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Abstract. We present a Bayesian model for estimating the

parameters of the VS-Lite forward model of tree-ring width

for a particular chronology and its local climatology. The

scheme also provides information about the uncertainty of

the parameter estimates, as well as the model error in rep-

resenting the observed proxy time series. By inferring VS-

Lite’s parameters independently for synthetically generated

ring-width series at several hundred sites across the United

States, we show that the algorithm is skillful. We also infer

optimal parameter values for modeling observed ring-width

data at the same network of sites. The estimated parameter

values covary in physical space, and their locations in mul-

tidimensional parameter space provide insight into the dom-

inant climatic controls on modeled tree-ring growth at each

site as well as the stability of those controls. The estimation

procedure is useful for forward and inverse modeling studies

using VS-Lite to quantify the full range of model uncertainty

stemming from its parameterization.

1 Introduction

Forward models of the physical or biological processes by

which climate variability is imprinted on natural archives

provide important tools for understanding such “proxies” as

recorders of climate (Evans et al., 2013). The VS-Lite model

(Tolwinski-Ward et al., 2011) provides one such forward

model for the climate controls on tree-ring width chronolo-

gies. Under this model, just four parameters determine a sim-

ulated chronology’s response to local mean monthly air tem-

perature and monthly model-simulated soil moisture. These

parameters connect the local climatology to the modeled con-

trols on growth and the climatic signal contained in the sim-

ulated chronology. Thus, in order to use VS-Lite to study the

relationship between climate and proxies in the real world,

an objective method for choosing the model parameters for

any particular site or region is necessary.

Ideally, parameterization should be based on a first-

principles understanding of the science represented by the

model. The growth response parameters in the VS-Lite

model are loosely interpretable as temperature and soil mois-

ture thresholds above which growth begins or is no longer

sensitive to climatic fluctuations, respectively. This inter-

pretation is consistent with the well-established biological

Law of the Minimum (Taylor, 1934), expressed in den-

drochronology by the idea that tree growth is determined by

the most limiting factor (Fritts, 2001). However, it is debat-

able whether each of these VS-Lite parameters has directly

measurable analogs in the natural world. Recent physiologi-

cal studies have advanced the scientific community’s under-

standing of climatic thresholds for xylogenesis (e.g., Rossi

et al., 2007; Deslauriers et al., 2008), but the results are not

well-enough developed or cataloged across tree species or

climate regimes to be generalizable to all forward model

simulations. Even if they were, it is not clear how measur-

able quantities in the real world are related to vastly simpli-

fied model quantities. In particular, VS-Lite operates using

monthly data, while the cellular-level processes it is intended

to mimic vary at daily and shorter timescales. Minimum and

optimum parameters therefore represent a simplification that

may be inferred from, but may not be strictly interpretable

as, biophysical limits on cambial activity itself. Given the
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limited ability of direct observations to constrain the model

parameters, it is necessary to estimate VS-Lite’s parameters

numerically using monthly climate inputs, observed ring-

width series, and partial knowledge of the model error struc-

ture. At sites where VS-Lite is believed to provide a reason-

able intermediate complexity proxy system model for tree-

ring width variations, such an estimation procedure can also

be used to estimate the parameters of the error model aris-

ing from the model’s incomplete representation of the proxy

system.

Three general approaches to objective numerical param-

eter estimation of forward models of tree-ring growth have

been explored in the literature. The first is presented by iter-

ative local schemes that optimize the fit of simulated model

quantities to their observed counterparts under changing pa-

rameter combinations. In the iterative scheme of Fritts et al.

(1999), for example, one model parameter is changed at a

time in a search over a continuous region of parameter of

space for the set of parameters producing optimal model fit.

Modern computing power makes such schemes possible to

run at many locations, but the approach does not account for

potential interactions between parameters. The scheme may

also locate a local optimum in parameter space but miss in-

formation, including other optima, provided by a more global

search. A second class of approaches attempts to avoid this

last pitfall by running growth models at a preselected, dis-

cretized set of parameter combinations believed to cover the

entire physically plausible regions of parameter space, and

the single combination that produces the best match of mod-

eled outputs to its observed counterparts is deemed optimal

(e.g., Misson et al., 2004; Misson, 2004; Tolwinski-Ward

et al., 2011). This parameterization method is only practi-

cal where the number of parameters to be constrained by the

available data is relatively small. Both local and global previ-

ous parameterization schemes have the shortcoming that they

provide only point estimates of optimal parameters, and their

results do not include any information about model sensitiv-

ity to the parameter choices. In addition, while the ranges of

parameters included in the search space are generally cho-

sen through consideration of physically plausible bounds on

their values, the search algorithms lack any more sophisti-

cated use of science-based understanding of where the most

likely parameter values lie. Bayesian modeling and inference

represents a third approach in which conditional probability

distributions of the unknown parameters are inferred given

the information in model input climate data and observed se-

ries of tree-ring width data. Because the product of such an

analysis is a probability distribution, the Bayesian approach

also has the advantage of automatically providing uncertainty

and sensitivity estimates along with parameter estimates. The

approach also automatically safeguards against over-tuning

when the calibration data series are short and/or noisy. Such

an approach was explored by Gaucherel et al. (2008) to in-

fer the parameters of a complex, biology-resolving model of

tree-ring growth. Although not a forward model of tree-ring

width given climate, work by Boreux et al. (2009) also em-

ployed a Bayesian approach to estimate a latent regional tree-

ring width signal and the parameters of an accompanying

hierarchical model to interpret several neighboring tree-ring

width chronologies.

Here we present and test a Bayesian statistical model

to infer parameter estimates for VS-Lite for simulating a

particular chronology from co-located climatic inputs. Our

scheme is efficient enough to run in a matter of minutes

in a modern laptop computing environment, and returns

probabilistic posteriors that can be analyzed to infer uncer-

tainty and sensitivity information as described above. In ad-

dition, the scheme takes particular advantage of the capa-

bility of the Bayesian framework to assimilate expert sci-

entific prior knowledge into the inference. Version 2.3 code

for the scheme is freely available with the VS-Lite v2.3

model at the National Oceanic and Atmospheric Admin-

istration (NOAA) Paleoclimatology software library (http:

//www.ncdc.noaa.gov/paleo/softlib/softlib.html). We test the

skill of the parameterization approach in several hundred in-

dependent idealized experiments using synthetically gener-

ated tree-ring width data. As an application of the method to

observed ring-width chronologies, we also independently es-

timate parameters for several hundred observed chronologies

across the continental United States and present a graphical

method for interpreting the fitted model parameters in terms

of climatic controls on tree-ring growth at each site.

2 Model, data, and methods

While climate is a spatiotemporal phenomenon, and net-

works of tree-ring width can be used to make inferences

about the past space–time variations in climatic fields, trees

only experience and respond to their local environments.

This is reflected in the structure of VS-Lite, which models

tree-ring width variations as a function of local climate. Here

we take the view that the model provides a first-order repre-

sentation of the general mechanisms by which climatic vari-

ability is imprinted on all climatically sensitive trees. Within

this framework, VS-Lite’s growth response parameters and

the parameters of an accompanying error model adjust the re-

sponse of VS-Lite to fit better the observed growth responses

that vary from site to site depending on species, specific lo-

cal environmental conditions, and the varying sensitivity of

the signal in individual tree-ring width series that compose a

given chronology.

2.1 Summary of VS-Lite and parameters

A complete description of the VS-Lite model is given by

Tolwinski-Ward et al. (2011). However, we briefly summa-

rize the basic structure of the model and its parameteriza-

tion here. VS-Lite is a substantially simplified, monthly time-

step version of the full Vaganov–Shashkin model of tree-ring
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growth (Vaganov et al., 2006, 2011). At its core, VS-Lite

is a parsimonious representation of the Principle of Limit-

ing Factors with respect to local monthly temperature and

soil moisture, and with growth modulated by local insolation.

In its current version (version 2.2), insolation is determined

from site latitude, and soil moisture is determined from local

monthly temperature and precipitation via a simple bucket

model (Huang et al., 1996). Non-dimensional scaled growth

responses gT (m,y) and gM(m,y) to monthly time-step tem-

perature and soil moisture content, respectively, are key to

determining the extent of simulated growth in each modeled

month m and year y. These responses have the piecewise lin-

ear forms

gT (m,y) =







0 T (m,y) ≤ T1;
T (m,y)−T1

T2−T1
T1 ≤ T (m,y) ≤ T2;

1 T2 ≤ T (m,y)

(1)

and

gM(m,y) =







0 M(m,y) ≤ M1;
M(m,y)−M1

M2−M1
M1 ≤ M(m,y) ≤ M2;

1 M2 ≤ M(m,y)

(2)

The parameters T1 and M1 thus represent thresholds

in temperature and soil moisture content below which

growth cannot occur, while T2 and M2 are thresholds

above which growth is insensitive to climatic variability.

The overall monthly growth rate is given by g(m,y) =

min{gT (m,y),gM(m,y)}, to mimic the Principle of Limit-

ing Factors (Fritts, 2001) that the more limiting environmen-

tal variable controls growth. The simulated annual-resolution

ring-width series result from taking an inner product of these

overall growth rates with estimates of mean relative monthly

insolation derived from trigonometric functions of latitude.

Thus, the climatic variable that tends to produce lesser val-

ues in its growth response function controls the modeled cli-

mate signal contained in the simulated proxy series. The re-

lationship of the parameter values T1, T2, M1, and M2 to

the model’s climate inputs is therefore critical in determin-

ing which variable gets “recorded” by the synthetic trees.

We denote by ŴVSL, the deterministic VS-Lite estimate

of a tree-ring width series given fixed temperature and pre-

cipitation inputs and fixed VS-Lite growth response parame-

ters θVSL = (T1,T2,M1,M2)
′. Formally, we model the zero-

mean, unit-variance time series of ring-width data W at a

location of interest by a scaling of the VS-Lite output plus

stochastic noise to account for non-climatic noise in the data

and for the effects on the time series of processes that VS-

Lite does not resolve:

W =

√

1 − σ 2
W ŴVSL + e (3)

with σ 2
W = Var(et ) .

We allow for the possibility that the time series of er-

rors e may follow either a white noise model, so that et ∼

N(0,σ 2
W ), or else an AR(1) model, et ∼ N(φ1et−1,τ

2), with

the conditions for stationarity for the noise process imposing

σ 2
W = τ 2

1−φ2
1

in the latter case (Shumway and Stoffer, 2006).

Since both the time series of data and of VS-Lite output are

standardized to have zero mean and unit variance, the coef-

ficient

√

1 − σ 2
W on the estimate from VS-Lite gives the pro-

portion of the observed data’s standard deviation that can be

explained by VS-Lite as “signal”, and so the signal-to-noise

ratio is SNR =

√

1−σ 2
W

σ 2
W

. We write the parameters of the er-

ror model as θe = σ 2
W for white noise and θe = (φ1,τ

2)T for

AR(1) errors. We treat these as additional model parameters

to be estimated at any given site, whose values provide in-

formation about the degree to which VS-Lite can be used to

explain the observed variations in the data.

2.2 Approach to model parameter estimation

We follow a Bayesian approach to estimating the model pa-

rameters at a particular location. Let θ denote the vector of

model parameters we would like to estimate, and W(T,P)

the vector of observed ring-width data, which depends on

vectors of monthly temperature and precipitation data cov-

ering the same interval in time as the ring width data. The

Bayesian paradigm allows inference on the posterior distri-

bution π(θ |W(T,P)) of the parameters given the climate and

ring width data in terms of the likelihood f (W(T,P)|θ) of

the ring-width data given the climate and the parameters, as

well as a prior distribution π(θ) on the parameters via Bayes’

law:

π(θ |W(T,P)) ∝ f (W(T,P)|θ)π(θ). (4)

Given the likelihood and prior parameter models, Markov

chain Monte Carlo techniques produce an ensemble of draws

from the posterior distribution (Gilks et al., 1996), from

which estimates of the parameters and their associated un-

certainties can be made.

In the present setting, the parameters θ consist of the set

θVSL = (T1,T2,M1,M2)
T used to compute the determinis-

tic response of VS-Lite to input climate data, and the set θe

that describe the VS-Lite model error structure, so that θ =

(T1,T2,M1,M2,θe)
T . Given the data-level model in Eq. (3),

the likelihood in Eq. (4) may be thus be written as

f (W(T,P)|θ) ∝
1

|6e|1/2
exp (5)

(

−
1

2
(W −

√

1 − σ 2
W ŴVSL)T 6−1

e (W −

√

1 − σ 2
W ŴVSL)

)

.

Note that the dependence on θVSL is implicit in the estimate

ŴVSL, which is computed for a particular set of growth re-

sponse parameters. The dependence on the error model pa-

rameters θe is through the covariance matrix 6e and the noise

process variance σ 2
W . The specific form of these depends on
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whether a white noise or AR(1) noise model is appropriate at

a particular site; these details are discussed in the supplemen-

tary material. Note that in its current version, VS-Lite also

requires several parameters of the Leaky Bucket model of

soil moisture (Huang et al., 1996). We do not estimate those

here, as the soil moisture model may be viewed as an ancil-

lary component of VS-Lite that may be replaced by a more

sophisticated hydrological model or direct measurements of

soil moisture. In effect, our current approach transfers the

uncertainty associated with these parameters to uncertainty

in the soil moisture response parameters M1 and M2.

In modeling the prior distribution of the VS-Lite growth

response parameters, we first make the assumption that each

parameter is independent of the others. This assumption al-

lows us to model their joint prior distribution as the prod-

uct of individual prior models for each. We put relatively

broad but informative priors on the growth response param-

eters, with shapes and supports consistent with current sci-

entific understanding of tree growth responses to tempera-

ture and moisture. While the original full VS model was

built around conifer physiology, VS-Lite is a generalized im-

plementation of the principle of limiting factors and piece-

wise growth functions, and should be a valid representa-

tion of growth in both gymnosperms and angiosperms. Al-

though it is conceivable that different priors might be con-

structed for different tree species, it is difficult to disentan-

gle the influence of species on growth response from the

influences of specific site characteristics, non-climatic influ-

ences, and random effects, and no comprehensive identifi-

cation of the differences in growth response exists for the

dozens of species used for dendrochronology. We thus con-

struct species-independent priors using general information

about growth across all climate-sensitive trees.

Of the four growth response parameters, the literature pro-

vides the most information about T1, the threshold temper-

ature for growth to begin. The physiological experiments of

Körner and Hoch (2007) at a montane site in Switzerland in-

dicated that mean seasonal soil temperatures below 6–7 ◦C

would not permit growth. An assessment of root and air tem-

peratures at a few dozen tree-line sites by Körner and Paulsen

(2004) gave a value of 6.7 ± 0.8 ◦C for this growth thresh-

old, and histological measurements and analyses of Rossi

et al. (2007) and Deslauriers et al. (2008) for conifers in the

Alps gave a range of 5.8–8.5 ◦C. Hoch and Körner (2009)

found that two montane conifer species maintained cambial

activity even when grown at 6 ◦C. Körner (2012) inferred a

global mean tree-line isotherm near 6 ◦C and cessation of

growth at 5 ◦C (Körner, 2008); 0 ◦C is the theoretical limit

below which plant tissue formation cannot occur (Körner,

2012). We thus chose to model the temperature threshold for

growth by T1 ∼ β(9,5,0,9), a four-parameter beta distribu-

tion with shape parameters α = 9 and β = 5 supported on

the interval [0,9]. This choice puts the mode of the probabil-

ity density function at 6 ◦C, assigns zero probability below

freezing (0 ◦C) or above 9 ◦C, and places 90 % of the total

probability in the interval (3.8 ◦C, 7.5 ◦C) (see blue curve in

Fig. 1a and e).

The biologically based information available about T2, the

threshold above which growth is no longer sensitive to tem-

perature variations, is more uncertain. Vaganov et al. (2006)

give a default value of 18 ◦C for the full Vaganov–Shashkin

model based on a few intensive case studies at a limited num-

ber of Russian tree-ring sites, but use a value of 15 ◦C in an

example model run, demonstrating the range of uncertainty

associated with this parameter. The analogous parameter in

the TreeRing2000 model has a default value of 23 ◦C (Fritts

et al., 1999). Data shown by Williams et al. (2011) suggest

a broad plateau where ring width in Alaskan Picea glauca

ceased increasing with June and July mean temperatures be-

tween approximately 10 and 13 ◦C, depending on site hy-

drology. On the other hand, Garfinkel and Brubaker (1980)

showed no change in the regression of ring width on temper-

ature in the same species even at temperatures approaching

15 ◦C. Carrer et al. (1998) inferred a lower optimal summer

temperature threshold of 13 ◦C for Picea abies and 16 ◦C for

Larix decidua. Although this information sheds some light

on the threshold for sensitivity to temperature, the majority

of these studies are based on empirical data at monthly to

seasonal timescales, as opposed to direct studies of cambial

activity in response to temperature. To reflect the uncertainty

inherent in the wide range of these estimates, as well as un-

certainty in their direct applicability as parameter estimates

in VS-Lite, we model the prior by T2 ∼ β(3.5,3.5,10,24).

This choice limits probability mass to the interval (10 ◦C,

24 ◦C), and distributes probability symmetrically about a

mean of 17◦C with a standard deviation of 2.5 ◦C, and 90 %

of the total probability in the interval (12.9 ◦C, 21.1 ◦C) (blue

curve, Fig. 1b and f).

Very little biologically based information is available to

constrain either moisture parameter. We use the default pa-

rameters developed by Vaganov et al. (2006) to define broad

priors on M1 and M2. Default values for M1, interpretable

as soil wilting point, are 0.02 v / v (Vaganov et al., 2006)

and 0.01 v / v (Fritts et al., 1999). The latter source also

sets a moisture optimum at 0.109 v / v, so the value of M1

should certainly fall well below this value. We set the prior

mean at 0.035 with standard deviation of 0.02 v / v, with

no probability mass outside of (0 v / v, 0.1 v / v), by letting

M1 ∼ β(1.5,2.8,0,0.1), with the interval (0.006 v / v, 0.073

v / v) containing 90 % of the prior probability (blue curve,

Fig. 1c and g). The default for M2 is 0.8 of typical soil satu-

ration levels, and the Leaky Bucket model of soil moisture

employed by VS-Lite never allows soil to be saturated to

a value more than 0.75 v / v (Huang et al., 1996). We set

M2 ∼ β(1.5,2.5,0.1,0.5). This gives the prior a mean of

0.25 v / v, a standard deviation of 0.1 v / v, nonzero probabil-

ity on (0.1 v / v, 0.5 v / v), and 90 % of the prior probability

mass in (0.125 v / v, 0.406 v / v) (blue curve, Fig. 1d and h).

In assigning priors to the parameters θe, we enforce

stationarity on the time series of errors, require that the
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Prior (blue) and posterior (red) densities of VS−Lite parameters, Pseudoproxy Experiments
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Fig. 1. (a–d)Prior (blue) and estimated posterior (red) densities for the parameters of VS-Lite at the Sipsey Wilderness site in Alabama, for

the pseudoproxy experiment with SNR = 1. Plot of posterior density given by a kernel smoothing of the frequency distribution of ensemble

members. Solid black vertical lines give the target values of the growth response parameters, dotted black lines prior medians, and dash-dot

black lines the posterior medians. (e–h) As in (a–d), but for PPE with SNR = 0.25.

magnitude of the process be no greater than the unit-variance

observations, and require that the lag-1 autocorrelation be

non-negative, but do not supply the priors with any other

information. For the white-noise model, these criteria re-

sult in a prior σ 2
W ∼ U(0,1). For the AR(1) model, they

imply a normalized indicator function on the set {φ1,τ
2 :

φ1 ∈ (0,1),τ 2 < (1 − φ2
1)} (see, e.g., Shumway and Stoffer,

2006). At each site the parameter estimation procedure is

first run assuming white errors. The residuals of simulated

ring-width index using the posterior median growth response

parameters are then fit with a white noise error model and

an AR(1) model. If the AR(1) model has a lesser value

of Schwarz’s Bayesian criterion (Robert, 2007, Sect. 7.2.3),

then the parameter calibration is re-run for that site under the

assumption of AR(1) model errors.

The posterior distribution (Eq. 4) is sampled using a

Metropolis–Hastings algorithm embedded within a Gibbs

sampler, which is a standard Markov chain Monte Carlo

(MCMC) approach (Chib and Greenberg, 1996). To check

for convergence, we run three chains with 30 000 iterations

each after a burn-in period of 300 iterations. In the rare case

that the R-hat statistic (Gelman and Rubin, 1992) indicates

the MCMC has not converged, we re-run the sampler with a

greater number of iterations until the sampler has converged.

The autocorrelation functions of the MCMC chains indicate

that, at most sites, autocorrelation in the parameter sampling

chains is no longer significant past a lag of 20. We conserva-

tively subsample every 50th value of each of the 3 chains to

ensure independence of samples, resulting in a collection of

1800 samples for each parameter value at each site.

The ensemble output may be used in several different

ways. First, point estimates from the posterior ensemble,

such as the posterior median or the maximum likelihood pa-

rameter set, may be used as calibrated parameter values that

optimize the fit between model-simulated ring width data

and a target ring width series, given fixed input climate data.

However, the posteriors contain additional information be-

yond point estimates. Their spread indicates the uncertainty

in the parameter estimates, as well as the degree to which

the climate and target ring-width data inform the parameter

values. Hence a measure of the model sensitivity to each pa-

rameter may also be gleaned from the posterior spread. The

Monte Carlo ensemble of parameter values may also be used

to run modeling studies where accounting for the effect of

parameter uncertainty is important for interpretation of the

results.

2.3 Experimental design

We perform our study using estimates of monthly temper-

ature and precipitation from the 4 km × 4 km resolved grid-

ded Parameter-elevation Regressions on Independent Slopes

Model (PRISM) data product (Daly et al., 2008). We use the

mean of the monthly maximum and minimum temperature

fields as well as the accumulated precipitation field, and ne-

glect the inherent PRISM measurement and model error. The

climate product is used at the grid cells co-located with 277

sites associated with observed tree-ring width chronologies

across the continental United States. These sites form the

subset of chronologies used in a multi-proxy hemispheric

temperature reconstruction by Mann et al. (2008) that also

overlap with the PRISM data from 1895 to 1984. The choice

of this 90 yr interval represents a balance between the avail-

ability of proxy observations and climate data. All the asso-

ciated chronologies are freely available online on the NOAA

www.clim-past.net/9/1481/2013/ Clim. Past, 9, 1481–1493, 2013
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Paleoclimate Reconstructions Network/Proxy Data webpage

(http://www.ncdc.noaa.gov/paleo/pubs/pcn/pcn-proxy.html.

2.3.1 Pseudoproxy experiment (PPE)

To evaluate the skill of the Bayesian parameter estimates, we

perform two so-called “pseudoproxy experiments” (PPEs)

(Smerdon, 2012) using synthetically generated tree-ring

width data. At each site, we first perform a preliminary run

of the Bayesian scheme described above using the observed

chronologies and PRISM-derived climate data for the inter-

val 1895–1984. The sampling scheme is run to convergence

with a white noise model at each site, but at sites where the

residuals between VS-Lite estimates and the observed data

display temporal autocorrelation, the sampling scheme is re-

run with the AR(1) noise model. The posterior medians and

the estimated noise models from this step parameterize re-

gionally realistic tree growth responses to climate, and com-

prise a set of known PPE parameter targets that we try to

recover to test our methodology. We run the VS-Lite model

over the same interval using this target parameter set and

the PRISM climate estimates to produce 277 synthetic ring-

width signals. We scale the simulated signal and add noise

according to Eq. (3) such that the signal-to-noise ratio (SNR)

is 1 in the first PPE, and is SNR = 0.25 in the second PPE.

These values represent optimistic and pessimistic estimates

of the SNRs of real-world proxies, respectively (Smerdon,

2012), and the resulting 277 time series constitute the syn-

thetic data set we use to infer the known parameter values us-

ing the Bayesian scheme. In this inference step of the PPEs,

we condition on the known climate data and pseudoproxy

ring-width data over the entire interval to estimate the growth

response parameters and error model parameters. The form

of the error model (white or AR(1)) at each site is also as-

sumed known, rather than inferred. The PPEs are designed

as a test of our parameter calibration scheme over a realistic

range of tree responses to climate, but in an idealized model

world where both the signal-formation and noise processes

are perfectly known and represented except for the value of

their parameters. The ability of the parameter inference pro-

cedure to recover the known target parameters in the PPEs

thus provides an upper bound on the skill for the procedure

in real-world scenarios.

Comparing the growth parameter posterior distributions to

the known targets allows us to quantify the skill of the esti-

mation scheme. The numerics return N = 1800 draws from

the posterior distribution, so we compute Monte Carlo esti-

mates of the root-mean-square error and bias in the pseudo-

proxy context using the “true” target parameter values θ :

RMSE ≈

√

√

√

√

1

N

N
∑

n=1

(θ̂n − θ)2; (6)

Bias ≈
1

N

N
∑

n=1

(θ̂n − θ). (7)

The extent to which the prior and posterior distributions dif-

fer indicates the degree to which the climate, ring-width data,

and the VS-Lite model structure constrain the value of each

parameter. To quantify this “Bayesian learning” at each site,

we examine the ratio of posterior to prior variance. Parame-

ters whose posteriors are well-constrained by the data will

have much smaller posterior variance than prior variance,

while parameters that are not well-constrained will have pos-

teriors that resemble their priors, and hence variance ratios

close to one. Finally, we compute the estimated signal-to-

noise ratios by the posterior median of

√

1−σ 2
W

σ 2
W

, and compare

to the known SNR used to construct the synthetic data across

the 277 sites.

2.3.2 Observed proxy model calibration (OPMC)

We also calibrate the VS-Lite model parameters indepen-

dently at each of the 277 network sites to perform an ob-

served proxy model calibration (referred to hereafter by the

acronym OPMC). The estimates of the growth response pa-

rameters are conditioned on the PRISM-derived climate se-

ries and observed ring-width index series for the 45 yr in-

terval 1940–1984, and the parameters of the error model

are estimated using the data in the complementary 45 yr in-

terval 1895–1939. Split calibration/validation intervals help

prevent calibration of artificial skill when selecting parame-

ters (Cook et al., 1999; Evans et al., 2002). We also perform

the analysis with the growth parameter and error parameter

calibration intervals reversed to gauge the dependence of the

calibration on the choice of calibration interval.

We take the posterior medians as point estimates of each

parameter, and look at their spatial distribution across the ex-

perimental domain. As in the PPEs, we also look at the ratio

of posterior to prior variance to assess Bayesian learning at

each site. We also examine the estimated signal-to-noise ratio

of the chronology at each site, and compare both the reduc-

tion of error (RE) statistic and correlation with observations

for VS-Lite simulations computed with calibrated parame-

ters and simulations computed with parameters held at their

prior medians. In the case of parameter calibration using real

data, the parameters are unknown, and so we cannot com-

pute RMSE or bias. Instead, we seek to interpret the fitted

parameters in terms of the climate controls on growth at each

site. We first classify each site as having growth that is either

temperature-limited, moisture-limited, or as having mixed

climatic controls. To do so, we run the VS-Lite model at

each site with the parameters’ posterior medians and examine

the growth response functions during June, July, and August,

when insolation is at its peak and allows the bulk of mod-

eled growth to occur. We compute the proportion of summer

Clim. Past, 9, 1481–1493, 2013 www.clim-past.net/9/1481/2013/
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months over the entire simulation in which the growth re-

sponse to soil moisture (temperature) is strictly less than the

growth response to temperature (soil moisture). If the mod-

eled proportion is significantly more than the null hypothesis

of half, then the site is classified as M-limited (T -limited).

Sites for which the proportion cannot be statistically distin-

guished from 0.5 are classified as mixed-control sites. We

then examine the structure of the parameter point estimates

in multi-dimensional parameter space for each class of sites.

To evaluate the sensitivity of the parameter estimation

scheme to the choice of prior distributions, the observed

proxy model calibration described above is also performed

with uniform prior distributions with the same supports as

those for the literature-informed four-parameter beta priors

described in Sect. 2.2. The uniform prior is a standard non-

informative choice against which to check the sensitivity of

posterior results to more complicated priors (see Gelman

et al., 2003, Sect. 6.8). The posteriors derived under the four-

parameter beta priors informed by the literature are compared

with those derived using the uniform priors.

3 Results

For a single site, the parameter estimation procedure de-

scribed here can be run on a MacBook Pro with 2.7 GHz

processor in under 3.5 min for three chains of length 30 300

in series when the white noise model is used, and in close to

9 min when the AR(1) error model is used.

For the experiments performed here, trace plots of the

MCMC chains and R2 statistics close to 1 both indicated

that the samples had converged adequately (see Supplement

Fig. 1 for trace plots at a representative site). The proce-

dure returns 106 out of 277 sites with a white noise error

model, and 171 sites with an AR(1) error model when run

using the observed data. At two representative sites, one us-

ing the white noise error model and one using the AR(1)

error model, the reproducibility of the point estimates was

checked by running the estimation procedure twice for the

PPE with SNR = 1 and for the OPMC. In both cases, the dif-

ference between estimates of the two temperature thresholds

T1 and T2 from two runs of the algorithm was less than a

tenth of 1 ◦C; moisture thresholds M1 and M2 were repro-

duced to within 0.004 v / v (so the percentage change in the

value of the point estimates of the growth parameters is less

than 1 % except for M1, which is reproduced to within 6 %).

The ratio of posterior to prior variance was reproduced in

all cases to within 0.05 (percent change of less than 7 % ex-

cept for M1, to within 11 %), and the estimated signal-to-

noise ratios were within 0.02 of one another (reproduced to

less than 0.2 %) for the two runs (further details are in the

Supplementary Tables 1 and 2).
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Fig. 2. (a–d) root-mean-squared error versus bias of parameter esti-

mates in the pseudoproxy experiment, with both statistics shown

relative to the length of each prior’s support for the PPE with

SNR = 0.25 (red) and SNR = 1 (blue). Note that the structure in the

scatter plots is a result of the fact that by definition RMSE(X) =
√

Var(X) + Bias2(X). (e) Histogram of median posterior estimated

signal-to-noise ratio (SNR) across all 277 sites, for the pseudoproxy

experiment where the true SNR = 1. (f) As in (e) but for the experi-

ment with SNR = 0.25.

3.1 Pseudoproxy experiment (PPE) results

A plot of prior and smoothed posterior distributions of the

four growth response parameters for one representative site

in the network is shown in Fig. 1 for both PPEs. The varia-

tion in learning between parameters is evident in this figure,

as conditioning the data tends to inform values of M2 and

T2 to a greater extent at this particular site than the lower

thresholds T1 and M1. Comparing the shape of the posteriors

between pseudoproxy experiments also shows that the data

inform the estimation to a greater (lesser) degree when the

data have higher (lower) signal-to-noise ratio. A set of such

posterior distributions exists for every site in the experimen-

tal network, and we compute statistics on these distributions

to assess the skill of the parameter calibration method.

Both posterior bias and root-mean-squared error tend to

be on the order of 20 % or less of the length of the prior

interval for estimates of the parameters (Fig. 2a, b, d). The

negative bias for the parameter M2 in the experiment with

the lower signal-to-noise ratio is an exception, and is on

the order of 60 % of the length of the prior interval for the

sites with the worst bias. The decrease in bias for the higher

www.clim-past.net/9/1481/2013/ Clim. Past, 9, 1481–1493, 2013
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Fig. 3. Ratio of posterior to prior variance for the four growth re-

sponse parameters as a measure of Bayesian learning in the pseu-

doproxy experiment with SNR = 1. The color scale is calibrated so

that sites with values of the ratio greater than/equal to one/less than

one have blue/white/red coloration.

SNR experiment suggests that the bias is an artifact of the

choice of prior distribution being centered at lower values

than those that seem to fit the data best. Figure 2e and f

show histograms of the posterior median values of the es-

timated signal-to-noise ratios in both experiments across the

277 sites. The individual estimates of SNR vary from site to

site because each posterior is conditioned on only a single

realization of the noisy synthetic ring-width data. Across the

independent posteriors at all sites, however, the distributions

of the estimates are centered on the correct SNR values for

the respective experiments.

The ratio of posterior to prior variance is shown in Fig. 3

for the PPE with unit SNR. In general, “Bayesian learning”

tends to be high for the upper thresholds T2 and M2, as ev-

idenced by ratios less than one at most sites across the net-

work. This result is indicative of high model sensitivity to

the value of these parameters. By contrast, more sites have

variance ratios close to one for the parameter T1, especially

in the southern United States and along the southeastern

seaboard of the United States, and most sites across the net-

work have variance ratios near one for the parameter M1.

Thus the marginal posteriors of T1 and M1 at these sites are

similar in spread to the priors, indicating model insensitiv-

ity to their values. The variance ratios are higher across all

variables and sites for the PPE with lower signal-to-noise ra-

tio (Supplement Fig. 2), which is consistent with the general

expectation that noisier data cannot constrain the solution as

well as less noisy data.

3.2 Observed proxy model calibration (OPMC) results

The point estimates of the VS-Lite parameters in the ob-

served proxy model calibration experiments, given by the

posterior medians, show some spatial structure (Fig. 4). Al-

though the varying network density makes it difficult to dis-

tinguish geographical patterns, parameters do tend to take on

values close to those of their nearest neighbors. In particular,

the estimated values of T2 tend to occupy the lower end of
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Fig. 4. Posterior medians of VS-Lite growth parameters. Note that

the color scale for each parameter ranges over the interval on which

the prior is supported, and is calibrated so that white indicates the

prior median.
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Fig. 5. Ratio of posterior to prior variance for the four growth re-

sponse parameters as a measure of Bayesian learning in the ob-

served proxy experiment. The color scale is calibrated so that sites

with smaller (larger) values of the ratio, indicating greater (lesser)

Bayesian learning, have darker (lighter) coloration.

the prior support in the west of the United States, with more

variation between sites east of the Continental Divide. Val-

ues of M1 also tend to fall near the upper end of the prior for

arid and semi-arid sites in the west. Point estimates of M2 are

close to the upper end of the prior range at most sites across

space, and preferred values of T1 tend to be close to the prior

median but show some variation for sites within close range

of one another.

The spatial distribution of Bayesian learning, parameter-

ized by the ratio of posterior to prior variance, is highest for

the parameter M2 away from the eastern seaboard and north-

ernmost Pacific Northwest sites (Fig. 5). This result indicates

that simulations of the data are sensitive to this parameter at

all but those sites. Sites with high and low Bayesian learning

on the parameter T2 are interspersed throughout the domain.

The parameters T1 and especially M1 appear to have very

little influence on the data, as conditioning on the data con-

strains their posterior distributions little if at all.

Sites along the eastern seaboard tend to have low SNR,

while those along the west coast south of 40◦ N tend to have

high SNR, and the SNR ratio elsewhere is mixed (Fig. 6,

top panel), indicating variation across sites in the degree to
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Fig. 6. Top: map of posterior median signal-to-noise ratio (SNR)

across sites in network, estimated by comparing simulated and ob-

served data during 1895–1939. Bottom: comparison of posterior

median SNR estimated during 1895–1939 and 1940–1984 for val-

ues of growth response parameters estimated using data in the com-

plementary intervals.

which VS-Lite can be used to explain the observed ring-

width chronologies. The posterior median signal-to-noise ra-

tios are similar when estimated during the first and second

halves of the 90 yr interval (bottom panel), indicating robust-

ness in the model performance to the choice of calibration

interval, and the posterior median SNR estimated between

1940 and 1984 is within 1, 2, and 3 posterior standard devi-

ations of the posterior median SNR estimated between 1895

and 1939 for 55, 87, and 95 % of sites respectively.

Calibration of the parameters improves the skill of the VS-

Lite simulations in predicting the observed data. The correla-

tion of the simulated ring width with observations in the com-

plement of the interval used to estimate the growth response

parameters increases uniformly across the sites (Fig. 7, left

panel). At the Andrew Johnson Woods site in Ohio, for ex-

ample, the correlation of calibrated (uncalibrated) simulated

ring width with observations is typical of this metric of skill

across chronologies simulated in this study, at ρ = 0.30 (ρ =

−0.13) with the observed ring-width time series. In fact, cal-

ibrating the parameters at this representative site is crucial in

determining the simulated climate controls on growth, with

calibrated (uncalibrated) simulated growth limited by mois-

ture (temperature). Time-series plots of these simulations, as

well as for another site with more dramatic improvement re-

sulting from calibration, are shown in Supplement Figs. 8 and

9. Calibration also increases the number of sites with positive

RE statistic to 74 sites relative to 44 out of 277 for simula-

tions run with prior median parameter values (Fig. 7, right

panel).

Although we treat the simulation at each site as indepen-

dent of the others, there is some spatial covariance of the

residuals of VS-Lite simulations run with calibrated parame-
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Fig. 7. Left: correlation of VS-Lite simulated ring width and ob-

served ring width during the complement of the growth response

parameter calibration interval for simulations run with posterior me-

dian parameters and prior median parameters. Calibrated (uncali-

brated) simulations at 160 (87) sites have positive significant cor-

relations with observations at p < 0.05. Right: RE statistic for VS-

Lite simulations in the complement of the growth response parame-

ter calibration interval ring-width index using posterior median pa-

rameters and prior median parameters. RE is greater than zero and

thus indicates skillful simulations at 74 (44) of calibrated (uncali-

brated) sites.

ters, due to spatial covariance in the underlying climate fields

used as model inputs. However, both the range and strength

of the residual spatial structure not accounted for by VS-Lite

are decreased by running simulations with the calibrated pa-

rameters, rather than the prior median parameters at every

site (see Supplement Fig. 7 and accompanying description

for further details). These results suggest that the param-

eter calibration improved the ability of VS-Lite to explain

variance in the observed tree-ring width chronologies.

The point estimates of the parameters cluster in anomaly-

parameter space according to each site’s classification as

temperature-limited, moisture-limited, or mixed-control sites

(Fig. 8). The estimated values of T1 fall below the mean lo-

cal JJA temperature (not shown). In other words, the mean

summer temperatures all fall above the threshold for nonzero

growth at every site, which is consistent with the fact that

the chronologies we used at these locations were in fact sam-

pled from living trees. Data at sites classified as temperature-

sensitive constrain all estimates of T2 to values above the

mean local summer temperature. Summer temperature varia-

tions therefore influence modeled growth at these sites. Sites

classified as moisture-limited or as having mixed controls

tend to have values of T2 that fall below local summer mean

temperatures; thus temperature variability will have less of

an effect on modeled growth. The results for the moisture

parameters are similar. All sites have calibrated values of M1

falling below the climatological mean soil moisture content,

so that there is enough moisture for modeled growth to occur

across the experimental domain in summer. Calibrated values

of M2 are greater than local climatological mean soil mois-

ture for all sites classified as moisture-limited, but mixed-

control and temperature-limited sites tend to have values of

M2 that fall below the climatological summer mean.
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Fig. 8. Plot of estimated M2 versus estimated T2 at each site, with

both parameters measured as anomalies relative to the local clima-

tological mean summer temperature. The color of points denotes the

classification of the controls on modeled growth at each site. x = 0

and y = 0 define the mean local summer temperature and soil mois-

ture content, respectively.

Given that the parameter estimates of the lower thresholds

T1 and M1 fall below mean summer climatological values

at all sites, the distribution of the anomaly point estimates

in T2 × M2 space contains the most information about the

modeled climate controls on growth (Fig. 8). In the sec-

ond quadrant of the plot (defined by anomaly T2 < 0 and

anomaly M2 > 0 one would expect sites where moisture gen-

erally limits summer growth, since climatological temper-

atures tend to fall above the optimal temperature growth

limit, but soil moisture tends to fall below its optimal growth

limit. All of the sites whose parameterizations end up in

this quadrant are in fact classified as moisture-limited by our

classification scheme. The fourth quadrant (anomaly T2 > 0,

anomaly M2 < 0) would seem to define a region of parame-

ter space describing temperature-limited growth, and indeed

the sites whose estimated parameters are in this quadrant are

nearly all classified this way. The sites that fall into quadrant

III and far from the quadrant boundaries are mixed-control

sites, as one would expect for locations where trees are sen-

sitive to both variations in summer moisture and temperature

variability.

The modeled climate controls on growth break the con-

tinental United States into roughly three regions. In both

the pseudoproxy and observed proxy experiments, the north-

west contains mainly temperature-controlled sites (red mark-

ers in quadrant IV of Fig. 8), while moisture-controlled sites

fill the west and midwest (blue markers in quadrant II of

Fig. 8), and mixed-control sites are most common in the

southeast and along the eastern seaboard (green markers in

quadrant III Fig. 8). This pattern is generally consistent with

our knowledge of the climate sensitivity of the North Amer-

ican tree-ring network (e.g., Meko et al., 1993).

The point estimates of T2 and M2 derived from the sci-

entifically based priors described here are generally similar

in value to those derived from uniform priors (Supplement

Fig. 3). This result is consistent with the fact that the ratios of

posterior to prior variance for these parameters tend to be ap-

preciably less than one at most sites, thus indicating that the

posteriors are dominated by information from the data. By

contrast, estimates of T1 and M1 tend to differ more appre-

ciably, but the associated posterior to prior variance ratios for

these parameters are close to one. In general, the difference

in the point estimates tends to be greatest where the data in-

form the posteriors least, while sites with high learning (and

hence posterior-to-prior variance ratios close to zero) exhibit

little difference in posteriors derived from either prior (Sup-

plement Fig. 4).

4 Discussion

The Bayesian inference scheme is skillful in recovering the

known parameters used to create pseudoproxy ring-width se-

ries. Although real-world analogs to the pseudoproxy target

model parameters may not be known, the skill in the pseudo-

proxy context supports the notion that the approach will esti-

mate parameters that optimize VS-Lite’s fit to observed tree-

ring width chronologies. The results of the PPE and OPMC

are similar in terms of their spatial distributions of the mod-

eled controls on growth, as well as the model sensitivities

to the growth response parameters. These correspondences

further support the applicability of pseudoproxy experiment

results to studies using observed proxy data. The skill of ob-

served ring-width index simulations is also shown to improve

after calibrating the parameters, as compared to simulations

run with parameter values set to the prior medians.

In addition to point estimates of the parameters, the spread

of the posterior distributions also provides measures of the

estimation uncertainty and the model sensitivity to the pa-

rameters. We find that the VS-Lite model is generally least

(most) sensitive to the value of M1 (M2), as the ratio of pos-

terior to prior variance is very close to one (zero) at all sites in

both pseudoproxy and observed proxy experiments (Figs. 3

and 5). The model sensitivity to the temperature thresholds

T1 and T2 depends on the particular site.

At sites where little Bayesian learning occurs due to a low

fraction of variance explained by VS-Lite, the posterior in-

ference is determined almost entirely by the prior model.

This result can be seen by comparison of the posterior-to-

prior variance ratios of the PPE performed with SNR = 1 and

SNR = 0.25. Much less “learning” occurs in the latter exper-

iment, and so the posterior-to-prior variance ratios tend to be

closer to one than in the former experiment. Defaulting to

the prior when the data contain little information is a stan-

dard feature of Bayesian analysis and underscores the impor-

tance of careful prior elicitation based on all available scien-

tific evidence. This feature is ideal to the degree that one has
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faith in the representation of the underlying science and its

inherent uncertainty reflected in the prior distributions. Our

publicly available code includes flexible options for users to

define their own priors, should new information from future

field studies of tree growth render the default set of priors

described here obsolete.

The choice of finite support or range is another component

of prior specification that may heavily influence the posterior

inference, as in the case of the parameter M2 at most sites

in this study. The posterior distributions of this parameter

at most sites show high probability mass toward the upper

bound of the compact prior support (see Fig. 1 and bottom

right panel of Fig. 4), indicating that the data alone imply val-

ues of this parameter above the region allowed by the prior.

However, the upper limit of the prior represents a physical

constraint on biological thresholds for optimal moisture con-

ditions for plant growth, as excessive soil moisture values

may become detrimental to plant growth (Kozlowski, 1984).

Given that the modeling of soil moisture within VS-Lite is

known to be simplistic (Tolwinski-Ward et al., 2011), we be-

lieve the posteriors here represent an objective compromise

between the data and prior knowledge of the parameter, given

the uncertainty of VS-Lite.

The location of parameter point estimates relative to lo-

cal climatological means in multidimensional anomaly pa-

rameter space presents a graphical tool for understanding the

climate controls on the modeled ring width signal (Fig. 8).

At sites where VS-Lite reasonably represents growth, this

type of plot could help identify and predict changes in the

climate–proxy relationship that result from climatic nonsta-

tionarities driving mean environmental conditions across bi-

ological thresholds. In such cases of “divergence” (D’Arrigo

et al., 2004; Carrer and Urbinati, 2006), one would expect

the point representing the optimal set of parameter choices

to cross from one quadrant into another after the climatic

shift. At any site where the VS-Lite model fits the associated

observed chronology well, the proximity of the parameters

fitted by the present methodology to the boundaries between

quadrants in Fig. 8 might be used to diagnose the potential

for calibration–interval relationships between ring-width and

climate to degrade under past shifts in climatology, and thus

provide an important diagnostic before a given ring-width

series is used for climate reconstruction. The spread of pa-

rameter ensemble members produced by our estimation tech-

nique could even be used in a Monte Carlo sense to quan-

tify the probability that, for instance, a chronology character-

ized by temperature-limited growth in the calibration interval

“crosses the line” into a moisture-limited, mixed-control, or

complacent growth response regime for a shift in climatology

of a given number of degrees and volumetric soil moisture

content.

This approach may be particularly valuable for reconstruc-

tions that combine information contained in ring-width se-

ries with that from other proxy sources. Currently, the pa-

rameter estimation scheme is in use for probabilistic recon-

structions of paleoclimate from tree-ring width data and co-

located isotopic dendrochronologies; preliminary results are

sketched by Evans et al. (2013), and details are in prepa-

ration by Tolwinski-Ward et al. (2013). At the southwest-

ern American site in question, the ring-width variations dis-

play strong moisture sensitivity during the calibration inter-

val; however, the isotopic data suggest an anomalously wet

interval in the pre-instrumental period. The reconstruction

employs a Bayesian hierarchical model in which VS-Lite is

used to link the variations in the proxy data to past variations

in temperature and moisture. In that setting, the parameter-

estimation procedure explored here is used to derive an en-

semble of parameters consistent with the VS-Lite model and

observed tree-ring width indices during a calibration inter-

val. As described above in discussion of Fig. 8, the draws of

the parameter values from the posterior allow for quantifica-

tion of the probability that ring-width growth was insensitive

to hydroclimatic variability during the reconstruction inter-

val due to a general increase in available moisture resources

indicated by the isotopic data.

In future studies, uncertainty in the parameter posteriors

might be reduced by modeling the fields of parameters as

functions of space, elevation, species, or other parameteri-

zations of site environment. This is the classic principle of

“borrowing strength” across spatially covarying sites (Tukey,

1986). Sites that are close in space seem to take on similar

optimal parameter values (Fig. 4). One possible approach is

to model the parameters as a transformation of one or more

spatial processes (see for example Chiles and Delfiner, 1999,

Sect. 6.2 on anamorphosis). The spatial modeling could then

proceed by using a standard additive model with latitude,

longitude, and elevation as covariates giving fixed effects,

and random effects given by a Gaussian field with Matérn co-

variance structure whose parameters could be inferred within

the Bayesian framework. Since the parameter values are in-

terpretable in terms of the climate controls on growth, any

modeled spatial structure of the parameter fields likely holds

information about the spatial distribution of climate controls

that can be linked to mechanistic causes, such as orography,

regional drought patterns, the timing of snowmelt, regional

climatological means and variances, or teleconnections to

larger global patterns of climatic variability. The scheme also

could be extended to develop parameter sets that depend on

species or climatic regions by fitting a single set of parame-

ters to a set of trees of a common species or regional location.

From a physiological point of view, at parameter–site com-

binations where a high degree of Bayesian learning occurs,

parameter estimates resulting from the estimation procedure

could also be viewed as hypotheses for field studies aiming

to provide observed physiological evidence either supporting

or refuting the inferred values.
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5 Conclusions

The Bayesian calibration scheme presented here skillfully

recovers parameter estimates near the values used to create

synthetic tree-ring width data. The spread of the posterior

distributions shows that the model fit to data is generally

sensitive (insensitive) to the value of the moisture threshold

M2 (M1), and may or may not be sensitive to the tempera-

ture threshold parameters depending on location. Estimates

of the VS-Lite model’s uncertainty provided by the scheme

appear to be robust outside of the interval used for calibra-

tion. The location of estimated parameters relative to local

climatology in multidimensional parameter space provides

insight into the climate controls on modeled tree-ring growth,

and may also provide information about the potential for in-

stability in the calibration–interval climate–ring-width rela-

tionships before the instrumental record. The output of the

estimation procedure enables users of VS-Lite to represent

fully the range of model error stemming from uncertainty in

its parameterization in both forward simulations of tree-ring

width and inverse paleoclimate estimation settings.

Supplementary material related to this article is

available online at: http://www.clim-past.net/9/1481/

2013/cp-9-1481-2013-supplement.zip.
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