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Abstract

The Bayesian Evolutionary Analysis by Sampling Trees (BEAST) software package has become a primary tool for Bayesian

phylogenetic and phylodynamic inference from genetic sequence data. BEAST unifies molecular phylogenetic reconstruc-

tion with complex discrete and continuous trait evolution, divergence-time dating, and coalescent demographic models in

an efficient statistical inference engine using Markov chain Monte Carlo integration. A convenient, cross-platform, graphical

user interface allows the flexible construction of complex evolutionary analyses.

Key words: phylogenetics; phylodynamics; Bayesian inference; Markov chain Monte Carlo.

1. Introduction

First released over 14 years ago, the Bayesian Evolutionary

Analysis by Sampling Trees (BEAST) software package has be-

come firmly established in a broad diversity of biological fields

from phylogenetics and paleontology, population dynamics,

ancient DNA, and the phylodynamics and molecular epidemiol-

ogy of infectious disease (Drummond et al. 2012). BEAST’s spe-

cific focus on time-scaled trees, and the evolutionary analyses

dependent on them, has given it a unique place in the toolbox

of molecular evolution and phylogenetic researchers. Since in-

ception, a strong motivation for BEAST development has been
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the rapid growth of pathogen genome sequencing as part of

public health responses to infectious diseases (Grenfell et al.

2004). In particular, fast evolving viruses can now be tracked in

near real-time (see, e.g. Quick et al. 2016) to understand their ep-

idemiology and evolutionary dynamics.

In BEAST version 1.10, we have introduced a series of advan-

ces with a particular focus on delivering accurate and informa-

tive insights for infectious disease research through the

integration of diverse data sources, including phenotypic and

epidemiological information, with molecular evolutionary

models. These advances fall into three broad themes—the inte-

gration of diverse sources of extrinsic information as covariates

of evolutionary processes, the increased flexibility and modula-

rization of the model design process with robust and accurate

model testing methods, and substantial improvements on the

speed and efficiency of the statistical inference.

2. Data integration

Many traits in phylogenetics are represented as or partitioned

into a finite number of discrete values, with geographical loca-

tion standing out as a popular example. Because BEAST is dedi-

cated to sampling time-scaled phylogenies, new developments

of discrete character mapping enable the reconstruction of

timed viral dispersal patterns while accommodating phyloge-

netic uncertainty. By extending the discrete diffusion models to

incorporate empirical data as covariates or predictors of transi-

tion rates, BEAST can simultaneously test and quantify a range

of potential predictive variables of the diffusion process (Lemey

et al. 2014). Further, realizations of the trait transition process

can also be efficiently produced, to pinpoint the nature and tim-

ing of changes in evolutionary history beyond ancestral node

state reconstruction (termed Markov jumps), or to infer the time

spent in a particular state (Markov rewards) (Minin and Suchard

2008). For molecular data, fast stochastic mapping approaches

are also employed to obtain site-specific dN=dS estimates, inte-

grating over the posterior distribution of phylogenies and an-

cestral reconstructions to quantify uncertainty on these

measures of the selective forces on individual codons (Lemey

et al. 2012).

Multivariate continuous traits are incorporated using phylo-

genetic Brownian diffusion processes, modelling the shared an-

cestral dependence across taxa and the correlations between

these variables. Such continuous models have most frequently

been applied to diffusion on a geographical landscape with the

traits representing coordinates and the phylogeny reconstruct-

ing the epidemiological process within the host population

(Lemey et al. 2010). The landscapes can also represent other

spaces, and integration of antibody binding assay data have ex-

tended ‘antigenic cartography’ (Smith et al. 2004) approaches to

model simultaneous antigenic and genetic evolution and infer

the viral trajectories in the immunological space generated by

the host population (Bedford et al. 2014).

Standard Brownian diffusion processes that assume a zero-

mean displacement along each branch may however be unreal-

istic for many evolutionary problems (including geographical

reconstruction). A recently developed relaxed directional ran-

dom walk allows the diffusion processes to take on different di-

rectional trends in different parts of the phylogeny while

preserving model identifiability (Gill et al. 2017) and opens up

these processes for a wide range of applications. BEAST 1.10

also extends multivariate phylogenetic diffusion to latent liabil-

ity model formulations in order to assess correlations between

traits of different data types, including (various combinations

of) continuous, binary and discrete traits (Cybis et al. 2015), as

demonstrated by applications to flower morphology, antibiotic

resistance, and viral epitope evolution. To infer correlations be-

tween high-dimensional traits computationally efficiently, a

novel phylogenetic factor analysis approach assumes that a

small unknown number of independent evolutionary factors

evolve along the phylogeny and generate clusters of dependent

traits at the tips (Tolkoff et al. 2018).

Further extending the data integration approach, BEAST 1.10

includes a flexible framework for incorporating time-varying

covariates of the effective population size over time. This uses

Gaussian Markov random fields to reconstruct smoothed effec-

tive population size trajectories while simultaneously estimat-

ing to what extent predictor variables (e.g. fluctuations in

climatic factors, host mobility, or vector density) may have

driven the dynamics (Gill et al. 2016). Using a similar general-

ized linear modeling (GLM) approach, classical epidemiological

time-series data such as case counts (Gill et al. 2016) can be inte-

grated with pathogen genome sequence data to provide joint in-

ference of important epidemiological parameters.

Finally, recent host-transmission models allow the integra-

tion of complete or partial knowledge of a pathogen’s transmis-

sion history, enabling the simultaneous inference of within-

host population dynamics, viral evolutionary processes, and

transmission times and bottlenecks (Vrancken et al. 2014).

Likewise, other priors enable the reconstruction of transmission

trees of infectious disease epidemics and outbreaks, while ac-

commodating phylogenetic uncertainty and employ a newly

designed set of phylogenetic tree proposals that respect node

partitions (Hall et al. 2015).

3. Flexible model design

BEAST’s companion graphical user interface program, BEAUti,

allows the user to import data, select models, choose prior dis-

tributions, and specify the settings for both Bayesian inference

and marginal likelihood estimation. Our efforts on BEAUti 1.10

have focused on allowing the user to easily link or unlink substi-

tution, clock and tree models across multiple partitions as well

as linking individual parameters to provide considerable adapt-

ability in model design. Additionally, BEAUti can also group var-

ious parameters in a hierarchical phylogenetic model prior

(Suchard et al. 2003), which allows parameters to take different

values but be linked by a common distribution, the parameters

of which can then be inferred. For example, flexible codon

model parameterizations, using hierarchical phylogenetic mod-

els (Baele et al. 2016b) and incorporating a range of potential

predictive variables for substitution behaviour (Bielejec et al.

2016a), provide insight into the tempo and mode of pathogen

evolution.

Marginal likelihood estimation to compare models using

Bayes factors has become common practice in Bayesian phylo-

genetic inference. BEAST 1.10 now features marginal likelihood

estimation (Baele et al. 2012), using path sampling (Gelman and

Meng 1998; Lartillot and Philippe 2006) and stepping-stone sam-

pling (Xie et al. 2011), as well as the recently developed general-

ized stepping-stone sampling (Fan et al. 2011; Baele et al. 2016a)

that offers increased accuracy and improved numerical stability

by employing the concept of ‘working distributions’, i.e. distri-

butions with known normalizing constants and parameterized

using samples from the posterior distribution.
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4. Performance and efficiency

Increasing model complexity and sequence availability in

modern-day analyses have stretched the computational

demands of Bayesian phylogenetic inference. To improve effi-

ciency for large-scale sequence data, BEAST 1.10 uses the

BEAGLE library (Ayres et al. 2012) that provides access to mas-

sive parallelization on a range of computing architectures.

In particular, the combination of BEAST 1.10 with BEAGLE 3.0

(Ayres et al., under review) allows multiple data partitions to be

parallelized across a single high-performance device (i.e. a

GPGPU graphics board) allowing for the utilization of the full ca-

pacity of these devices, reducing the computational overheads.

As the complexity of phylogenetic model designs increase, con-

comitant with the surge in scale of genomic data, updating only

a parameter associated with a single data partition limits the

occupation of the massively multicore devices. To address this

we have developed an adaptive multivariate transition kernel

that simultaneously updates parameters across all the parti-

tioned data, making more efficient use of available hardware

(Baele et al. 2017). Through a combination of these two

advances, BEAST 1.10 can yield a sizeable increase in effectively

independent posterior samples per unit-time over previous

software versions. For the example data described below, we

see a 5- to 25-fold improvement depending on the model pa-

rameter, using an NVIDIA Titan V.

4.1 Example

Figure 1 presents a spatiotemporal reconstruction of Ebola virus

evolution and spread during the 2013–2016 West African epi-

demic, highlighting several aspects of phylodynamic data inte-

gration. The estimates are based on a large data set of 1,610

genomes that represent over 5 per cent of the known cases

(Dudas et al. 2017). Administrative regions (n¼ 56) are included

as discrete sampling locations to estimate viral dispersal

through time while testing the contribution of a set of potential

covariates to the pattern of spread using a GLM parameteriza-

tion of phylogeographic diffusion (Lemey et al. 2014). This indi-

cates, for example, the importance of population sizes and

geographic distance to explain viral dispersal intensities.

Figure 1. Phylodynamic analysis of the 2013–2016 West African Ebola virus epidemic, encompassing simultaneous estimation of sequence and discrete (geographic)

trait data with a GLM fitted to the discrete trait model in order to establish potential predictors of viral transition between locations. Plotted are a snapshot of geo-

graphic spread using SpreaD3 (Bielejec et al. 2016b), the maximum clade credibility tree, the posterior estimates of the GLM coefficients for seven possible predictors

for Ebola virus spread (Bayes Factor support values of 3, 20, and 150 are indicated by vertical lines) and the effective population size through time, estimated by incorpo-

rating case counts.
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5. Relationship to BEAST2 and other software

Distinct from BEAST 1.10 described here, BEAST2 is an indepen-

dent project (Bouckaert et al. 2014) intended as a platform that

more readily facilitates the development of packages of models

and analyses by other researchers. Although both projects share

many of the same models and the underlying inference frame-

work, BEAST has increasingly focused on the analysis of rapidly

evolving pathogens and their evolution and epidemiology. We

affirm that BEAST will continue to be developed in parallel to

the BEAST2. While these projects share a recent common origin,

each now aims to foster complementary research domains.

A range of other software focusing on phylodynamic analy-

ses of fast-evolving pathogens has been described since the last

version of BEAST was published. Of particular note are LSD

(To et al. 2016), TreeDater (Volz and Frost 2017), and TreeTime

(Sagulenko et al. 2018). These programs use least-squares algo-

rithms (LSD) or maximum likelihood inference (TreeDater,

TreeTime) and provide rapid analysis on large data sets for a

subset of the models that BEAST provides. However, the former

program implements very limited phylodynamic models and

the latter two programs require a phylogenetic tree, inferred us-

ing other software, as input data, conditioning parameter esti-

mates on this single tree.

5.1 Availability

BEAST 1.10 is open source under the GNU lesser general public

license and available at https://beast-dev.github.io/beast-mcmc

for cross-platform compiled programs and https://github.com/

beast-dev/beast-mcmc for software development and source

code. It requires Java version 1.6 or greater. Documentation,

tutorials, and help are available at http://beast.community and

many users actively discuss BEAST usage and development in

the ‘beast-users’ GoogleGroup discussion group (http://groups.

google.com/group/beast-users). We also host an expanding

suite of R tools—designed for posterior analyses using BEAST

(https://github.com/beast-dev/RBeast).

Acknowledgements

We would like to thank the many developers and contribu-

tors to BEAST 1.10, including: Alex Alekseyenko, Trevor

Bedford, Filip Bielejec, Erik Bloomquist, Luiz Carvalho,

Gabriela Cybis, Gytis Dudas, Roald Forsberg, Mandev Gill,

Matthew Hall, Joseph Heled, Sebastian Hoehna, Denise

Kuehnert, Wai Lok Sibon Li, Gerton Lunter, Sidney

Markowitz, Vladimir Minin, Julia Palacios, Michael Defoin

Platel, Oliver Pybus, Beth Shapiro, Korbinian Strimmer, Max

Tolkoff, Chieh-Hsi Wu, and Walter Xie. This work was sup-

ported in part by the European Union Seventh Framework

Programme for research, technological development

and demonstration under Grant Agreement no. 278433-

PREDEMICS and no. 725422-ReservoirDOCS. The

VIROGENESIS project receives funding from the European

Union’s Horizon 2020 research and innovation programme

under grant agreement No 634650. The Artic Network

receives funding from the Wellcome Trust through project

206298/Z/17/Z. MAS is partly supported by NSF grant DMS

1264153 and NIH grants R01 HG006139, R01 AI107034 and

U19 AI135995. PL acknowledges support by the Special

Research Fund, KU Leuven (‘Bijzonder Onderzoeksfonds’,

KU Leuven, OT/14/115), and the Research Foundation—

Flanders (‘Fonds voor Wetenschappelijk Onderzoek—

Vlaanderen’, G066215N, G0D5117N and G0B9317N). GB

acknowledges support from the Interne Fondsen KU

Leuven/Internal Funds KU Leuven. DLA is supported by NSF

grant DBI 1661443. We gratefully acknowledge support from

NVIDIA Corporation with the donation of parallel comput-

ing resources used for this research.

Conflict of interest: None declared.

References

Ayres, D. L., Cummings M. P., et al. ‘Under review. BEAGLE 3.0:

Improved Usability for a High-Performance Computing Library

for Statistical Phylogenetics’, Systematic Biology [WorldCat]

, Darling, A., Zwickl, D. J., Beerli, P., Holder, M. T., Lewis, P.

O., Huelsenbeck, J. P., Ronquist, F., Swofford, D. L., Cummings,

M. P., Rambaut, A., and Suchard, M. A. (2012) ‘BEAGLE: An

Application Programming Interface and High-Performance

Computing Library for Statistical Phylogenetics’, Systematic

Biology, 61: 170–3.

Baele, G., Lemey, P., Bedford, T., Rambaut, A., Suchard, M. A., and

Alekseyenko, A. V. (2012) ‘Improving the Accuracy of

Demographic and Molecular Clock Model Comparison While

Accommodating Phylogenetic Uncertainty’, Molecular Biology

and Evolution, 29: 2157–67.

& , Rambaut, A., and Suchard, M. A. (2017) ‘Adaptive

MCMC in Bayesian Phylogenetics: An Application to Analyzing

Partitioned Data in BEAST’, Bioinformatics, 33: 1798–805.

& , and Suchard, M. A. (2016a) ‘Genealogical Working

Distributions for Bayesian Model Testing with Phylogenetic

Uncertainty’, Systematic Biology, 65: 250–64.

, Suchard, M. A., Bielejec, F., and Lemey, P. (2016b) ‘Bayesian

Codon Substitution Modeling to Identify Sources of Pathogen

Evolutionary Rate Variation’,Microbial Genomics, 2: e00005.

Bedford, T., Suchard, M. A., Lemey, P., Dudas, G., Gregory, V.,

Hay, A. J., McCauley, J. W., Russell, C. A., Smith, D. J., and

Rambaut, A. (2014) ‘Integrating Influenza Antigenic Dynamics

with Molecular Evolution’, eLife, 3: e01914.

Bielejec, F., Baele, G., Rodrigo, A. G., Suchard, M. A., and Lemey, P.

(2016a) ‘Identifying Predictors of Time-Inhomogeneous Viral

Evolutionary Processes’, Virus Evolution, 2: vew023.

& , Vrancken, B., Suchard, M. A., Rambaut, A., and

Lemey, P. (2016b) ‘SpreaD3: Interactive Visualization of

Spatiotemporal History and Trait Evolutionary Processes’,

Molecular Biology and Evolution, 33: 2167–9.
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