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Abstract

Prostate cancer is the most common cancer diagnosed in American men and the second leading
cause of death from malignancies. There are large geographical variation and racial disparities
existing in the survival rate of prostate cancer. Much work on the spatial survival model is based
on the proportional hazards model, but few focused on the accelerated failure time model. In this
paper, we investigate the prostate cancer data of Louisiana from the SEER program and the
violation of the proportional hazards assumption suggests the spatial survival model based on the
accelerated failure time model is more appropriate for this data set. To account for the possible
extra-variation, we consider spatially-referenced independent or dependent spatial structures. The
deviance information criterion (DIC) is used to select a best fitting model within the Bayesian
frame work. The results from our study indicate that age, race, stage and geographical distribution
are significant in evaluating prostate cancer survival.
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1. Introduction

In public health and population-based biomedical studies, data are often collected by
geographic regions, such as the district or postal code of the residence of individuals. Often
the adjacent neighborhoods may be more alike than those from distant region due to similar
environmental and social factors. Failing to account for the correlation within
neighborhoods may lead to biased statistical inference.

Recently, there has been lots of attention paid to the analysis of geographical patterns of
survival times, in addition to the impact of other covariates. For example, Henderson et al.
[10] modeled spatial variation in survival of acute myeloid leukemia patients in northwest
England; Banerjee et al. [2] applied a spatial frailty model to infant mortality in Minnesota
by assuming a parametric Weibull baseline hazard and geostatistical or Gaussian Markov
random field priors for the spatial component; Li and Ryan [17] analyzed the effect of risk
factors on the onset of childhood asthma with spatial data from the East Boston Asthma
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Study; and Hennerfeind et al. [12] applied a geoadditive survival model to data on waiting
times for coronary artery bypass grafting. However, all of these examples focus on the
proportional hazards (PH) model or its extensions which measure the spatial effects on the
hazard scale. For example, Henderson et al. [10] used the PH model because the initial
survival analysis indicates that the PH assumption was satisfied in their data set. There are
some discussions about the spatial survival models based on the non-proportional cases,
such as the multivariate adaptive regression spline (MARS) model [19], the additive hazard
survival model with frailty [20], dynamic survival models with spatial frailty [3], and the
normal transformation model for spatial correlated data [16]. In the normal transformation
model, the survival outcome marginally follows a PH model, and in their discussions, they
proposed an extension to the accelerated failure time (AFT) model. The AFT model is
widely accepted as an alternative approach when the PH assumption does not hold, but there
are few studies using semiparametric Bayesian analysis in the AFT model [1,8,21]. A semi-
Bayesian analysis of the AFT model is given by [5], where they utilized a Dirichlet process
to estimate the survival distribution. Walker and Mallick [24] proposed a fully Bayesian
approach for the median regression model by the Polya tree prior. Recently, Komarek and
his colleagues [14,15] proposed a normal mixture as the error distribution in the AFT model.

In this paper, we propose an AFT spatial model by adding a random effect to the AFT model
for investigating risk effects of prostate cancer (PrCA). Prostate cancer diagnosis data from
the state of Louisiana from the Surveillance, Epidemiology, and End Results (SEER)
program [11] of the National Cancer Institute (NCI) is used as an example. The purpose of
this application is to investigate whether PrCA is much more aggressive in African-
Americans than in Whites and whether there exists regional environmental difference. The
estimation procedure is developed from a Bayesian perspective with parametric assumption.
A semiparametric AFT estimation approach [5,7,14,15,24] could be considered for this
study, which requires more effort on programming than the parametric AFT model. In order
to provide a clear picture of the AFT spatial model and its application, we will analyze the
PrCA data using WinBUGS code [18]. Then, the DIC [22] is applied to choose the best fit
parametric model. In the appendix, the WinBUGS code for the parametric AFT spatial
model or the parametric AFT frailty model is provided.

The remainder of this paper is organized as follows: Section 2 describes the data that
motivate this study. The standard survival analysis and possible issues are described in
Section 3. Section 4 outlines the AFT spatial model. The estimation procedure is discussed
in Section 5. Section 6 illustrates the application of the proposed approach to the PrCA data
from Louisiana. Finally, Section 7 summarizes and discusses the results.

2. Motivating Data

Prostate cancer (PrCA) is a major public health problem, which over a lifetime will affect an
estimated one in five American men. Since PrCA is the number one incident cancer and the
number two cause of cancer deaths among US men, the data in PrCA from the SEER
program are particularly important for researchers, clinicians, policy makers, and citizens in
understanding this disease. The SEER program has 17 registries, which include San
Francisco-Oakland, Connecticut, Detroit, Hawaii, Iowa, New Mexico and Utah for period
1973-2004, Seattle for period 1974-2004, Atlanta for period 1975-2004, Alaska, San Jose-
Monterey, Los Angeles and Rural Georgia for period 1992-2004, Great California,
Kentucky, Louisiana and New Jersey for period 2000-2004. We extract the PrCA data from
the SEER cancer incidence public-use data base. Observations with missing values on race,
age, county of residence, stage and marital status at diagnosis are excluded in this analysis.
According to patient’s medical records, race includes White, Black, or Other, with Black
being the designator for African American. In this study we are only interested in the
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disparities between white and black, and so we remove other races. Stage of cancer has four
categories: local, regional, distant and unstaged. Unstaged means information is not
suffcient to assign a stage for the cancer. So, we exclude the unstaged cases.

In order to investigate large geographical variation and racial disparities in the survival rate
of PrCA, we need to select the registry with a relatively large proportion of African-
American males. After checking all registries, we focused our study on the SEER data set
from Louisiana, which has 64 counties and whose ratio of black men is 29.34%. Note, the
data from Louisiana can not represent the whole population due to the limit of the
observation period, but it does represent the status of the incidence for the five year period
2000-2004 in Louisiana.

The individual-specific information for a patient that is used in this study are: age (age of the
patient at diagnosis in complete years), race (White and Black), county (patient’s county of
residence at the time of diagnosis), stage (SEER summary stage, localized/regional and
distant), marital status at diagnosis (single, married and other), and survival time after
diagnosis (including censoring time). It is worthwhile pointing out that in the definition of
the stage, localized tumors are confined to the prostate gland, regional tumors are spread to
contiguous organs or lymph nodes, and distant tumors are spread to remote organs.
Clinically localized tumors are frequently upstaged to regional stage after surgery, so there
is an extra category (localized/regional) only for PrCA in SEER data. We have 446
observations from localized category, 103 observations from the regional category, and 15
132 observations from the localized/regional category, so we combined both localized and
regional staged cancers into the localized/regional category in our data analysis. Table 1
provides a summary of the characteristics of the PrCA patients included in this study.

3. Modeling Issues

Commonly, the PH model and the AFT model are the most popular survival models and the
nonparametric Kaplan-Meier (KM) survival curve is used as a rule of thumb to choose
between them [13]. After visual inspection, the test based on the Schoenfeld residuals [23] is
applied. For illustration purpose, we select nine different counties from the different parts of
Louisiana in order to detect the difference between locations. Among these, Caddo, Bossier
and Webster are in the northwest; Sabine, Grant and Avoyelles are in the midwest;
Calcasieu, Vermilion and Acadia are in the southwest. In each county, we fitted the KM
survival curves for white and black respectively (Figure 1). In each plot, the y-axis presents
the survival probability for white or black and x-axis denotes the time period after the
diagnosis of PrCA.

From Figure 1, we find that the survival rate does change markedly with the location and it
appears that the middle west part of the state tends to have higher survival rates than the
other two parts. So, considering spatial effects in survival models should improve the
estimates of risk effects.

The Schoenfeld residual test is used to check the PH assumption. If the P-value from the
Schoenfeld residual test is less than significant level (such as, 0.05), it indicates that the PH
assumption is not satisfied. Investigating the survival curve with respect to different races,
we find that some of the KM survival curves cross over in Figure 1, such as in county
Webster, Avoyelles and Acadia. Through the Schoenfeld residual test, we find that the P-
value are significantly less than 0.05 in county Bossier (P-value=0.0261), Avoyelles (P-
value= 0.043), Vermilion (P-value 0.00892), and Acadia (P-value=0.0428). The P-value is
not significant enough in county Webster (P-value= 0.103). Thus, we doubt the accuracy of
the PH assumption and consider the AFT spatial model for this data set.
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4. Accelerated Failure Time Spatial Model

Let Tij denote the survival time after diagnosis for patient j in county i, and xij denote
possible risk effects corresponding to Tij, where j = 1, … , ni, i = 1, … , n. The AFT model
can be expressed as:

where β is the unknown coefficient, εij’s are independent random errors, μ and σ are the
shape parameter and scale parameter. Letting ni = 1, we obtain the regular AFT model.

The spatial structure can be considered by adding a random effect to the AFT model and the
AFT spatial model is specified as:

(1)

where Wi’s are spatial random effects. The advantage of the AFT spatial model is that the
interpretation of risk/spatial effects on the failure time are easy since the AFT spatial model
simply regresses the logarithm of the survival time over covariates and random spatial
effects. In this paper, we consider county specific random effects.

Let f(·) denote the density function of T and f0(·) denote the density function of ε. S(·) and
S0(·) denote the survival functions, and h(·) and h0(·) represent the hazard functions
corresponding to f(·) and f0(·). Then, we have

where λ(xij) = μ + βxij + Wi. From the relationship between survival functions, we can see
that the spatial random effects have a direct effect on the survival probability. Note that the
hazard rate keeps changing over time even when the spatial random effect is fixed in the
AFT spatial model, while it stays at the same rate given the specific region in the PH spatial
model. For some data set, we believe it is more reasonable to assume the hazard rate
changes over time even in the same location.

It is common to assume that S0(·) comes from the standard normal distribution, the standard
extreme value distribution, or the logistic distribution. The S0(·) expressions and their
corresponding S(·)’s are summarized in Table 2, where φ(·) denotes the cumulative density
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function from the standard normal distribution. Corresponding to the distribution of ε, the
survival distribution of T follows the lognormal distribution, Weibull distribution or
loglogistic distribution.

We consider survival data (tij, δij, xij), where δij is the censoring indicator. We assume that
the censoring is independent and noninformative. Let W = (W1, … , Wn), O denote the
observations and ϕ = {μ, σ, β} denote the parameters to be estimated. Given the spatial
random effect, the likelihood function can be written as:

(2)

The spatial random errors can be correlated or not among counties. We refer to mutually
uncorrelated county-specific effects as spatially uncorrelated heterogeneity and model this

situation with independent Gaussian distributions defined as , where 
denotes the variance of spatial random effect. It is worthwhile pointing out that the AFT
spatial model under the independent correlation is similar to the AFT frailty model with
normal random effects, albeit with frailty effects at the county level rather than individual
level. In the correlated situation, we can consider the conditional autoregressive (CAR)
model. The CAR model, first introduced by Besag et al. [4], is widely used not only for
smoothing in image processing but also in disease mapping. This formulation permits
correlation among the random effects according to a neighborhood structure:

where

For the model’s identifiability, it is common to assume that . From the specification
of the CAR distribution, it can be seen that in the ith region Wi depends on the
corresponding values in their neighborhood regions and the number of neighborhoods in the
ith region, hence exhibiting spatial correlation. We call Wi with the CAR model prior
specification the spatially correlated heterogeneity.
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We also include both spatially correlated and uncorrelated random effects in a single model
to permit a trade-off between independence and a purely local spatially structured
dependence of the random effects [4], that is Wi = Wi1 + Wi2, where

where

and

This combined spatially correlated and uncorrelated heterogeneity is called a convolution

prior, and  and  are used to control the variability of the correlated and uncorrelated
heterogeneity separately. Apparently, the convolution prior maintains the correlation
between adjacent counties, but the correlation is weakened by the uncorrelated structure.

5. Estimation Procedure

The parameter estimates for the AFT spatial model in this study are obtained by posterior
sampling based on a Markov chain Monte Carlo (McMC) simulation method. Let p(ϕ)
denote the prior distribution for ϕ and p(vs) denote the prior for the variance of the spatial
random effects. The posterior distribution can be expressed as

(3)

To conduct data analysis from the Bayesian perspective, we must specify the prior
distributions for each parameter in the model. Because we have little prior information for
all the parameters to be estimated, we want our data information to dominate the prior
distribution by assuming reasonably non-informative priors for all parameters in this model.
For all regression coefficients β and the shape parameter μ, we assume independent vague
normal priors with mean 0 and variance 1 × 106. The scale parameter σ in the model is given
non-informative priors by gamma distribution with shape parameter 1 and scale parameter

0.001 (with mean 1000, variance 1 × 106). For parameters ,  and  , which control the
variability of the spatial random effects, we assign the vague proper gamma prior
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distribution with shape parameter 0.001 and scale parameter 0.001 for their reciprocals
(precision parameters for the random effects). Posterior sampling of the AFT spatial model
can proceed from the definition of the posterior distribution in (3).

Given the likelihood function Eq (2), the posterior distribution can be factored into different
components:

•
for 

•
for 

•
for 

•
for 

where P(σ) ~ Gamma(a, b), P(W|vs) where Wi is defined conditionally as

, βj, ~ Normal(0, c), and P(μ) ~ Normal(0, c) where a = b = 0.001, c
= 106. To evaluate competing models, we have run each model with the sampler using
multiple chains with overdispersed starting points. Trace plots, the Brooks-Gelman-Rubin
diagnostic [6], and autocorrelations within chains are used to assess the convergence of the
iterations based on the multiple chains.

Remark: WinBUGS is used to run the whole program with a “zero trick” employed since the
joint likelihood function can not be expressed directly by a standard density function. This
trick allows arbitrary sampling distributions to be used, and is particularly suitable when,
say, dealing with truncated distributions.

6. Real Data Analysis

The risk effects we consider in the AFT or AFT spatial model include the e ect of race,
marital status, age and stage, which are very common in PrCA analysis.

We will assume ε follows the standard normal distribution, the standard extreme value
distribution and the logistic distribution in both the AFT model and the AFT spatial models.
In the AFT spatial model, we will consider three different cases according to different
spatial correlations, which are summarized as:

• Case 1: Wi is spatially uncorrelated. That is Wi follows an independent normal
distribution.

• Case 2: Wi is spatially correlated. That is Wi follows the CAR model.

• Case 3: Wi = Wi1 + Wi2, where Wi1 is the spatially correlated random effect and Wi2

denotes the spatially uncorrelated random effect. This case consider both spatially
correlated and uncorrelated effects.

In our algorithm we ran two, initially overdispersed, parallel McMC chains for 20 000
iteration each. Then, we discarded the first 10 000 iterations as pre-convergence burn-in and
retained 10 000 as the posterior analysis. In the Bayesian framework, model assessments and
choices of the best-fitting model can be performed using the DIC [22], which is a Bayesian
analog of the Akaike’s information criterion (AIC). pD represents the effective number of
parameters, which reflects the model complexity or degrees of freedom. If a Bayesian
hierarchical model has negligible prior information, pD will approximate the actual number
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of parameters, and DIC will approximate AIC. Lower values of DIC indicate a better-fitting
model. Spiegelhalter et al. [22] suggest that models with DIC values within 1 or 2 units of
the “best” model deserve consideration, those with values within 3-7 units of the “best” are
only weakly supported and models with a DIC value more than 7 units higher than the
“best” model are substantially inferior. The DIC and pD are listed in Table 3.

From Table 3, we can see that the model with spatially correlated random effects under the
normal baseline is the best among these cases, which has the smallest DIC value (11 930).
Therefore, we believe that the survival probability is affected by the geographical region.
The pD value for the normal distribution with spatial correlation (Normal+Case 2) is 17.59,
which indicates the complexity of the model.

The estimated parameters for the normal distribution with spatial correlation is summarized
in Table 4.

The exponential of coeffcient illustrates the effect of covariate on survival time. For
example: one unite change of age decreases the survival time by e−0.0336 = 0.967. From the
table we can see that the age, race and stage have significant influence on the survival
probability of the PrCA (as indicated by * in the table). Marital status does not display
significance. More than 75% of patients in this study are married, so there may not be
enough evidence to show the effect of the marital status.

In order to show the spatial effect, we present the median of the posterior spatial random
effect in Figure 2, which displays considerable spatial structure in the middle eastern area of
the state. It is worthwhile pointing out that the survival time is affected by the exponential of
spatial random effects. The larger the spatial random effects indicates the longer the survival
time. Note, the cut point in this figure is generated automatically by the default in
WinBUGS, which is based on the absolute value of the variable to be mapped and are
chosen to give equally spaced intervals.

For illustration purpose, we compare the estimated survival curves between five regions
indicated in Figure 2 since the survival curve for each region will be effected by the spatial
random effects. The estimated survival curves for the different races based on the AFT
spatial model and the KM approach according to the different regions are displayed in
Figure 3. In the KM approach, we only consider the race effect. In the AFT spatial model,
we consider the median value of the age, marital status and stage for each race and the
median of the estimated spatial random effects in each region. The survival curves are
illustrated in Figure 3.

We can see that the survival curves from the AFT spatial model are similar to those from the
KM approach, which indicates that the AFT spatial model fits the data set well. As
appointed out by a referee, the survival curve corresponding to “Black” for the AFT spatial
model does not fit very well to that for the KM approach when the time is around 20 to 30 in
Region 1, 2, or 3. In order to solve this issue, we may relax the parametric assumption. For
example, we may assume that the survival time follows the generalized gamma distribution
or piecewise exponential distribution. Non parametric approach can also be considered. The
survival probability is different in each region, which may indicate the geographical effect
on PrCA. For example, the survival rate for black men at 60 months is around 0.6 in region
1 from the AFT spatial model, 0.67 from the KM approach, while in region 5 it is around 0.8
from the AFT spatial model and 0.83 from the KM approach. Similar effects can be found in
other regions.
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7. Discussion and Conclusion

In this paper, we investigate the PrCA data of Louisiana from the SEER program by the
Bayesian parametric AFT spatial model. The spatially correlated and un-correlated
heterogeneity were considered to characterize the spatial distribution pattern for better
understanding the geographic features of survival probability of PrCA. WinBUGS is used to
analyze the PrCA data via the parametric AFT spatial model and the DIC criterion is used to
select the appropriate assumption for the error term distribution and correlation structure.
The estimated survival curve from the parametric AFT spatial model is compared to that
from the nonparametric approach. Finally, we concluded that the normal AFT spatial model
with correlated spatial random effects is the best fitting model to analyze the PrCA data of
Louisiana. The results from our study indicate that the age, race, stage and geographical
distribution have significant impact in evaluating PrCA survival in Louisiana.

However, we have focused on a parametric specification of the AFT spatial model, so the
DIC criteria is applied to check the model fitting. The model can be more flexible if we
release the parametric assumption, which will increase the computational diffculties
[5,7,24]. For the spatial component a CAR model is a common choice [9]. We demonstrate
that different forms of spatial model have variable success in describing the Louisiana data,
but a CAR model yields the best fit. Even the semiparametric structure is more flexible than
the parametric model, the parametric spatial survival model is recommended in this paper
because it can be conducted easily in WinBUGS in practice. In addition, we fit this data set
by the PH spatial model with the lognormal distribution. Under the PH spatial model with
the lognormal distribution, the DIC and pD are 12 010 and 19.40 for the spatially
uncorrelated case, 12 006 and 19.98 for the spatially correlated case, and 12 007 and 20.14
for the convolution prior. Thus the lognormal PH spatial model has a better fit under the
spatial correlation structure. However, comparing with the AFT spatial model, we find that
the AFT spatial model with the normal distribution (DIC=11 930; pD=17.59) is still a better
fit than a PH spatial model with the lognormal distribution (DIC=12 006; pD= 19.98).

It is also worthwhile pointing out that this model could be extended in a number of ways.
First, more complex spatial structures could be included. Second, some smoothing terms
rather than linear terms could be allowed for covariate modeling, such as log(Tij) = μ +
∑fk(xk) + Wi + σεij, where fk(·) is a unknown function. Finally latent spatial structure could
be important and this might be a fruitful path to pursue in application to such survival data.
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Figure 1.

KM survival curves according to race for PrCA in nine different counties, Louisiana.

Zhang and Lawson Page 12

J Appl Stat. Author manuscript; available in PMC 2012 March 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 2.

Posterior mean of spatial random effects from the best fitted model, Louisiana counties.
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Figure 3.

Fitted survival curves from the KM approach and the AFT spatial model, Region 1-5,
Louisiana counties. Step line represents the estimated survival curve from the KM approach
and smoothed line represents the estimated curve from the normal AFT spatial model.
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Table 1

Summary characteristics of prostate cancer patients: Louisiana, 2000-2004

Covariate N Patients(%)

Race

Black 3 006 29.34

White 7 240 70.66

Marital Status

Single (Never married) 939 9.16

Married 7 752 75.66

Other (Separated, divorced) 1 555 15.18

Cancer Stage

Localized/regional 9 870 96.33

Distant 376 3.67

Vital status

Alive 9 274 90.51

Dead 972 9.49
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Table 2

Common distributions in the AFT spatial model, where λ(xij) = μ + βxij + Wi

Distribution S0(·) S(·)

Normal 1 – Φ(εij) 1 − Φ( log(tij) − λ(xij)
σ )

Extreme value exp(–exp(εij exp( − exp( − λ(xij))tij)
1
σ

Logistic

1
1 + exp(εij)

1
1 + (exp( − λ(xij))tij)1∕σ
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Table 3

A comparison of goodness-of-fit (DIC, pD) for the AFT model and the three cases of the AFT spatial model
between the three baseline survival distributions (normal, extreme value and logistic)

Distribution of S0(·) DIC pD

Normal AFT 11 950.0 6.133

Normal+Case 1 11 960.0 65.42

Normal+Case 2 11 930.0 17.59

Normal+Case 3 12 000.0 85.01

Extreme value AFT 12 090.0 12.05

Extreme+Case 1 12 090.0 66.51

Extreme+Case 2 12 060.0 19.25

Extreme+Case 3 12 200.0 117.60

Logistic AFT 12 000.0 5.768

Logistic+Case 1 12 020.0 68.93

Logistic+Case 2 11 990.0 17.27

Logistic+Case 3 12 090.0 99.14
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