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An improved Bayesian method is presented for estimating phylogenetic trees using DNA sequence data. The birth- 

death process with species sampling is used to specify the prior distribution of phylogenies and ancestral speciation 

times, and the posterior probabilities of phylogenies are used to estimate the maximum posterior probability (MAP) 

tree. Monte Carlo integration is used to integrate over the ancestral speciation times for particular trees. A Markov 

Chain Monte Carlo method is used to generate the set of trees with the highest posterior probabilities. Methods are 

described for an empirical Bayesian analysis, in which estimates of the speciation and extinction rates are used in 

calculating the posterior probabilities, and a hierarchical Bayesian analysis, in which these parameters are removed 

from the model by an additional integration. The Markov Chain Monte Carlo method avoids the requirement of 

our earlier method for calculating MAP trees to sum over all possible topologies (which limited the number of taxa 

in an analysis to about five). The methods are applied to analyze DNA sequences for nine species of primates, and 

the MAP tree, which is identical to a maximum-likelihood estimate of topology, has a probability of approximately 

95%. 

Introduction 

In an earlier paper, we proposed a Bayesian method 

for estimating phylogenetic trees (Rannala and Yang 

1996) as an alternative to maximum likelihood (Felsen- 

stein 198 1). The method was an extension of the earlier 

work of Edwards (1970) on the problem of estimating 

phylogeny using gene frequency data from human pop- 

ulations. A birth-death process (Feller 1939; Kendall 

1949) was used to specify the prior distribution of phy- 

logenetic trees and ancestral speciation times, and a 

Markov process was used to model nucleotide substi- 

tution (Rannala and Yang 1996). The parameters of the 

birth-death process and the substitution model were es- 

timated using maximum likelihood. These estimates 

were then used in place of the true parameters to eval- 

uate the posterior probabilities of trees (a procedure 

known as empirical Bayesian analysis). For two sets of 

DNA sequences from several primate species that were 

analyzed, the Bayesian method generated the same best 

trees as were obtained by maximum-likelihood analyses, 

but the posterior probabilities for these trees were quite 

different from their bootstrap proportions and appeared 

to be less conservative (Rannala and Yang 1996). The 

method described in our earlier paper is only practical 

for analyzing data sets for a small number of species, 

as the calculations involve a sum over all tree topologies 

and the number of topologies increases rapidly with an 

increase in the number of species. As well, for each tree 

topology, a multi-dimensional integral over the ancestral 

speciation times is evaluated using numerical integra- 

tion, and this calculation is not practical for more than 

about five species. 

In this paper, we describe some refinements of the 

theory developed in our earlier paper that make the 

method practical for analyses of larger numbers of spe- 
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ties. We use Monte Carlo integration to evaluate more 

efficiently the integral over the ancestral speciation 

times for a given tree, and we avoid the need to sum 

over all topologies by evaluating the posterior probabil- 

ities of trees by using a Markov Chain Monte Carlo 

method. The model for the prior distribution of trees and 

speciation times has also been improved in two respects. 

First, species sampling by biologists is now considered. 

The birth-death process generates coalescent trees with 

internal branches longer, on average, than external 

branches. Taking species sampling into account reduces 

the internal branch lengths and results in a more realistic 

prior distribution of trees. Second, the birth and death 

rates of the prior distribution are treated as random vari- 

ables and eliminated by integration. This approach, 

known as hierarchical Bayesian analysis (see Robert 

1994), is expected to make the posterior probabilities 

more robust to violations of assumptions about the 

birth-death prior. 

Models and Estimation Theory 

The Data 

Let s be the number of sequences (species) exam- 

ined and n be the number of nucleotides in each se- 

quence; insertions and deletions are ignored, and it is 

assumed that the sequences are aligned with gaps re- 

moved. We allow for species sampling so that S is the 

number of extant species sharing a most recent common 

ancestor (MRCA) and p = s/S is the fraction of these 

that are included in the study; the species included are 

assumed to be a random sample. The data can be rep- 

resented as an s X n matrix, X = {xii}, where xij is the 

nucleotide at the jth site in the ith sequence. The jth 

column of the data matrix, Xj = {Xlj, . . . , Xsj} ‘, will be 

the nucleotides among sequences at the jth site. 

The Labeled History 

The sequences are descended through s - 1 spe- 

ciation events, which occurred at times tl > t2 > ... > 

ts_l in the past (see fig. 1); we let t = { t2, . . . , ts_l }. 

The time of the first bifurcation is set to one (i.e., tl = 

717 
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time 

(4 (B) 

FIG. 1.-A labeled history of four species (B) sampled from a 

total of seven extant species (whose relationship is shown in A). Spe- 

cies that are not sampled are represented as dotted lines, and those that 

are sampled are represented as solid lines. 

l), and parameters are then relative to this time scale 

(Edwards 1970). The relationship of the species is rep- 

resented as a labeled history (denoted as T), which is a 

tree of branching events (topology) with the nodes (an- 

cestral speciation events) rank-ordered in time. A la- 

beled history for s = 4 sequences sampled from a total 

of S = 7 extant species is shown in figure 1. A method 

was devised that assigns a unique integer index number 

to each distinct labeled history (see appendix A). 

Speciation, Extinction, and Species Sampling 

A linear birth-death process is used to model the 

dynamics of speciation and extinction and to specify the 

prior distribution of labeled histories and node times. 

The probability that a speciation event occurs in a par- 

ticular lineage during an infinitesimal time interval At 
is XAt, the probability of an extinction event is FAt, and 

the probability of two or more events is of order o(At). 
The number of present-day species, S, is a random vari- 

able, and a subset, s, of the species is sampled so that 

each is included with probability p = s/S. Species sam- 

pling may be modeled as a mass-extinction event that 

occurs exactly at time present, with p being the proba- 

bility that any particular species survives the extinction 

event (Nee, May, and Harvey 1994). The theory of gen- 

eralized birth-death processes (Kendall 1948; Nee, May, 

and Harvey 1994) can be used to derive the probability 

that a lineage arising at time t in the past leaves one or 

more descendants in a present-day sample (using the 

notation of Nee, May, and Harvey [ 19941) as 

P(0, t) = 
m - p) 

px + (h(1 - p) - ~)&-A)” 
(1) 

The probability that a lineage arising at time t in the 

past leaves exactly one descendant in the sample is 

Using these results, the joint distribution of the 

times (t), conditioned on tl, may be obtained as 

/Q(t) = ;,,o, t)Wc”-A)‘. (2) 

node 
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FIG. 2.-The kernal distribution, h(y) of equation (14), of the node 

times for different sampling proportions (p). The node times (t2, . . . , 
t,_,) represent the order statistics of (s - 2) independent random vari- 

ables generated from this distribution. The birth and death rates are 

fixed at A = 6.7 and l.~ = 2.5, which are the estimates of X and k 

obtained for the primate mitochondrial DNA data with p = 9/150 (see 

text). It is clear that increasing the sampling proportion decreases the 

expectation of the distribution of the node times and generates trees 

with longer internal branches. 

Vt, 
= 1 - IP(O, t&Wh_ (4) 

P 

The joint density of a particular labeled history, 7, and 

set of speciation times, t, is then 

f(~, t Is, tl; A, p> = .I0 1 s, tl; A, IJJM (5) 

2” - 1 
= ‘-’ APl(tj> 

I-I 
S!(S - 1) j=2 Vt, ' 

(6) 

where-f(T) = 2”-l/s!(s - l)! is the probability associated 

with any particular labeled history-(i.e., there are &s) = 

s!(s - 1)!/2”-l possible labeled histories, each having 

an equal probability, for a birth-death process). The lim- 

iting-distribution when A = l.~ is 

2” - 1 S-l 

f(~, t 1 s, tl; A, p) = I-I 
1 + Pk 

S!(S - 1) j=2 (1 + p~tj)2’ 
(7) 

If p = 1, equation (6) reduces to the density for a birth- 

death process with complete sampling (seekq. 8 of Ran- 

nala and Yang 1996). If p = 1 and p, = 0, the equation 

further reduces to the result for a Yule pure-birth process 

with complete sampling (see Edwards 1970). The effect 

of species sampling on the distribution of the node times 

under a birth-death process is shown in figure 2. 

Model of Nucleotide Substitution 

A continuous-time Markov process is used to mod- 

el nucleotide substitution. The model used in J. Felsen- 

stein’s DNAML program (since 1984, PHYLIP version 

2.6) will be used in this paper, although other substitu- 

tion models are applicable as well (Rannala and Yang 

1996). This model allows for different equilibrium nu- 

cleotide frequencies and transition/transversion rate bias. 

A narameter K is used as the transition/transversion rate 

ratio, with K = 0 indicating no rate bias. The substitution 

rate matrix of the model is given in Kishino and Hase- where 
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gawa (1989) and Rannala and Yang (1996). The param- 

eter m is the substitution rate per site, measured by the 

number of substitutions per site from the root of the tree 

to the present. A molecular clock (rate constancy among 

lineages) is assumed in this paper, although that as- 

sumption may be relaxed. Substitutions are assumed to 

occur independently at different nucleotide sites; the 

conditional probability of observing the sequence data, 

given the labeled history (7) and the node times (t), is 

then a product over sites 

f(Xl7, t; m, K) = fi f(xj 17, t; m K), (8) 
j=l 

where AXj 1 T,t;m,~) is the conditional probability of ob- 

serving the nucleotides at the jth site. The exact form 

of equation (8) depends on the tree topology (see, e.g., 

Felsenstein 1981). 

Hierarchical Bayesian Analysis 

Two general approaches may be used to generate 

the posterior distribution when unknown parameters oc- 

cur in the prior density: empirical Bayesian analysis and 

hierarchical Bayesian analysis (Berger 1985). Empirical 

Bayesian analysis replaces the unknown parameters with 

estimates; in our previous paper (Rannala and Yang 

1996), maximum-likelihood estimates of the speciation 

and extinction rates of the birth-death prior were used. 

Hierarchical Bayesian analysis assigns second-level pri- 

ors as densities for the unknown parameters of the prior. 

An integration is performed over the second-level priors 

to obtain a new prior that is completely specified. The 

posterior density is then generated in the usual manner. 

The potential advantages of hierarchical Bayesian anal- 

ysis, especially with respect to the robustness of the pos- 

terior densities to the form of the prior, are discussed in 

Berger (1985) and Robert (1994). 

In this paper, we use hierarchical Bayesian analysis 

to estimate the posterior distribution of phylogenetic 

trees. The speciation and extinction rates are generally 

unknown and may be assigned the prior densities fx(X) 

and f,(p). The marginal prior density of t is then 

f(t 1 A, p)fh(X)fp(F) dA &. (9) 

The integral of equation (9) will usually have no ana- 

lytical solution but may be evaluated using numerical 

methods (see below). The parameters A and F are as- 

signed uniform densities with the range parameters es- 

timated (see below). The substitution rate (m) and tran- 

sition/transversion rate ratio (K) can often be estimated 

reliably using conventional maximum-likelihood meth- 

ods, and these estimates appear to vary little among can- 

didate trees. In this study, we use maximum-likelihood 

estimates of these parameters obtained for the maxi- 

mum-likelihood tree, although these might also be as- 

signed hierarchical priors. The parameters defining the 

equilibrium nucleotide frequencies are estimated using 

the observed frequencies. 

Posterior Distribution of Phylogenetic Trees 

The posterior probability of the labeled history, 7, 

conditional on the observed sequence data, can be cal- 

culated as 

f(TlX) = g 

= f(X I @f(@ 

f(X) ’ 
(10) 

where 

(11) 

and 

f(X) = c f(X 7). (12) 

The conditional probability JTX 1 T, t) is specified by the 

nucleotide substitution model (eq. 8), while the prior 

distribution of the node times, f(t), is specified by the 

birth-death process (eq. 3 or 9). 

In our previous paper (Rannala and Yang 1996), 

we used numerical integration to evaluate the integral 

of equation (11) over the random variables t. This cal- 

culation is only practical for samples of about five or 

fewer sequences. We show below that the integral is 

more efficiently evaluated, for larger numbers of spe- 

cies, using Monte Carlo integration. The sum of equa- 

tion (12) involves s!(s - 1)!/2”-l terms which will usu- 

ally be too many to allow exact calculations. In this 

paper, we develop a Markov Chain Monte Carlo method 

(see Smith and Roberts 1993) for generating the poste- 

rior distribution of trees without explicitly evaluating 

equation ( 12). 

Monte Carlo Integration 

Monte Carlo methods are used to integrate over the 

random variables t as well as the parameters of the prior. 

Monte Carlo integration is increasingly efficient, by 

comparison with other methods of numerical integra- 

tion, as the dimension of the integral (equal to s - 2 in 

our problem) increases (Fishman 1996, pp. 64-69). The 

integral of equation (11) can be approximated using the 

Monte Carlo estimator 

f(m) = f $ f(X 177 Q, 
J 1 

(13) 

where R is the number of simulated replicates, and for 

each replicate, pseudorandom variables ic and b are gen- 

erated from the prior densities fh(X) and f,(p), and a 

vector of pseudorandom variables f is generated from 

the density f(t I i,ji). The Monte Carlo estimate of the 

density flX IT) is unbiased and consistent (Fishman 

1996). 

It is straightforward to simulate from the joint den- 

sity fit I X,k) by taking advantage of the property that 

this is equivalent to the density of the order statistics of 

s - 2 independent and identically distributed random 
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variables (see Rannala 1997) with common density (see 

eq. 3) 

h(y) = y. (14) 

The procedure is to generate a set of s - 2 pseudoran- 

dom variables y2, y3, . . . , ys_i from the density h(y) and 

order these so that Y(~-~) < Y(~_~) < ... < yc2). The node 

times are then assigned using the relation fi = Y(i) for i 
= 2 * * , s - 1. Pseudorandom variables with density 

h(y)‘may be generated using the inverse transformation 

method according to the following procedure: (1) gen- 

erate a uniform (0, 1) random variable U; (2) obtain an 

observation from h(y) using the following transforma- 

tion for A # F: 

Y= 
log{4 - Uph} - log{4 - Uph + U(X - p)} 

p-x 
, 

(15) 

where 

4= 
pA(e(c”-“1 - 1) + (p - X)&-h) 

&L-Q - 1 . (16) 

For the case X = k, we instead use the transformation: 

U 

y = 1 + hp(1 - uj 
(17) 

Because JTX 1 T, t) is often very small, its logarithm 

was calculated instead. Scaling factors were used to 

avoid overflows (or underflows) in the sum of equation 

(13), as flX 1 T, t) varies widely among replicates. The 

standard error up of the estimate of p = f(X IT) was 

calculated, and the accuracy of the Monte Carlo inte- 

gration was fixed in advance by terminating the repli- 

cates when uJp < 6, where 6 is a prespecified value. 

Markov Chain Monte Carlo 

To evaluate the posterior distribution of phyloge- 

netic trees, we used a Markov Chain Monte Carlo 

(MCMC) method (see Hastings 1970; Smith and Rob- 

erts 1993; Fishman 1996). MCMC methods are useful 

for generating a probability distribution n = { Ti}, i = 

0, 1, . . . . when Ti is not easily calculated directly, but 

a function of the IT such as “/Tj may be calculated 

directly. A simple algorithm for this purpose is the Me- 

tropolis-Hastings algorithm (Hastings 1970). There are 

two components to this algorithm: (1) a potential tran- 

sition (from state i to state j) is chosen using a nomi- 

nating transition probability function qij; (2) the chain 

moves to state j with probability cxii and remains in i 

with probability 1 - cxij. The transition probabilities of 

the chain are then 

Pij = 1 
cl&j9 ifi#j 

1 - El qilcXi/, if i = j. 
WV 

The CQ are chosen so that the chain P 

its stationary distri bution and satisfies 

= {pii} has T as 

7rP = IT. (19) 

A simple form for cxii is 

O!ij = min 
Tjqji 

i I -,I. 
=iqij 

(20) 

A sufficient condition for this chain to generate IT as its 

stationary distribution is that {sij} be irreducible and 

aperiodic (see Smith and Roberts 1993). 

In the context of phylogenetic inference, we are 

interested in generating the posterior distribution of phy- 

logenetic trees so that the states of the chain are possible 

labeled histories and Ti = fl7 = i 1 X). The ratios of 

posterior probabilities used in the calculations are of the 

form 

2 _ f(X IT = j>.f(~ = jY.f(X> 

Ti - f(X I? = i)f(7 = i)lf(X) 
(21) 

= f(XlT = j> 
f(Xl7 = i)' (22) 

The density JTX) is eliminated so that the calculation 

does not involve the sum of equation ( 12). The approach 

is useful for generating the posterior distribution of 7 

even when the number of species in the sample is mod- 

erately large. The probability flX I T) was estimated by 

Monte Carlo integration (see equation 13) using two 

methods. The exploratory method recalculates f(X I T) at 

each step with a low level of accuracy. The main method 

calculates each flX I T) only once, but with greater ac- 

curacy, and retains this value so that it can be reused 

the next time this labeled history appears. 

Transitions Between Labeled Histories 

A convenient choice for the nominating function qij 

is a stochastic representation of the nearest neighbor in- 

terchange (NNI) algorithm for generating transitions be- 

tween rooted binary trees. This algorithm generates two 

neighboring topologies for each internal branch, and a 

rooted tree of s species has 2(s - 2) neighbors (see fig. 

3). We assign an equal probability to each of the neigh- 

boring topologies. The NNI algorithm modifies the to- 

pology but ignores the ordering of the nodes (i.e., la- 

beled history). To modify the algorithm so that the chain 

moves between labeled histories, we assign an equal 

probability to each of the possible labeled histories for 

a nominated topology. This involves enumerating and 

recording all the labeled histories for that topology, and 

an algorithm was devised for this purpose (see appendix 

B). We also allow the chain to move, with probability 

p, to another labeled history that belongs to the current 

tree topology if the topology has more than one labeled 

history. The transition probability qij is then 

4ij = 

P 
hj - 1’ 

if no topology change occurs 

1-P 

2(~ - 2)hj’ 
if topology change occurs, 

(23) 

where hj is the number of distinct labeled histories for 
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FIG. 3.-Nearest-neighbor interchange (NNI) algorithm for a root- 

ed binary tree topology. The NNI algorithm generates two neighbors 

for each interior branch. Consider an interior branch a-b, where a is 

the ancestral node and b is the descendant node. Node c is the other 

descendant of a, and nodes d and e are descendants of b. The two 

neighbors of tree 1 are generated by interchanging node c with node 

d (tree 2), and node c with node e (tree 3). If any of nodes c, d, or e 

is an ancestral node, then the entire subtree down that node is moved 

during the interchange. Similarly, the interior branch u-c also generates 

two neighbors, so that tree 1 (or any rooted binary tree of fou; species) 

has four neighbors by NNI. Note that all trees are connected by this 

tree perturbation algorithm; that is, it is possible to reach any particular 

tree from an initial tree by repeated application of NNI. Also, trees 2 

and 3 are themselves neighbors, so that tree 1 can reach tree 2 bv 

either one or two steps. The Markov chain generating transitions 

among trees that are nominated by the NNI algorithm is therefore 

irreducible and aperiodic. 

the topology of labeled history j. It can be shown that 

the Markov chain { qij} is irreducible and aperiodic, as 

required (see fig. 3). 

Calculating Posterior Probabilities for Candidate Trees 

For a set of candidate labeled histories generated 

by the MCMC algorithm outlined above, posterior prob- 

abilities can be calculated to a higher degree of accu- 

racy. The posterior probability of topology 7 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi is JT7 

= i, X)/‘ (x), and this simplifies to AX 1 T = i)a,flX 1 T), 

where the summation is taken over all possible labeled 

histories. If a set is found that includes all labeled his- 

tories with nonnegligible probability, a reasonable ap- 

proximation for the posterior probabilities is obtained if 

the above summation is instead performed over this re- 

duced set of labeled histories. A useful approach is then 

to generate a set of candidate trees from the Markov 

chain using a moderate degree of accuracy for the Monte 

Carlo integration and then use the labeled histories of 

this set, with a high degree of accuracy in the integra- 

tions, to calculate more refined estimates of the posterior 

probabilities for the candidate trees. If some trees with 

nonnegligible probability are not included in the set of 

candidate trees, the above approximation will overesti- 

mate the posterior probabilities of the trees in this set. 

The resulting probabilities may then be interpreted as 

relative probabilities for topologies in the set; these are 

still useful quantities for comparing trees. Another pos- 

sibility is to calculate the ratio of the posterior proba- 

bilities for a particular pair of trees. This is known as 

the Bayes factor (Robert 1994). Candidate trees might 

also be obtained using other phylogenetic methods, such 

as maximum-likelihood, maximum-parsimony, or dis- 

tance-based methods. Of course, these methods are not 

FIG. 4.-Maximum-likelihood tree of nine primate species esti- 

mated from the mitochondrial DNA sequences (888 bp). The log like- 

lihood for this tree is e = -5250.37 with transition/transversion rate 

ratio estimated to be i? = 1.63 ? 0.15. Node times are proportional to 

their estimated values, and the ordering of the nodes corresponds to 

that of the ancestral speciation times so that the tree also gives the 

labeled history. In the Bayesian analysis, this same labeled history has 

the highest posterior probability. 

certain to generate the set of all trees with nonnegligible 

probability, and the results should then not be interpret- 

ed as posterior probabilities. 

Phylogeny of the Primates 

To illustrate the method, we analyzed DNA data 

consisting of a segment of the mitochondrial genomes 

of human, chimpanzee, gorilla, orangutan, gibbon, crab- 

eating macaque, squirrel monkey, tarsier, and lemur 

(Hayasaka, Gojobori, and Horai 1988). The sequence 

consists of parts of two protein-coding genes and three 

tRNA genes. There are 888 sites in the sequence after 

removal of alignment gaps. The transition/transversion 

rate ratio is estimated to be K = 1.63, and the mutation 

rate (the average number of subtitutions per site) is m 

= 0.24. The observed nucleotide frequencies are 0.2660 

(T), 0.3044 (C), 0.3219 (A), and 0.1076 (G). 

Estimates of the parameters of the birth-death pro- 

cess, used as a prior, were obtained using maximum- 

likelihood estimates of node times for the maximum- 

likelihood tree (fig. 4). The estimates of the node times 

are t2 = 0.8911, t3 = 0.7329, t4 = 0.6966, ts = 0.5075, 

t6 = 0.4026, t7 = 0.2272, and ts = 0.1738, with tl = 1. 

These estimates were treated as observations to estimate 

the speciation and extinction rates using equation (3) as 

the likelihood function. The estimates are fi = 6.7 and 

p = 2.5, if we use the estimate of Wolfheim (1983) that 

there are approximately 150 species of extant primates 

in total (p = 9/150 = 0.06), or fi = 8.2 and fi = 4.1 if 

we use the estimate of Kavanagh (1984) that there are 

approximately 185 species of extant primates in total (p 

= 9/185 = 0.049). 

Two different analyses were performed using these 

estimates. In the empirical Bayesian analysis, the esti- 

mates of X and k, described above, were treated as pa- 

rameters of the prior distribution of nodes times (t). In 

the hierarchical Bayesian analysis, the estimates were 
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ik = I(- + 3~21 , (26) LITERATURE CITED 

j, = zk - (ik - l)(ik- 2)/2 + 1. (27) 

The labeled history can then be constructed using the ik 

and j,, k = (s - 1 ), . . . , 1. 

APPENDIX B 

Enumerating Labeled Histories for a Topology 

Here, we outline an algorithm for enumerating all 

the possible labeled histories for a particular rooted tree 

topology. Starting with the root of the tree, which rep- 

resents the first speciation event, we enumerate all pos- 

sible interior nodes that are candidates for the next spe- 

ciation event, choosing each in turn and repeating the 

procedure until all candidate nodes at each speciation 

event are enumerated (visited). Let D, be the set of can- 

didate interior nodes for the kth speciation event and let 

the node chosen be dk, k = 1, . . . , s - 1. The set of 

candidate nodes for the next speciation event, Dk+ 1, in- 

cludes all elements of Dk except for dk and the descen- 

dant interior nodes of node dk (if these exist). 

For the rooted tree of figure 5, the first speciation 

event is at node 9; that is, D1 = (9) and dk = 9. The 

root has two descendant nodes, so that D2 = { 8, 6). 

There are then two possibilities for d2. (1) Suppose that 

we choose d2 = 8. To form D3, we keep 6 in D, and 

replace 8 with its descendant node 7, so that D3 = (7, 

6). Letting d3 = 7 (so that d4 = 6) or d3 = 6 (so that 

d4 = 7) generates two orderings: 9-8-7-6 and 9-8-6-7. 

(2) If we choose d2 = 6, then D, = { 8) and D4 = { 7) 

so that d3 = 8 and d4 = 7 , leading to the ordering 9-6- 

8-7. The tree topology then has three possible orderings 

of the interior nodes (labeled histories): 9-8-7-6,9-8-6-7, 

and 9-6-8-7. 

Note that simply selecting a node from the set D,, 

k= l,..., s - 1, with uniform probability is not guar- 

anteed to produce a labeled history such that each or- 

dering has equal probability. For example, choosing d2 

= 8 or d2 = 6 with equal probability in the above ex- 

ample will lead to probabilities l/4,%, and Y, for the three 

orderings, respectively, instead of % each as expected if 

probabilities are uniform. To assign equal probabilities 

for all possible labeled histories, we therefore record the 

possible orderings enumerated by the above algorithm 

and then select one at random. 
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