtaining correct model parameters from partial data. Our
prior model is simpler and does not need a reference
image. The advantage of our approach is that it is basically
parameter-free, apart from the particular choice of separa-
tion cost. Since the EPP model relies solely on spatial
coherence, it is effective under widely varying imaging
conditions and should be robust against artifacts caused by
geometric distortion, B1 intensity variations, excessive
noise, and even small amounts of motion. Furthermore, in
theory, it appears to be possible to incorporate RIGR-type
priors within the minimization framework proposed here.
Another interesting approach that has the potential to
improve conventional regularization schemes is the total
variation (TV) method (38). Both EPIGRAM and TV are
novel and basically unproven techniques for MR, and it

will be interesting to analytically and empirically compare
the two.

In conclusion, we have argued that Bayesian estimation
with edge-preserving image priors is an effective means of
breaking out of the fundamental noise vs. aliasing trade-off
in conventional parallel imaging without causing over-
smoothing. We showed that this Bayesian estimate is a
minimization problem that is closely related to problems
that have been addressed in the computer-vision commu-
nity. We demonstrated that standard graph-cut optimiza-
tion methods (19,20) cannot be applied directly to our
problem, and instead proposed a new MR reconstruction
technique relying on a subroutine based on Ref. 36. The
resulting MR reconstruction algorithm, which we call EP-
IGRAM, appears promising both visually and quantita-
tively. The resulting gains can potentially be exploited to
further accelerate acquisition speed in parallel imaging, or
to achieve higher reconstruction quality at the same speed.
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