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Abstract 

The technique of principal component analysis (PCA) has recently been 

expressed as the maximum likelihood solution for a generative latent 

variable model. In this paper we use this probabilistic reformulation 

as the basis for a Bayesian treatment of PCA. Our key result is that ef

fective dimensionality of the latent space (equivalent to the number of 

retained principal components) can be determined automatically as part 

of the Bayesian inference procedure. An important application of this 

framework is to mixtures of probabilistic PCA models, in which each 

component can determine its own effective complexity. 

1 Introduction 

Principal component analysis (PCA) is a widely used technique for data analysis. Recently 

Tipping and Bishop (1997b) showed that a specific form of generative latent variable model 

has the property that its maximum likelihood solution extracts the principal sub-space of 

the observed data set. This probabilistic reformulation of PCA permits many extensions 

including a principled formulation of mixtures of principal component analyzers, as dis

cussed by Tipping and Bishop (l997a). 

A central issue in maximum likelihood (as well as conventional) PCA is the choice of 

the number of principal components to be retained. This is particularly problematic in a 

mixture modelling context since ideally we would like the components to have potentially 

different dimensionalities. However, an exhaustive search over the choice of dimensionality 

for each of the components in a mixture distribution can quickly become computationally 

intractable. In this paper we develop a Bayesian treatment of PCA, and we show how this 

leads to an automatic selection of the appropriate model dimensionality. Our approach 

avoids a discrete model search, involving instead the use of continuous hyper-parameters 

to determine an effective number of principal components. 
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2 Maximum Likelihood peA 

Consider a data set D of observed d-dimensional vectors D = {t n } where n E 
{I, ... ,N}. Conventional principal component analysis is obtained by first computing 

the sample covariance matrix given by 

N 1"" - -T S = N L) t n - t) (tn - t) (1) 

n=l 

where t = N- 1 Ln tn is the sample mean. Next the eigenvectors Ui and eigenvalues .Ai 

of S are found, where SUi = .AiUi and i = 1, ... , d. The eigenvectors corresponding 
to the q largest eigenvalues (where q < d) are retained, and a reduced-dimensionality 

representation of the data set is defined by Xn = U T (tn - t) where U q = (U 1 , . .. ,Uq). 
It is easily shown that PCA corresponds to the linear projection of a data set under which 
the retained variance is a maximum, or equivalently the linear projection for which the 

sum-of-squares reconstruction cost is minimized. 

A significant limitation of conventional PCA is that it does not define a probability distri

bution. Recently, however, Tipping and Bishop (1997b) showed how PCA can be reformu

lated as the maximum likelihood solution of a specific latent variable model, as follows. 

We first introduce a q-dimensionallatent variable x whose prior distribution is a zero mean 
Gaussianp(x) = N(O, Iq) and Iq is the q-dimensional unit matrix . The observed variable t 

is then defined as a linear transformation ofx with additive Gaussian noise t = Wx+ p,+€ 
where W is a d x q matrix, p, is a d-dimensional vector and € is a zero-mean Gaussian

distributed vector with covariance (72Id. Thus p(tlx) = N(Wx + p" (72Id). The marginal 

distribution of the observed variable is then given by the convolution of two Gaussians and 
is itself Gaussian 

p(t) = J p(tlx)p(x) dx = N(p" C) (2) 

where the covariance matrix C = WWT + (72Id. The model (2) represents a constrained 
Gaussian distribution governed by the parameters p" Wand (72. 

The log probability of the parameters under the observed data set D is then given by 

N 
L(p"W, (72) = -2 {dln(2rr) +lnlCl +Tr[C-1S]} (3) 

where S is the sample covariance matrix given by (I). The maximum likelihood solution 

for p, is easily seen to be P,ML = t. It was shown by Tipping and Bishop (l997b) that the 
stationary points of the log likelihood with respect to W satisfy 

WML = Uq(Aq - (72Iq)1/2 (4) 

where the columns of U q are eigenvectors of S, with corresponding eigenvalues in the 

diagonal matrix A q • It was also shown that the maximum of the likelihood is achieved when 
the q largest eigenvalues are chosen, so that the columns of U q correspond to the principal 

eigenvectors, with all other choices of eigenvalues corresponding to saddle points. The 

maximum likelihood solution for (72 is then given by 

d 

2 1 "" (7ML = ~ ~ .Ai 
q i=q+l 

(5) 

which has a natural interpretation as the average variance lost per discarded dimension. The 

density model (2) thus represents a probabilistic formulation of PCA. It is easily verified 
that conventional PCA is recovered in the limit (72 -+ O. 
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Probabilistic PCA has been successfully applied to problems in data compression, density 
estimation and data visualization, and has been extended to mixture and hierarchical mix
ture models. As with conventional PCA, however, the model itself provides no mechanism 

for determining the value of the latent-space dimensionality q. For q = d - 1 the model 
is equivalent to a full-covariance Gaussian distribution, while for q < d - 1 it represents 
a constrained Gaussian in which the variance in the remaining d - q directions is mod

elled by the single parameter (j2 . Thus the choice of q corresponds to a problem in model 

complexity optimization. If data is plentiful, then cross-validation to compare all possible 

values of q offers a possible approach. However, this can quickly become intractable for 
mixtures of probabilistic PCA models if we wish to allow each component to have its own 

q value. 

3 Bayesian peA 

The issue of model complexity can be handled naturally within a Bayesian paradigm. 
Armed with the probabilistic reformulation of PCA defined in Section 2, a Bayesian treat
ment of PCA is obtained by first introducing a prior distribution p(p" W, (j2) over the 
parameters of the model. The corresponding posterior distribution p(p" W , (j2ID) is then 

obtained by multiplying the prior by the likelihood function, whose logarithm is given by 
(3), and normalizing. Finally, the predictive density is obtained by marginalizing over the 
parameters, so that 

(6) 

In order to implement this framework we must address two issues: (i) the choice of prior 
distribution, and (ii) the formulation of a tractable algorithm. Our focus in this paper is on 
the specific issue of controlling the effective dimensionality of the latent space (correspond

ing to the number of retained principal components). Furthermore, we seek to avoid dis
crete model selection and instead use continuous hyper-parameters to determine automat

ically an appropriate effective dimensionality for the latent space as part of the process of 
Bayesian inference. This is achieved by introducing a hierarchical prior p(Wla) over the 

matrix W, governed by a q-dimensional vector of hyper-parameters a = {0:1, ... ,O:q}. 
The dimensionality of the latent space is set to its maximum possible value q = d - 1, and 
each hyper-parameter controls one of the columns of the matrix W through a conditional 

Gaussian distribution of the form 

(7) 

where {Wi} are the columns of W. This form of prior is motivated by the framework 
of automatic relevance determination (ARD) introduced in the context of neural networks 

by Neal and MacKay (see MacKay, 1995). Each O:i controls the inverse variance of the 
corresponding Wi, so that if a particular O:i has a posterior distribution concentrated at 

large values, the corresponding Wi will tend to be small, and that direction in latent space 
will be effectively 'switched off'. The probabilistic structure of the model is displayed 
graphically in Figure I. 

In order to make use of this model in practice we must be able to marginalize over the 

posterior distribution of W. Since this is analytically intractable we have developed three 
alternative approaches based on (i) type-II maximum likelihood using a local Gaussian 

approximation to a mode of the posterior distribution (MacKay, 1995), (ii) Markov chain 

Monte Carlo using Gibbs sampling, and (iii) variational inference using a factorized ap

proximation to the posterior distribution. Here we describe the first of these in more detail. 
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Figure 1: Representation of Bayesian PCA as a probabilistic graphical model showing the hierarchi
cal prior over W governed by the vector of hyper-parameters ex. The box. denotes a 'plate' comprising 
a data set of N independent observations of the visible vector tn (shown shaded) together with the 
corresponding hidden variables X n . 

The location W MP of the mode can be found by maximizing the log posterior distribution 

given, from Bayes' theorem, by 

1 d-l 

Inp(WID) = L - 2 L aill w ill 2 + const. 

i=1 

(8) 

where L is given by (3). For the purpose of controlling the effective dimensionality of 

the latent space, it is sufficient to treat J.L, (12 and Q as parameters whose values are to 

be estimated, rather than as random variables. In this case there is no need to introduce 

priors over these variables, and we can determine J.L and (1 2 by maximum likelihood. To 

estimate ex we use type-II maximum likelihood, corresponding to maximizing the marginal 

likelihood p( D I ex) in which we have integrated over W using the quadratic approximation . 

It is easily shown (Bishop, 1995) that this leads to a re-estimation formula for the hyper

parameters ai of the form 

/i 
ai := II W ill 2 

(9) 

where /i ::::: d - ai Tri (H- 1 ) is the effective number of parameters in Wi, H is the Hessian 

matrix given by the second derivatives of Inp(WID) with respect to the elements of W 
(evaluated at W MP), and Tri (.) denotes the trace of the sub-matrix corresponding to the 

vector Wi. 

For the results presented in this paper, we make the further simplification of replacing / i in 

(9) by d, corresponding to the assumption that all model parameters are 'well-determined'. 

This significantly reduces the computational cost since it avoids evaluation and manipula

tion of the Hessian matrix. An additional consequence is that vectors Wi for which there is 

insufficient support from the data wiII be driven to zero, with the corresponding a i -t 00, 

so that un-used dimensions are switched off completely. We define the effective dimension

ality of the model to be the number of vectors Wi whose values remain non-zero. 

The solution for W MP can be found efficiently using the EM algorithm, in which the E

step involves evaluation of the expected sufficient statistics of the latent-space posterior 

distribution, given by 

M- 1W T (tn - J.L) 

(12M + (xn)(xn) T 

(10) 

(II) 
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where M = (WTW + a 2 Iq). The M-step involves updating the model parameters using 

W [ptn-I-')(X~)] [pxnX~)H'Ar (12) 

N 

(;2 ~d L {litn - J-t1l 2 - 2(x~)WT(tn - J-t) + Tr [(XnX~)WTW]} (13) 

n=l 

where A = diag(ad. Optimization of Wand a2 is alternated with re-estimation of n, 

using (9) with '"'Ii = d, until all of the parameters satisfy a suitable convergence criterion. 

As an illustration of the operation of this algorithm, we consider a data set consisting of 300 

points in 10 dimensions, in which the data is drawn from a Gaussian distribution having 

standard deviation 1.0 in 3 directions and standard deviation 0.5 in the remaining 7 direc

tions. The result of fitting both maximum likelihood and Bayesian PCA models is shown 

in Figure 2. In this case the Bayesian model has an effective dimensionality of qeff = 3. 

• • • • 

· • • · • 
• • 

• • • • 

• • • • 
• • 

• • • • • • 

• · • 
• • • • 

Figure 2: Hinton diagrams of the matrix W for a data set in 10 dimensions having m = 3 directions 
with larger variance than the remaining 7 directions. The left plot shows W from maximum likeli
hood peA while the right plot shows WMP from the Bayesian approach, showing how the model is 
able to discover the appropriate dimensionality by suppressing the 6 surplus degrees of freedom. 

The effective dimensionality found by Bayesian PCA will be dependent on the number N 
of points in the data set. For N ~ 00 we expect qeff ~ d -1, and in this limit the maximum 

likelihood framework and the Bayesian approach will give identical results. For finite data 

sets the effective dimensionality may be reduced, with degrees of freedom for which there 

is insufficient evidence in the data set being suppressed. The variance of the data in the re

maining d - qeff directions is then accounted for by the single degree of freedom defined by 

a2 . This is illustrated by considering data in 10 dimensions generated from a Gaussian dis

tribution with standard deviations given by {1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1}. 

In Figure 3 we plot qeff (averaged over 50 independent experiments) versus the number N 
of points in the data set. 

These results indicate that Bayesian PCA is able to determine automatically a suitable 

effective dimensionality qeff for the principal component subspace, and therefore offers a 

practical alternative to exhaustive comparison of dimensionalities using techniques such as 

cross-validation. As an illustration of the generalization capability of the resulting model 

we consider a data set of 20 points in 10 dimensions generated from a Gaussian distribution 

having standard deviations in 5 directions given by (1.0,0.8,0.6 , 0.4,0.2) and standard 

deviation 0.04 in the remaining 5 directions. We fit maximum likelihood PCA models to 

this data having q values in the range 1-9 and compare their log likelihoods on both the 

training data and on an independent test set, with the results (averaged over 10 independent 

experiments) shown in Figure 4. Also shown are the corresponding results obtained from 

Bayesian PCA. 



Figure 3: Plot of the average effective dimensionality of the Bayesian PCA model versus the number 
N of data points for data in a IO-dimensional space. 
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Figure 4: Plot of the log likelihood for the training set (dashed curve) and the test set (solid curve) 
for maximum likelihood PCA models having q values in the range 1-9, showing that the best gener
alization is achieved for q = 5 which corresponds to the number of directions of significant variance 
in the data set. Also shown are the training (circle) and test (cross) results from a Bayesian PCA 

model, plotted at the average effective q value given by qeff = 5.2. We see that the Bayesian PCA 
model automatically discovers the appropriate dimensionality for the principal component subspace, 

and furthermore that it has a generalization performance which is close to that of the optimal fixed q 

model. 

4 Mixtures of Bayesian peA Models 

Given a probabilistic formulation of PCA it is straightforward to construct a mixture distri

bution comprising a linear superposition of principal component analyzers. In the case of 

maximum likelihood PCA we have to choose both the number IvI of components and the 

latent space dimensionality q for each component. For moderate numbers of components 

and data spaces of several dimensions it quickly becomes intractable to explore the expo

nentially large number of combinations of q values for a given value of M. Here Bayesian 

PCA offers a significant advantage in allowing the effective dimensionalities of the models 

to be determined automatically. 

As an illustration we consider a density estimation problem involving hand-written digits 

from the CEDAR database. The data set comprises 8 x 8 scaled and smoothed gray-scale 

images of the digits '2', '3' and '4', partitioned randomly into 1500 training, 900 validation 

and 900 test points. For mixtures of maximum likelihood PCA the model parameters can be 
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determined using the EM algorithm in which the M-step uses (4) and (5), with eigenvector 

and eigenvalues obtained from the weighted covariance matrices in which the weighting co

efficients are the posterior probabilities for the components determined in the E-step. Since, 

for maximum likelihood PCA, it is computationally impractical to explore independent q 

values for each component we consider mixtures in which every component has the same 

dimensionality. We therefore train mixtures having M E {2, 4,6, 8, 10, 12, 14, 16, 18} for 

all values q E {2, 4, 8, 12, 16, 20, 25, 30, 40, 50}. In order to avoid singularities associ

ated with the more complex models we omit any component from the mixture for which 

the value of (7 2 goes to zero during the optimization. The highest log likelihood on the 

validation set ( - 295) is obtained for M = 6 and q = 50. 

For mixtures of Bayesian PCA models we need only explore alternative values for M , 
which are taken from the same set as for the mixtures of maximum likelihood PCA. Again, 

the best performance on the validation set (-293) is obtained for M = 6. The values of the 

log likelihood for the test set were -295 (maximum likelihood PCA) and -293 (Bayesian 

PCA). The mean vectors I-L i for each of the 6 components of the Bayesian PCA mixture 

model are shown in Figure 5. 

62 54 63 60 62 59 

Figure 5: The mean vectors for each of the 6 components in the Bayesian PCA mixture model , 
displayed as an 8 x 8 image, together with the corresponding values of the effective dimensionality. 

The Bayesian treatment of PCA discussed in this paper can be particularly advantageous 

for small data sets in high dimensions as it can avoid the singularities associated with 

maximum likelihood (or conventional) PCA by suppressing unwanted degrees of freedom 

in the model. This is especially helpful in a mixture modelling context, since the effective 

number of data points associated with specific 'clusters' can be small even when the total 

number of data points appears to be large. 

References 

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford University 

Press. 

MacKay, D. J. C. (1995). Probable networks and plausible predictions - a review of 

practical Bayesian methods for supervised neural networks. Network: Computation 

in Neural Systems 6 (3), 469-505. 

Tipping, M. E. and C. M. Bishop (1997a). Mixtures of principal component analysers. 

In Proceedings lEE Fifth International Conference on Artificial Neural Networks. 

Cambridge, u.K., July. , pp. 13-18. 

Tipping, M. E . and C. M. Bishop (1997b). Probabilistic principal component analysis. 

Accepted for publication in the Journal of the Royal Statistical Society, B. 


