
Bayesian Pattern Ranking for Move Prediction in the Game of Go

David Stern dhs26@cam.ac.uk

Cambridge University, Cambridge, UK

Ralf Herbrich rherb@microsoft.com

Thore Graepel thoreg@microsoft.com

Microsoft Research Ltd., Cambridge, UK

Abstract

We investigate the problem of learning to pre-
dict moves in the board game of Go from
game records of expert players. In particular,
we obtain a probability distribution over le-
gal moves for professional play in a given po-
sition. This distribution has numerous appli-
cations in computer Go, including serving as
an efficient stand-alone Go player. It would
also be effective as a move selector and move
sorter for game tree search and as a train-
ing tool for Go players. Our method has
two major components: a) a pattern extrac-
tion scheme for efficiently harvesting patterns
of given size and shape from expert game
records and b) a Bayesian learning algorithm
(in two variants) that learns a distribution
over the values of a move given a board posi-
tion based on the local pattern context. The
system is trained on 181,000 expert games
and shows excellent prediction performance
as indicated by its ability to perfectly predict
the moves made by professional Go players
in 34% of test positions.

1. Introduction

Go is an ancient oriental board game of two play-
ers, ‘Black’ and ‘White’.1 The players take turns to
place stones on the intersections of a grid with the
aim of making territory by surrounding areas of the
board. All the stones of each player are identical. Once
placed, a stone is not moved but may be captured (by
being surrounded with opponent stones). The result-
ing game is very complex and challenging.

Appearing in Proceedings of the 23 rd International Con-
ference on Machine Learning, Pittsburgh, PA, 2006. Copy-
right 2006 by the author(s)/owner(s).

Many legal moves are typically available and it is diffi-
cult to statically estimate the value of a position. The
ensuing defeat of Minimax search forces the pursuit of
alternative approaches. Go has emerged as a major
challenge for AI with the best computer Go programs
currently playing at the level of weak amateur human
players. This stands in stark contrast with the state
of computer chess where computers play beyond hu-
man world class level. In order to tackle computer
Go, global search (as used for chess) is typically re-
placed with a hybrid of local (goal-based) search, pat-
tern matching and territory estimation. The most suc-
cessful attempts to date have been knowledge intensive
and require the management of complex board repre-
sentations (see surveys by Bouzy and Cazenave (2001)
and Müller (2002)).

The complexity of Go results in uncertainty about the
future course and outcome of the game. Our research
aims at modelling and managing this uncertainty us-
ing probability in a Bayesian sense (see also our earlier
work on territory prediction in Stern et al. (2004)).
Here we focus on the task of predicting moves made by
expert Go players. In particular we wish to obtain a
probability distribution over legal moves from a given
board configuration. Such a distribution is useful for
a) providing a stand-alone Go player that plays the
moves with maximum probability, b) for move selec-
tion and move sorting before performing more expen-
sive analysis, c) as a study tool for Go. Go players fre-
quently make moves which create known local shapes

or satisfy other local criteria. We take advantage of
this locality by matching patterns of stones centred on
potential moves.

Existing Go programs use pattern matching on local
configurations of stones for various purposes ranging
from opening books (similar to chess) to the analy-

1. A great deal of information about Go can be found at
http://www.gobase.org.

873

Bayesian Pattern Ranking for Move Prediction in the Game of Go

sis of connectivity, life & death and territory (Bouzy
& Cazenave, 2001). Often, patterns may contain
‘don’t care’ points or carry context-information such
as the number of liberties of constituent chains (see
(Cazenave, 2001) and GnuGo2). Typically, the pat-
terns are handcrafted or constructed using search tech-
niques (Cazenave, 1996). Some attempts have been
made at learning patterns from expert game records
(e.g. from 2000 games in Bouzy and Chaslot (2005)),
or learning to predict expert moves from various fea-
tures using a neural network trained on expert games
(e.g., on 25,000 moves in van der Werf et al. (2002)).

Inspired by the software ‘Moyogo Studio’ by de Groot
(2005) and the work of Stoutamire (1991) we focus on
exact local patterns for move prediction. This restric-
tion allows us to match the patterns very efficiently,
enabling us to train our system on hundreds of thou-
sands of games and to generate moves for play very
quickly. Following the approach of de Groot (2005)
we define a pattern as an exact arrangement of stones
within a sub-region of the board, centred on an empty
location where a move is to be made. We choose
our pattern templates as a nested sequence of increas-
ing size so as to be able to use large patterns with
greater predictive power when possible, but to be able
to match smaller patterns when necessary. We auto-
matically generate and label the patterns in two dis-
tinct processes. Firstly we harvest sufficiently frequent
patterns from game records and then we learn a rank-
ing of these patterns. We investigate two probabilistic
models for move prediction. One is based on the idea
that an expert in a given board configuration chooses
the move that maximises a latent ‘value’. Each board
configuration contains a subset of the harvested move-
patterns of which the expert chooses one and thus in-
dicates that its latent value is greater than that of the
other move-patterns present. The other model makes
the assumption that every move is played with a prob-
ability independent of the other available moves.

In Section 2 we describe the process by which we au-
tomatically harvest over 12 million such patterns from
records of expert games. In Section 3 we describe the
two move prediction models and the resulting methods
for training the move predictor from observed moves.
Section 4 covers experimental results and Section 5
presents some further discussion.

2. Pattern Matching

2.1. Board and Pattern Representation

We represent the Go board as a lattice G :=
{1, . . . , N}2 where N is the board size and is usu-

ally 9 or 19. In order to represent patterns that ex-
tend across the edge of the board in a unified way,
we expand the board lattice to include the off-board
areas. The extended board lattice is3 Ĝ := {~v + ~∆ :

~v ∈ G, ~∆ ∈ D} where the offset vectors are given by
D := {−(N − 1), . . . , (N − 1)}2. We define a set of
“colours” C := {b,w, e, o} (black, white, empty, off).
Then a board configuration is given by a colouring
function c : Ĝ → C and we fix the position for off-
board vertices, ∀~v ∈ Ĝ \ G : c(~v) = o.

Our analysis is based on a fixed set T of pattern tem-
plates T ⊆ T on which we define a set Π of patterns
π : T → C that will be used to represent moves made in
a given local context. The patterns have the following
properties (see Figure 1) :

1. The pattern templates T are rotation and mir-
ror symmetric with respect to their origin, i.e.,
we have that (vx, vy) ∈ T ⇒ (−vx, vy) ∈
T and (vy,−vx) ∈ T , thus displaying an 8-fold
symmetry.

2. Any two pattern templates T, T ′ ∈ T satisfy that
either T ⊂ T ′ or T ′ ⊂ T . For convenience, we
index the templates T ∈ T with the convention
that i < j implies Ti ⊂ Tj , resulting in a nested
sequence (see Figure 1 (right)).

3. We have π(~0) = e for all patterns because for each
pattern to represent a legal move the centre point
must be empty.

4. The set of patterns Π is closed under rotation,
mirroring and colour reversal, i.e., if π ∈ Π and π′

is such that it can be generated from π by any of
these transformations then π′ ∈ Π. In this case,
π and π′ are considered equivalent, π ∼ π′, and
we define a set Π̃ of equivalence classes π̃ ⊂ Π. 4

We say that a pattern π ∈ Π matches configuration c
at vertex ~v if for all ~∆ ∈ T (π) we have c(~v+~∆) = π(~∆).
Note that T (π) is the template for the pattern π. We
say that pattern class π̃ ∈ Π̃ matches configuration c
at vertex ~v if one of its constituent patterns π ∈ π̃
matches c at ~v.

2. See http://www.gnu.org/software/gnugo/.

3. We will use the notation ~v := (vx, vy) to represent
2-dimensional vertex vectors.

4. Note that Π̃ is a partition of Π and thus mutually
exclusive,

⋂
π̃∈Π̃

π̃ = ∅, and exhaustive,
⋃

π̃∈Π̃
π̃ = Π.

874

Bayesian Pattern Ranking for Move Prediction in the Game of Go

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

+

+

14

14

14

14

14

14

14

13

13

13

14

14

14

14

14

14

14

+

+

14

14

14

14

14

14

13

13

12

13

13

14

14

14

14

14

14

+

+

14

14

14

14

14

13

12

12

11

12

12

13

14

14

14

14

14

+

+

14

14

14

14

13

12

11

11

9

11

11

12

13

14

14

14

14

+

+

14

14

14

13

12

11

10

8

6

8

10

11

12

13

14

14

14

+

+

14

14

13

12

11

10

7

5

4

5

7

10

11

12

13

14

14

+

+

14

13

13

12

11

8

5

3

2

3

5

8

11

12

13

13

14

+

+

14

13

12

11

9

6

4

2

1

2

4

6

9

11

12

13

14

+

+

14

13

13

12

11

8

5

3

2

3

5

8

11

12

13

13

14

+

+

14

14

13

12

11

10

7

5

4

5

7

10

11

12

13

14

14

+

+

14

14

14

13

12

11

10

8

6

8

10

11

12

13

14

14

14

+

+

14

14

14

14

13

12

11

11

9

11

11

12

13

14

14

14

14

+

+

14

14

14

14

14

13

12

12

11

12

12

13

14

14

14

14

14

+

+

14

14

14

14

14

14

13

13

12

13

13

14

14

14

14

14

14

+

+

14

14

14

14

14

14

14

13

13

13

14

14

14

14

14

14

14

+

+

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Figure 1. Left: Shown is a screenshot of the pattern system showing a board configuration from an expert game. The
area of the black squares indicates for each vertex the probability of being the next black expert move under the model.
In the top left corner pattern template T11 is shown centred about the lower 2-4 (b,d) point of that corner. Right: The
sequence of nested pattern templates Ti with i ∈ {1, . . . , 14}. Note that T14 extends beyond the plot as indicated by “+”.
These are similar to the pattern templates as used by de Groot (2005).

2.2. Local Features

In order to extend the predictive power of the smaller
patterns and hence improve generalisation we incor-
porate 8 additional binary features into each pattern.
Guided by van der Werf et al. (2002) we selected the
following features of a move:

• Liberties of new chain (2 bits) The number
of liberties5 of the chain of stones we produce by
making the move. Values are {1, 2, 3, > 3}.

• Liberties of opponent (2 bits) The number of
liberties of the closest opponent chain after mak-
ing the move. Values are {1, 2, 3, > 3}.

• Ko (1 bit) Is there an active Ko6?

• Escapes atari (1 bit) Does this move bring a
chain out of atari7?

• Distance to edge (2 bits) Distance of move to
the board edge. Values are {< 3, 4, 5, > 5}.

We define the set of the labels of these features as F =
{1, ..., 8}. Given a move ~v in position c the function
fc : F × G → {1, 0} maps each feature to its binary
true/false value. For the larger patterns these features
are already seen in the arrangement of stones within
the template region so the larger patterns are less likely
to be altered by the addition of these features.

2.3. Pattern Matching and Storing

We do not use an explicit representation of the pat-
terns but define a hash key for patterns and store
their properties in a hash table. We use a variant
of Zobrist hashing (Zobrist, 1990), which has the ad-
vantage that it can be updated incrementally. We
generate four sets of 64 bit random numbers, ha :
Ĝ → {0, . . . , 264 − 1}, a ∈ C, four for each vertex in
the extended Go lattice Ĝ. We also generate a ran-
dom number for each of the features (see Section 2.2),
l : F → {0, . . . , 264 − 1}. The hash-key, k (π,~v, c),
of a given pattern π at vertex ~v in board configura-
tion c can be calculated by XORing (⊕) together the
corresponding random numbers,

k (π,~v, c) := kπ ⊕ k~v,c,

where,

kπ :=
⊕

~∆∈T (π)

h
π(~∆) and k~v,c :=

⊕

i∈F

l(i)fc(i, ~v) .

Both adding a stone and removing a stone of colour
a ∈ {b,w} at position ~∆ correspond to the same oper-

5. The number of ’liberties’ of a chain of stones is the
lower bound on the number of opponent moves needed to
capture the chain.

6. A Ko is a situation where a move is illegal because it
would cause an earlier board position to be repeated.

7. A chain is in atari if it can be captured immediately.

875

Bayesian Pattern Ranking for Move Prediction in the Game of Go

ation kπ ← kπ⊕ha. Due to the commutativity of XOR
the hash-key can be calculated incrementally as stones
are added or removed from a pattern. However, we
would like to store the pattern classes π̃ instead of sin-
gle patterns π to take account of the relevant symme-
tries. This is achieved by choosing k̃π̃ := minπ∈π̃ kπ,
i.e., by calculating the hash-key for every symmetry
variant of the pattern and choosing the minimum of
those hash-keys. The resulting hash-table allows us
to store and retrieve information associated with each
pattern without an explicit representation of the pat-
tern itself. Such information may include the game-
record the move was found in or relevant statistics.

2.4. Pattern Harvesting

From a database of Go game records we harvest pat-
tern classes π̃ corresponding to moves made by expert
players. We let the computer play through each of the
games in the collection and maintain a |T | · |Ĝ|-table
H of hash-keys corresponding to each of the pattern
templates Ti at each of the vertices ~v ∈ Ĝ. The up-
date after each move makes sure that if pattern class
π̃ matches the resulting configuration c at vertex ~v
then Hi,~v = k̃(π̃). Whenever an entry in H changes,
the new hash-key can be used to mark that pattern as
being present in the collection.

A rough estimate shows that for 181, 000 game records
with an average length of 250 moves and |T | = 14 dif-
ferent pattern templates we have about 600 million
patterns at our disposal. To limit storage require-
ments and to ensure generalisation to as yet unseen
positions we only want to include in Π those patterns
that appear as a move made by an expert twice in the
collection. We use a Bloom filter (Bloom, 1970) B to
mark off patterns that have been seen at least once.
For every pattern we observe we use B to check if it
is new; if so, it is added to B. If B indicates that the
pattern has been seen before we increment the count
in our pattern hash-table DΠ̃ that represents Π̃.

3. Models for Move Prediction

We now present two alternative models of the prob-
ability P (~v|c) of an expert Go player making a move
(at vertex) ~v ∈ G in board configuration c. We only
consider legal moves ~v ∈ L(c), where L(c) ⊆ G is the
set of legal moves in configuration c. A move at ~v in
configuration c is represented by the largest pattern
class π̃max(~v, c) ∈ Π that matches c at ~v.

3.1. Full Ranking Model

To define a full Bayesian ranking model we use a Gaus-
sian belief p(u) = N (u;µ,diag(σ2)) over values u(π̃)
of pattern classes π̃. Then the predictive distribution
is given by P (~v|c) =

∫

P (~v|c,u)p(u) du (see Figure 1
(left) for an illustration). Our model, P (~v|c,u), is de-
fined via the notion of a latent, unobserved value x(π̃)
for each pattern class, where p(x|u) = N (x;u, β2) is
also assumed to be Gaussian with mean u and a fixed
variance β2; the quantity β expresses the variability
of the value depending on specific position and player
characteristics. In this sense, β can also be related
to the consistency of play and could be chosen smaller
for stronger players. We assume that the expert makes
the move with the highest latent value, hence,

P (~v|c,u) := P

(

argmax
~v′∈L(c)

{x(π̃max(~v
′, c))} = ~v

)

. (1)

Efficient inference in this model is possible by approxi-
mate message passing using expectation propagation as
the approximation method (Minka, 2001). The factor
graph (Figure 2 (left)) expresses the joint distribution
p(~v,u,x|c):

p(~v,u,x|c) =

n
∏

i=1

si(ui)

n
∏

j=1

gj(xj , uj)

n
∏

k=2

hk(x1, xk) ,

where

si(ui) = N (ui;µi, σ
2
i) ,

gj(xj , uj) = N (xj ;uj , β
2) ,

hk(x1, xk) = I(x1 > xk) .

We are interested in determining the marginals p(ui)
of the joint distribution defined above. This can be
accomplished by the sum-product algorithm (Jordan
& Weiss, 2002).

For any variable, vi, connected to its neighbouring fac-
tors, fk ∈ neigh(vi), the marginal distribution of vi is
given by

p(vi) =
∏

fk∈neigh(vi)

mfk→vi
(vi) , (2)

where mfk→vi
(vi) denotes a ‘message’ function passing

from factor fk to variable vi. Messages are calculated
as follows to perform exact inference on a factor tree8:

mfk→v0
(v0) =

∫

fk([v0;v])
n
∏

j=1

mvj→fk
(vj)dv , (3)

mvi→fk
(vi) =

∏

j∈neigh(vi)\{fk}

mfk→vj
(vj) . (4)

8. For notational convenience, we only state the factor-
to-variable message equation for the first variable, v0.

876

Bayesian Pattern Ranking for Move Prediction in the Game of Go

u1

u2

un

x1

x2

xn

N (u1;µ1, σ
2
1)

N (u2;µ2, σ
2
2)

N (un;µn, σ2
n)

N (x1;u1, β
2)

N (x2;u2, β
2)

N (xn;un, β2)

I(x1 > x2)

I(x1 > xn)
...

...
sn gn

s2 g2

s1 g1

h2

hn

p1

p2

pn

x1

x2

xn

Beta(p1;α1, β1)

Beta(p2;α2, β2)

Beta(pn;αn, βn)

Ber(x1; p1)

Ber(x2; p2)

Ber(xn; pn)

I(x1 = 1)

I(x2 = 0)

I(xn = 0)

...
...

h1

h2

hn

Figure 2. Factor graphs describing the two move prediction models for a particular Go position. In both cases the factors
hi encode which pattern is chosen by the expert. Left: Full Bayesian ranking model. Right: Independent Bernoulli
Model (note that, xi ∈ {0, 1}). We used the shorthand notation Ber(x, p) = px(1 − p)1−x.

These equations derive from the fact that we can make
use of the conditional independence structure of the
joint distribution to rearrange the marginalisation in-
tegral and thus simplify it (Jordan & Weiss, 2002).

We make the approximation that all messages are
Gaussian densities to reduce storage requirements
(messages can be represented by two numbers) and
to simplify the calculations. For factors fk of gen-
eral form, the factor-to-variable messages calculated
by (3) are not necessarily Gaussian, e.g. hi in Fig-
ure 2 (left). Therefore we approximate these mes-
sages by a Gaussian which minimises the Kullback-
Leibler divergence between the marginal distribution,
p(vi) = mfk→vi

(vi) ·mvi→fk
(vi), and its Gaussian ap-

proximation, q(vi) = m̂fk→vi
(vi) · mvi→fk

(vi), where
m̂fk→vi

(vi) is the approximate (Gaussian) message
from factor fk to variable vi. That is,

m̂fk→vi
(vi) =

MM[mfk→vi
(vi) ·mvi→fk

(vi)]

mvi→fk
(vi)

(5)

where MM denotes ‘Moment Match’.

The goal of learning is to determine (from training
data) the parameters µi and σ2

i of the belief distribu-
tion p(ui) = N (ui;µi, σ

2
i) for the value of each pattern.

We calculate the posterior p (u|~v, c) by first propagat-
ing messages about the graph according to (3), (4)
and (5) until convergence. The approximate posterior
distributions we require are

p(ui) = msi→ui
(ui) ·mgi→ui

(ui). (6)

Once a move at vertex ~v at configuration c has been
incorporated into the prior p(u), the posterior p(u|~v, c)
is used as the prior for the next expert move at the
new board configuration. This approach is a form of
assumed-density filtering (Minka, 2001).

3.2. Independent Bernoulli Model

We also consider an alternative and simpler approach
where we assume that each pattern class is played in-
dependently of the other available pattern classes with
probability p~v,c := p(π̃max(~v, c)) (the probability of the
maximal pattern class matched at vertex ~v in position
c). The probability of a move at location ~v in position
c given the pattern probabilities, p, is

p(~v|c,p) = p~v,c ·
∏

~v′∈L(c)\~v

(1− p~v′,c).

Our uncertainty on the p~v,c is modelled by a conju-
gate Beta prior p(p~v,c) = Beta(p~v,c;α~v,c, β~v,c) so the
marginal probability of a move P (~v|c,α,β) is

∫

p(~v|c,p)
∏

~v′∈L(c)

Beta(p~v′,c;α~v′,c, β~v′,c)dp

=
α~v,c

α~v,c + β~v,c

·
∏

~v′∈L(c)\~v

(

1−
α~v′,c

α~v′,c + β~v′,c

)

,

where α~v,c corresponds to the number of times this
pattern class π̃max(~v, c) matched for a move played by
an expert in the training data and β~v,c corresponds to
number of times the pattern class matched π̃max(~v, c)
for moves that were available but not chosen.

4. Experiments and Results

Patterns were harvested from a training set of 181,000
Go games between professional Go players. Starting
from prior values µ = 0 and σ = 1 the values of µi and
σi for each pattern were learnt from the same training
set. Each move was represented by the largest pattern
matched for each move. For the purpose of testing we
ranked all the moves played in 4400 separate expert

877

Bayesian Pattern Ranking for Move Prediction in the Game of Go

A B

CD

A > B

B > C

C > D

A B

CD

A > D

B > D

C > D

A B

CD

A > B

B > C

C > D

A > D

B > D

A > C

1 2 3 4 5 6 7 8 9 10 11
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

phase of the game

m
ea

n
lo

g
ev

id
en

ce

Ranking Model
Independent Bernoulli Model

Figure 3. Each factor graph represents a set of observations of the ordering of pairs of variables. The global preference
order of these variables is A > B > C > D and the goal of a ranking algorithm is to infer this order from the observations.
Right: Model evidence for the two Bayesian ranking models as a function of game phase.

Go games by again matching the largest pattern for
every possible move and ranking the moves according
to the µ values for the corresponding patterns.

Figure 5 shows that the Bayesian (with the full ranking
model) ranking system ranks 34% of all expert moves
first, 66% in the top 5, 76% in the top 10, and 86% in
the top 20. The graph illustrates that we have signifi-
cantly improved on the performance of van der Werf
et al. (2002). It is worth pointing out that 34% is
an extremely high score at this task, comparable with
strong human level performance. Note that strong hu-
man players will often disagree about which is the best
move on the board.

The two move prediction models perform similarly de-
spite the difference in model evidence shown in Figure
3. While this result is somewhat surprising given the
simplicity of the Independent Bernoulli model it can
be explained by considering different scenarios appear-
ing in training. Figure 3 presents three hypothetical
situations in which we want to infer a global rank-
ing from limited observations of pairs of patterns from
A > B > C > D. Each factor (box) represents an
observation of which pattern is preferred in a partic-
ular pair. The first graph shows a situation where we
observe a chain of preference pairs A > B, B > C
and C > D. The full Bayesian ranking model can
infer a global ranking from these pairs. In contrast,
the Independent Bernoulli model cannot infer a global
ranking for the chain. It would learn the probabilities
{A,B,C,D} = {1/1, 1/2, 1/2, 0/1} where each frac-
tion is (times played)/(total times seen). In the sec-
ond graph the data do not provide enough information
to learn a global ranking. This graph corresponds to
a joseki sequence at the beginning of a game of Go.
When a joseki move-pattern is seen it is typically pre-
ferred to any other pattern on the board and is played.
It disappears from the board only to be replaced by

the next joseki move-pattern in the sequence. Thus it
is sufficient to learn that all joseki patterns are good to
play - the ordering follows from the rules of the game.
The third graph typifies an end game sequence in Go.
Here, many of the different competing move-patterns
co-occur on the board so the graph is fully connected
and even the independent model can learn a global
ranking {A,B,C,D} = {3/3, 2/3, 1/3, 0/3}. It is only
in the first case (the chain), which does not correspond
to a typical Go pattern scenario, that the full ranking
model has more expressive power.

However, the full ranking model has the advantage
that it provides a normalised probability distribution
over moves in a given position whereas the indepen-
dent model does not because it lacks the constraint
that only exactly one move-pattern is played in a given
position (see Figure 2). Since the full ranking model
concentrates its probability mass on only the possible
set of outcomes we would expect the evidence, p(~v|c)
to be larger, as is in fact the case. Over a test set of
750 games the log evidence for the full ranking model
is −450, 000 whereas the log evidence for the Indepen-
dent Bernoulli model is −630, 000. Figure 3 (right)
shows the average log evidence as a function of the
stage of the game. The ranking model outperforms
the Independent Bernoulli model in every stage of the
game. Both models appear to perform better at the
beginning and end of the game as might be expected
from the discussion above.

The box plots 9 in Figure 4 (left) compare the perfor-
mance of the full ranking model at different stages of
the game. The system performs extremely well at the
early stages of the game where moves more commonly
correspond to standard plays. The system ranks most

9. Lower and upper sides of box: quartiles; vertical line
across: median; width: number of data; whiskers: approx-
imate support; dots: outliers.

878

Bayesian Pattern Ranking for Move Prediction in the Game of Go

1 2 3 4 5 6 7 8 9 10 11

10
−2

10
−1

10
0

phase of the game

ra
nk

 e
rr

or

1 2 3 4 5 6 7 8 9 10 11 12 13 14

10
−2

10
−1

10
0

pattern size

ra
nk

 e
rr

or

Figure 4. Test performance of the full ranking model (on 4400 games) as it depends on phase of the game and pattern
size. Left: Box plot of the rank error for different phases of the game, each phase corresponding to an interval of 30
moves. The rank error is the fraction of the rank of the professional move assigned by the algorithm over the number of
legal moves. Right: Box plot of the rank error for different pattern sizes.

expert moves first during the first 30 moves of the
game. Figure 4 (right) provides an explanation of the
excellent early-game performance: the system is more
likely to match larger patterns with better predictive
performance earlier in the game. For the first 30 moves
we frequently match full board patterns (size 14) which
correspond to standard fuseki (opening) moves. For
the next 30 moves we still often match large patterns
(size 12 and 13) which correspond to joseki (standard
corner plays). The combination of matching large
patterns and the systematic assignment of their val-
ues means that the system can reliably predict entire
joseki sequences. Later in the game we match only
smaller, less discriminative patterns (as seen in Fig-
ure 4 (right)) and hence the prediction performance
decreases. Note, that in almost all cases where we
match a full board pattern the resulting ranking gives
a perfect prediction of expert play.

We also tested the ability of our system to play Go. In
the earlier stages of the game, where playing standard
sequences is prevalent, the program is perceived to be
quite strong. However, it is perceived to play weaker
in parts of the game where tactical reading is impor-
tant. Since the system has no module for solving such
local tactical search problems this is not surprising. A
number of Go players, some of which high level dan
players, have played the program. They found it chal-
lenging in different ways depending on their skill and
estimated its playing strength between 10 and 15 kyu.
One interesting observation is that the system appears
to play better against better opponents due to its roots
in expert patterns (see Figure 6 for an example game).

5. Discussion and Conclusions

We present an application of Bayesian ranking to the
problem of move prediction in the game of Go. De-
spite its rigid pattern definition the prediction per-
formance of our system significantly out-performs all
previously published work on this task. To a surpris-
ingly high degree it seems capable of capturing the
notion of urgency10 by simultaneously considering all
possible legal moves at any given time. Since we main-
tain a probabilistic ranking over patterns we could use
our model as an efficient move selection mechanism
for tree search or biased Monte Carlo Go (Brügmann,
1993). Tracking the uncertainty of pattern values pro-
vides our system with the added advantage of associ-
ating a confidence with the prediction of the expert
move. The proposed move prediction algorithm is fast
(despite the significant memory footprint due to the
pattern database in memory).

The version described in this paper is based on a
training sample of 181, 000 games (≈ 45, 000, 000
moves) played by expert Go players. This limits us
to 12, 000, 000 harvested patterns; otherwise the num-
ber of training example per pattern would be too
small. Our future work aims at building a ranked pat-
tern database from 1, 000, 000 games (≈ 250, 000, 000
moves) played between Go players of varying strength,
which the system can model by varying β.

10. In the Go literature ‘urgent’ points are tactical points
which should be played before moves which seem to directly
increase territory and influence (so called ‘big’ moves). An
example would be a move which prevents a group of stones
being captured.

879

Bayesian Pattern Ranking for Move Prediction in the Game of Go

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

expert move rank

cu
m

ul
at

iv
e

de
ns

ity
 fu

nc
tio

n

Ranking Model
Independent Bernoulli Model
Van der Werf et al. (2002)

Figure 5. Cumulative distribution of the ranks the
Bayesian models assigns to the moves played by expert
players. The models were tested on 4400 as yet unseen
expert games. For comparison, we also show the corre-
sponding curve from van der Werf et al. (2002), which
was obtained on games from the same collection.

The system performs least well in situations where
tactical problem solving is required. We plan to ad-
dress this by incorporating additional features (see
Section 2.2): the results of running local searches to
solve local problems (for example determining if a
stone can be captured).

Acknowledgements

We would like to thank David MacKay, Nici Schrau-
dolph, Tom Minka, John Winn, Erik van der Werf
and the participants of the computer Go mailing list
(http://computer-go.org/mailman/listinfo/computer-
go) for sharing their thoughts.

References

Bloom, B. H. (1970). Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM, 13,
422–426.

Bouzy, B., & Cazenave, T. (2001). Computer Go: An AI
oriented survey. Artificial Intelligence, 132, 39–103.

Bouzy, B., & Chaslot, G. (2005). Bayesian generation and
integration of K-nearest-neighbor patterns for 19x19 Go.
Proceedingso of the IEEE 2005 Symposium on Compu-
tational Intelligence and Games (pp. 176–181).

Brügmann, B. (1993). Monte Carlo Go
ftp://ftp.cgl.ucsf.edu/pub/pett/go/ladder/mcgo.ps.

Cazenave, T. (1996). Automatic acquisition of tactical Go
rules. Proceedings of the Game Programming Workshop
in Japan’96.

Figure 6. Diagram of the first 50 moves in a match of the
Bayesian pattern ranking system against itself. Up to move
38 the game develops along standard fuseki lines. In the
remaining moves, a fight develops from White’s attack on
the Black group in the top right. Some of the pattern
system’s moves look surprisingly insightful despite the fact
that they are only the result of local pattern matching and
evaluation.

Cazenave, T. (2001). Generation of patterns with external
conditions for the game of Go. Advances of Computer
Games 9.

de Groot, F. (2005). Moyogo studio
http://www.moyogo.com.

Jordan, M. I., & Weiss, Y. (2002). Graphical models: prob-
abilistic inference. In M. Arbib (Ed.), Handbook of neu-
ral networks and brain theory. MIT Press. 2nd edition.

Minka, T. P. (2001). A family of algorithms for approx-
imate Bayesian inference. Doctoral dissertation, Mas-
sachusetts Institute of Technology.

Müller, M. (2002). Computer Go. Artificial Intelligence,
134, 145–179.

Stern, D., Graepel, T., & MacKay, D. (2004). Modelling
uncertainty in the game of Go. Advances in Neural In-
formation Processing Systems 16 (pp. 33–40).

Stoutamire, D. (1991). Machine learning applied to Go.
Master’s thesis, Case Western Reserve University.

van der Werf, E., Uiterwijk, J., Postma, E., & van den
Herik, J. (2002). Local move prediction in Go. 3rd In-
ternational Conference on Computers and Games. Ed-
monton.

Zobrist, A. (1990). A new hashing method with applica-
tions for game playing. ICCA Journal, 13, 69–73.

880

