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SUMMARY. We derive a Markov chain to  sample from the posterior distribution for a phylogenetic tree 
given sequence information from the corresponding set of organisms, a stochastic model for these data, and 
a prior distribution on the space of trees. A transformation of the tree into a canonical cophenetic matrix 
form suggests a simple and effective proposal distribution for selecting candidate trees close to the current 
tree in the chain. We illustrate the algorithm with restriction site data on 9 plant species, then extend to 
DNA sequences from 32 species of fish. The algorithm mixes well in both examples from random starting 
trees, generating reproducible estimates and credible sets for the path of evolution. 
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1. Introduction 

“A phylogeny is a branching tree diagram showing the course 

of evolution in a group of organisms” (Felsenstein, 1983, p. 

246). More and more, phylogenetic inference is based on mc- 

lecular data, such as DNA or protein sequences. Given such 

data, life scientists wish to reconstruct the phylogeny whence 

these organisms arose. Their reasons are as diverse as the or- 

ganisms they study. Systematists use the phylogeny to aggre- 

gate organisms into monophyletic groups, or clades, for taxo- 

nomic purposes (hence the generic term zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtam). For others, the 

phylogeny might be of peripheral importance, yet ignoring 

it can lead to unwarranted conclusions. For example, given 

a phylogeny, comparative biologists interested in the correla- 

tion between continuous character traits in a group of organ- 

isms can correct for dependencies among species (Felsenstein, 

198513). Huelsenbeck and Rannala (1997) discuss a range of 

inferences that rely on the phylogeny. 

Existing reconstruction techniques attempt to find the phy- 

logeny most compatible with the data under consideration. 

Among the more popular methods, one can categorize those 

using distance matrices (e.g., Sokal and Sneath, 1963; Fitch 

and Margoliash, 1967) in numerical taxonomy as clustering 

algorithms, whereas maximum parsimony (Camin and Sokal, 

1965) and maximum likelihood (Felsenstein, 1981, 1983) each 

optimize an objective function on the space of trees. Felsen- 

stein (1988) provides a comprehensive review of traditional 

methods (see also Swofford et al., 1996). 

Phylogenetic inference can also be dichotomized function- 

ally. Maximum likelihood, maximum parsimony, and distance- 

matrix methods are practical for data sets relating many taxa, 

but beyond point estimates these methods do not produce 

valid inferences. Measures of uncertainty rely exclusively on 

computer-intensive and approximate bootstrap analyses 

(Felsenstein, 1985a; Newton 1996). More recently developed 

techniques, such as the phylogenetic invariants of Cavender, 

Felsenstein, and Lake (see Evans and Speed, 1993; Navidi, 

Churchill, and von Haeseler, 1993) and a Bayesian approach 

(Hasegawa and Kishino, 1989; Smouse and Li, 1989; 

Sinsheimer, Lake, and Little, 1996), allow exact inference, 

but mathematical and computational complexity have con- 

strained these methods to  very small problems. 

We elect a Bayesian approach and use Markov chain Monte 

Carlo (MCMC) methods to provide a computationally feasi- 

ble technique that meets practitioners’ demands for more taxa 

while keeping statistical inference on a sound footing, prc- 

vided certain convergence criteria can be adequately demon- 

strated. Individual components comprising our technique can 

be found in the phylogenetic literature: Smouse and Li (1989) 

introduced the Bayesian paradigm, if not the terminology, to 

phylogeny reconstruction. Goldman (1993) uses nonBayesian 

Monte Carlo tests of significance to  assess the adequacy of 

evolutionary models. Griffiths and Tavar6 (1994a, 1994b) con- 

struct special Markov chains to compute likelihoods for ances- 

tral inference. We apply MCMC to sample trees from the joint 

posterior distribution. Hence, measurement of uncertainty in 
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our optimal tree accompanies tree construction. By contrast, 

other practical methods must first find an optimal tree, gen- 

erate bootstrap samples from the data, and then reestimate 

the tree from each bootstrap sample to address uncertainty 

in their reconstruction. 

This article is organized as follows. Section 2 opens with an 

introduction to the requisite terminology for tree represen- 

tation. Section 3 presents a general stochastic model for the 

evolution of discrete molecular data. Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 articulates the 

Bayesian perspective and defines Metropolis-Hastings algo- 

rithms. Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 introduces a two-stage proposal distribution 

that randomly selects a canonical ordering of leaf labels, then 

acts on the superdiagonal of the corresponding cophenetic 

matrix. Section 6 describes restriction site data and posits a 

stochastic model for its evolution. MCMC is applied and key 

phylogenetic quantities are analyzed. Section 7 extends our 

method to nucleotide sequence data. Section 8 describes runs 

made with computer-simulated DNA sequence data from our 

model and reconstruction. Finally, we summarize the advan- 

tages of our approach and discuss further extensions to more 

complex models. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2. Tree Terminology and Representation 

A phylogeny can be viewed abstractly as a rooted binary 

weighted tree. Mathematically, a tree is a connected graph 

(V ,E) ,  with vertex set V and edge set E ,  characterized by 

the absence of cycles. Vertices are classified as terminal nodes 

(also called leaves or tips) if they are connected through a sin- 

gle edge, and internal nodes otherwise, with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ denoting 

the respective subsets. In rooted binary trees, each internal 

node has exactly three edges, with the exception of the root 

node p, which has only two edges. The placement of the root 

relative to the leaves determines the direction of time and 

hence ancestry. For each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv E V\{p}, there is a unique parent 

node a(v), closer t o  p and connected to v by an edge in E .  

Sample Phylogeny on Seven Taxa 

Leaf 4 7 2 3  6 5 
Labels 
and 

Nodes 

1 
2 

3 

4 

5 

Root Node 6 

Corwscent zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALevels and Coalescent Times 

Figure 1. Labeled leaf nodes across the top identify pres- 

ent-day taxa. Internal nodes drawn below represent common 

ancestors, with connecting edges indicating lines of descent. 

{ 1,4,7} and {2,3,6} are examples of monophyletic groups 

(or clades), subsets of organisms whose most recent common 

ancestors have no other descendants among the considered 

organisms. 

For expository reasons, we prefer to describe the branching 

pattern of a tree in terms of nodes coalescing or merging back- 

ward in time. Figure 1 illustrates the coalescence structure of 

a seven-taxa example. 

The labeled shape of the tree, determined by which pairs of 

nodes coalesce, is called the tree topology and is equivalent to 

the graph (V, E ) .  The topology can he compactly summarized 

by using parentheses to indicate coalescences. For example, 

the topology in Figure 1 is (((l(4 7))(2(3 6)))5). 

A weighted tree @ is a tree in which each edge has an as- 
sociated positive weight. The time separating a child from 

its parent is its edge weight, called its branch length. Branch 

lengths are the vertical distances between connected nodes in 

Figure 1. The ordering in which merges occur defines coales- 

cent levels, and the corresponding temporal intervals between 

consecutive merges constitute coalescent times. Different or- 

derings of coalescent levels within a particular topology gener- 

ate distinct labeled histories, alternative characterizations of 

shape. We restrict attention to trees having contemporaneous 

tips, called dendograms. Such a tree ?T' can be specified either 

by its topology and branch lengths or by its labeled history 

and coalescent times. The numbers of topologies and labeled 

histories grow rapidly with n, equal to (an-3) x (2n-5)  . . . x 1 

and n! x (n - 1)!/2n-1, respectively (e.g., Felsenstein, 1978). 

For any weighted binary tree with labeled leaf nodes, the 

tree topology and branch lengths are determined by the with- 

in-tree distances between all pairs of leaf nodes (Lapointe and 

Legendre, 1992). Each permutation of the leaf labels generates 

a different n x n symmetric matrix of these distances. In a 

rooted tree in which all leaf nodes are equally distant from 

the root, such matrices are composed of at most n distinct 

entries and are called cophenetic. 

When a tree is displayed as in Figure 1, an arbitrary choice 

is made giving a left-right orientation to the pair of branches 

emanating from each internal node. This action imparts an 

order on the leaf nodes. The collection of 2n-1 orderings de- 

termined in this fashion is called the set of canonical orderings 

for a given tree. A cophenetic matrix with a canonical ordering 

has the desirable property that its superdiagonal (the diage 

nal of the submatrix formed by deleting the first column and 

nth row) contains each distinct nonzero cophenetic distance. 

We call such a cophenetic matrix canonical because its super- 

diagonal completely specifies the tree. One such matrix for the 

sample phylogeny of Figure 1 is realized in Table 1. A conve- 

nient shorthand for the information sufficient to represent the 

tree is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{a, a}, where a is a canonical ordering and a denotes 

the times to coalescence between adjacent label pairs in 0. 

Because times to coalescence are one-half the corresponding 

cophenetic distances, a is simply half the superdiagonal in- 

duced by a (for a detailed discussion of cophenetic matrices 

see Lapointe and Legendre, 1991). 

3. A Stochastic Model  for Leaf Data 

Evolution has two components that can be modeled as s t e  

chastic processes: the branching created by speciation and 

extinction to  form a phylogeny, and the propagation of char- 

acters along the branches of that phylogeny. We do not model 

the branching process stochastically, choosing instead to treat 

the phylogeny as a parameter in a model for the propagation 
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Table 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A canonical cophenetic matrix f o r  the tree in Figure 
1, with canonical ordering (5 ,7 ,4 ,1 ,2 ,6 ,3 ) .  For 

specificity, coalescent t imes T in Figure 1 are set at 
(0.8,0.3,0.7,0.5,0.9,1.5), yielding a superdiagonal 

(9.4,1.6,4.6,6.4,3.6,2.2). Redundant lower triangular 
entries are suppressed. The  shorthand notation (u, a )  

becomes {(5,7,4,1,2,6,3),(4.7,0.8,2.3,3.2,1.8,1.1)}.  

Canonical ordering 
of leaf labels 5 7 4 1 2 6 3  

5 0 9.4 9.4 9.4 9.4 9.4 9.4 
7 0 1.6 4.6 6.4 6.4 6.4 
4 0 4.6 6.4 6.4 6.4 
1 0 6.4 6.4 6.4 
2 0 3.6 3.6 
6 0 2.2 
3 0 

of data along each lineage. We adopt standard Markov models 

for the second component (Goldman, 1990). 
Typical character data on n taxa can be arranged as an 

n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx N matrix, where N is the common number of sites, or 

positions, providing information from each taxa. We consider 

problems where elements of this matrix are discrete charac- 

ters from a finite set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD of size zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd. These data are viewed as a 

present-day snapshot of a realization of a stochastic process 

that has evolved along the branches of an unknown phylogeny *. Modeling is reduced to a single site by assuming that evo- 

lution among sites is independent. 

A stochastic model describes the joint distribution of y = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
{y,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw t V = ZUC} of the historical record at Z and the cur- 

rent status at C for a given site. The ancestral root state yp is 

assigned an initial distribution no on D. Conditionally on yp, 
two continuous-time, D-valued Markov processes emanate in- 

dependently from the root zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp along the corresponding branches 

of *. As a given process reaches an internal node v, its value 

is recorded as y,. Evolution continues by repeating this mech- 

anism, with conditionally independent Markov processes em- 

anating from every internal node w € Z. Observable y, for 

w E L: are simply the end products of this evolution. Such a 

model for y is specified by the phylogeny @, the initial dis- 

tribution no, and transition probabilities p (y, I yu jv ) ,  tv ,  p). 
Here a(w) is the parent node of w, t ,  is the intervening branch 

length, and p is a parameter vector describing rates of change 

among states in the Markov process for a given branch. We 

consider two particular models in the examples in Sections 

6 and 7. The probability of the particular realization y at a 

given site is 

T O ( Y P )  J-J P(YV I Y U ( , ) > t V I P ) .  (1) 

U E V \ P  

Both dependency between sites and site-specific P’s can be 

incorporated into the model (e.g., Yang, 1996). Specification 

of an initial distribution no should reflect the underlying biol- 

ogy or can be estimated from the observed frequencies in the 

data. 

To calculate the likelihood function from leaf data at mul- 

tiple sites, we must marginalize (1) over all values of the un- 

observed historical record {yu, w E Z} for all sites. Straight 

summation is computationally prohibitive, requiring on the 

order of Ndn calculations. The pruning method for likelihood 

evaluation requires on the order of N d n  computations be- 

cause it takes advantage of the Markov property of the sub- 

stitution model (e.g., Felsenstein, 1983). Pruning produces a 

collection of fragmentary likelihoods, starting from the leaves 

and working recursively to the root, for each site. For each 

leaf w, L,(i) = l[yv = i] for state i E V (1[.] is the indicator 

function). At an internal node v, the conditional probability 

of descendant leaf data given yv = i is 

where u(u) = ~ ( w )  = w. The likelihood function becomes a 

product across sites 

N 

where the superscript denotes root fragmentary likelihoods at 

the Kth site. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4. The Bayesian Perspective and Metropolis-Hastings 

Algor i thms 

Bayesian analysis requires a prior distribution on the parame- 

ter space of the model. The prior should reflect the scientist’s 

beliefs on how likely particular parameter values are before 

the data have been observed. The posterior distribution n(Q) 
represents the uncertainty about the phylogeny in light of 

new evidence in the sequence data and is proportional to the 

likelihood times the prior distribution. In each example we 

consider, a uniform prior is placed on the finite set of labeled 

histories, and a flat prior density is assumed on a compact 

set of possible coalescent times as well as any propagation 

parameters from the stochastic model. 

For large problems, Monte Carlo techniques might be the 

only effective way to  integrate n(*) so as to obtain poste- 

rior inferences. One such method is the Metropolis-Hastings 

algorithm, in which a transition mechanism proposes a new 

tree @* with density Q(*, iP*) ,  conditional on being at q. 
We subject this draw to a randomized test, accepting it with 

probability 

(3) 

otherwise remaining at Q!. 
The Markov chain *I, Qz,. . . so formed from an initial 

state converges in distribution to n(*) when Q is irre- 

ducible (e.g., Tierney, 1994). The important theoretical point 

is that for almost every realization of the chain, 

i =ko+ l  
(4) 
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where f is a function whose expectation is desired. For ex- 

ample, when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf is the indicator function of a particular topol- 

ogy, equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4) means that the empirical relative frequency 

of that topology in the Markov chain converges to  its corre- 

sponding (marginal) posterior probability. Credible sets, the 

Bayesian counterparts of confidence regions, are collections of 

topologies having high relative frequency in the chain. The 

topology with the highest relative frequency is our reported 

reconstruction. 

Some initial sample points are discarded as burn-in (ko > 0 

in (4)) so as to reduce the bias in the Monte Carlo estimates 

(Besag and Green, 1993). We determine burn-in by inspecting 

time-series plots of the log posterior. A difficult problem with 

the implementation of MCMC is to know whether the K used 

to approximate (4) is large enough. If K is too small, then the 

Monte Carlo variance can overwhelm the signal (Geyer, 1992). 
Roughly speaking, a chain is said to mix well if it acts like 

an independent sample. Cowles and Carlin (1996) present a 

survey of convergence diagnostics commonly used to check 

for evidence of poor mixing. Though we emphasize the r e  

producibility of our results from random starts zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQl, we also 

analyze univariate statistics from single runs. Such diagnostic 

tools are helpful in ferreting out inefficient samplers but pro- 

vide little insight into finding efficient ones. By considering 

distances in tree space, we have developed an algorithm that 

extends Bayesian analysis to relatively large problems. 

5. A Proposal Distribution for Trees 
We consider a two-stage proposal distribution. The first stage 

randomly selects a canonical representation {g, a} for the cur- 

rent tree Q, whereas the second stage perturbs the compo- 

nents of a. In particular, the first stage Q1 samples one of 

the 2n-' canonical orderings of the current tree by indepen- 

dently flipping a fair coin at each internal node, thus select- 

ing a particular superdiagonal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{d,, ,+l : z = 1 , .  . . .  n - 1) of 

a canonical cophenetic matrix having times to coalescence 

{a ,  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd,,,+1/2}. The second stage Q 2  simultaneously and in- 

dependently modifies the elements of a. Specifically, a t  = I U, 1 ,  
where U, is uniformly distributed on the interval (a ,  -6, a, +6) 
for a tuning constant 6 > 0. The tuning constant determines 

how far one can jump from the current tree and hence can be 

used to  modulate the overall acceptance rate of the chain. 

The reflection of uniform probability mass onto the positive 

line is an efficient way to obtain symmetric proposals near the 

boundary. Symmetry of each component update can be seen 

by inspecting the transition density 

-. 

*, 
where I[.] is the indicator function and s,y > 0. Regarding 

the composition Q = ni Q2,i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo Q1, the density at a possible 

proposed tree given the current tree equals 

. .  . .  
. .  . .  . .  . .  . .  
. .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m* . .  

-- 
..... .... 

i i 

The symmetry of Q simplifies (3), making this a Metropolis 

algorithm. 

We illustrate the action of the second stage Q 2  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAni Q2, i  

in a second example, a six-leaved tree represented by (0, a} = 
({ (4,6,3,2,  l j 5 ) ,  (2.3,4.6,2.0,4.0,3.4)}. To recover the tree 

from the canonical cophenetic matrix, place the leaf nodes 

along a horizontal axis in their canonical order. From each 

interleaf midpoint, append an internal node below the axis 

a distance equal to the corresponding time to coalescence. 

Working from top to bottom, draw branches from each inter- 

nal node to the nearest parentless nodes to the left and right 

(Figure 2). Newton, Mau, and Larget (1999) discuss this same 

proposal mechanism from a different perspective. 

A candidate phylogeny proposed by Q can differ from the 

current tree both in its labeled history and in its tree topology. 

For example, in Figure 2, when the perpendicular at (3,2} is 

maximally increased while that at (4, 6} is simultaneously 

decreased, a new labeled history is proposed. Significantly, 

when a similar adjustment is made to the perpendiculars at 

{1,5} and {2,1}, a different topology results, with (1) coa- 

lescing with {2,3} instead of ( 5 ) .  Had the canonical ordering 

(4,6,3,2,5,1) been chosen instead, the same realization by Qz 
would have coalesced (5) with {2,3}. 

We now establish irreducibility of Q = Q 2  oQ1. For a given 

permutation of labels, repeated applications of Q 2  clearly al- 

low transit from any superdiagonal {2ai) to any other super- 

diagonal. Hence, it is sufficient to show that Q allows moves 

among any of the n! permutations of labels. A single appli- 

cation of Q1 can move any label to the first position of the 

permutation. Repeated applications of Q2 ensure that 2a1 is 
the largest superdiagonal element, corresponding to a tree in 

which that first label is connected to the root by one long 

branch. Another application of Q1 allows us to place any re- 

maining label into the second position while fixing the first 

by choosing the current branch orientation at the root node. 

Successive applications of Qz yield a superdiagonal in which 

a1 > a2 > ai,  i > 2, so that the second label coalesces di- 

rectly into the penultimate internal node. By continuing the 

process we are able to move to any permutation. Hence, Q is 

irreducible. 

6. An Example with Binary Data 
Sytsma and Gottlieb (1986) studied the evolutionary relation- 

ships among nine species of the genus Clarkia, plants indige- 

4 6 3 2 1 5 

- 
Figure 2. Candidate trees, attainable from the current tree, 

are characterized by intervals of size 26, centered at the cur- 

rent internal nodes, that constrain the repositioning of the 

internal nodes. 
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nous to California. These botanists extracted chloroplast DNA 

(cpDNA) from the leaves of a young plant of each species and 

exposed that cpDNA to 29 restriction enzymes. A restric- 

tion enzyme acts on DNA by physically cutting the molecule 

wherever it recognizes a particular base pattern. At each po- 

sition on the genome where a cut occurs, a restriction site 

is said to be present. Sytsma and Gottlieb determined 609 

positions where restriction sites occurred, 490 of which were 

noninformative (sites at every species). Informative data were 

translated into a 9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 119 matrix of zeroes and ones, represent- 

ing the absence or presence of a restriction site at mapped 

positions in the chloroplast genome for each species. 

We entertain a simple stochastic model for the evolution 

of restriction sites; a two-state continuous-time Markov chain 

with infinitesimal rates X and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp,  representing the intensity of 

the instantaneous transition from 0 to 1 and 1 to 0, respec- 

tively. The generator matrix is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- A  x 

A = (  CL -J 
The matrix P(t)  of transition probabilities through time t 
satisfies the Chapman-Kolmogorov equation E"(t) = P(t )  .A, 

with solution P( t )  = exp(At) having ( i , j ) t h  entry 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT = p/X and 6' = p + X is the mutation rate. 

We derive an initial distribution for restriction sites at the 

root from biological principles. A uniform distribution of nu- 

cleotide bases at the root and a single restriction enzyme with 

recognition sequence of length 6 suggest an initial distribution 

of rG(1) = (1/4)6 for the presence of a restriction site at each 

genomic site. Because recognition sequences differ from each 

other in at least two positions, the probability of a restriction 

site at each data site is about q(1)  = 29.rri(l) = 0.00708. 

Because a particular location in the genome is detected by 

the presence of a restriction site, only a minuscule fraction of 

the 170 kb (kilobases) enters the data. Following Felsenstein 

(1992), the likelihood (2) is conditioned on seeing at least one 

restriction site at each position 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPO(*, p) is the probability that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{yv = 0, v E L}  at one 

site. 

A complete Bayesian specification requires a prior on the 

propagation parameters p = (T, 6'). We place a uniform prior 

over [l, 46] on T ,  as constrained (somewhat liberally) by the 

biology, assuming a six-base cutter. The mutation rate 6' is 

confounded with time, so the branch lengths are proportional 

to amount of evolution. Hence, we fix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 throughout our anal- 

ysis. In the MCMC algorithm, we cycle between an update of 

the phylogeny 9 and an update of T .  The proposal distribu- 

tion for this second update is a uniform window centered at 

the current value. 

We implemented the MCMC algorithm of Section 5 in For- 

tran 77 for this model and data set. From random starting 

trees, chains of length 250,000 were subsampled at a rate of 1 

in 100 to reduce dependence in stored output, yielding 2500 

phylogenies per run. Each run took approximately 20 min- 

utes on a Sparc 10 work station. Burn-in was less than 200 

iterations, affecting only the first two stored samples. Con- 

vergence of the chain was inferred from the high degree of 

reproducibility of the posterior. In dozens of repeated runs 

from random starts, the realized relative frequencies deviate 

by at most &3%, a measure of Monte Carlo error for samples 

of this size. Additional programming considerations for this 

data set are addressed in Mau and Newton (1997). 

Figure 3 and Table 2 summarize our analysis of the Clarkia 

data. Topologies IV-VII have unrooted trees distinct from 

those that form the 99% credible region. Several subtopolo- 

gies within the clade: {5,6,7,8,9} are weakly supported by 

the data because of the placement of leaf (7). Bootstrap anal- 

ysis using parsimony attaches a weak 61% confidence coeffi- 

cient t o  that branch in the optimal tree (Sytsma and Gottlieb, 

1986, p. 1257). By contrast, the posterior probability of an al- 

ternate attachment is a near negligible 0.4%. The weakness 

in the rooting is reinforced when we simulate from a posterior 

that includes the outgroup species used by Sytsma and Gott- 

lieb as a tenth taxa. That outgroup is attached beneath the 

{5,6,7,8,9} clade with high posterior probability but not at 

the root. 

Our assurances of convergence and adequate mixing of the 

chain are predicated on the verifiable reproducibility of the 

posterior. Visual tracking of a chain as it moves between the 

three predominant topologies provides further confirmation. 

That we are able to present fairly tight credible regions for 

the Clarkia data depends on both the nature and the amount 

of data but most dramatically on the number of taxa. In the 

next section, we increase the complexity of all three factors 

and provide additional diagnostics. 

7. A Nucleotide Sequence Example 
We have analyzed aligned protein coding mitochondria1 DNA 

sequences obtained from 32 species of cichlid fishes (Kocher et 

al., 1995) using the HKY85 model of nucleotide substitution 

A B C 7  D A B C  7 D  

Figure 3. Shapes of the four most common topologies for the nine species of 

Clarkia, where A = {1,2}, B = {3,4}, C = {5,6}, and D = {8,9} denote mono- 

phyletic pairs. The first three topologies differ only in the placement of the root. 
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Table 2 

Enumeration of the Clarkia topologies visited b y  the Markov chain, 
ranked b y  frequency of occurrence. Letters represent the clades defined 
i n  Figure 3. Topologies I through III constitute a 99% credible region. 

Labeled histories Frequencies 
Parenthetic representation 

Label of the topology Types Counts Relative Cumulative 

34 1621 0.649 0.649 
28 447 0.179 0.828 
28 419 0.168 0.996 
4 5 0.002 0.998 
3 3 0.001 0.999 
2 2 0.0008 0.9996 
1 1 0.0004 1.0000 

I (A(B(C(7D)))) 
I1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( (A(C(7D) ))B) 

( (AB) (C (7D) ) 1 
IV (A(B((C7)D))) 
V ((AB)((C7)D)) 
VI ((A((C7)D))B) 
VII ((AB) ((CD)7)) 

I11 

Table 3 

Tribal classification of 31 species of African cichlid fish. Taxa 1-5 form a flock from Lake 
Malawi. The remainder from Lake Tanganyika constitute a Tanganyikan flock. The Malawi, 
Ectodini, and Lamprologini tribes are represented b y  the letters A ,  C, and D, respectively. B 

consists of {6,7,8,9}, a combination of most of Tropheini and one species of Limnochromini. 
E = {22,23,24,26,27} and F ={28,29,30,31} are convenient conglomerations (pseudoclades) 

of remaining tribes. Taxa (25) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi s  not grouped. Taxa (32) i s  an outgroup from Central America. 

Label Species name Tribe Clade 

1 
2 
3 
4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

Pseudotropheus zebra 
Buccochromis lepturus 
Champsochromis spilorhynchus 
Lethrinops auritus 
Rhamphochromis sp. 
Lobochilotes labiatus 
Petrochromis orthognathus 
Gnathochromis pfefferi 
Tropheus moorii 
Callochromis macrops 
Cardiopharynx schoutedeni 
Opthalmotilapia ventralis 
Xenotilapia flavipinnus 
Xenotilapia sima 
Chalinochromis popeleni 
Julidochromis marlieri 
Telmatochromis temporalis 
Neolamprologus brichardi 
Neolamprologus tetracant hus 
Lamprologus callipterus 
Lepidiolamprologus elongatus 
Perissodus microlepis 1 
Perissodus microlepis 2 
Cyphotilapia frontosa 
Tanganicodus irsacae 
Limnochromis auritus 
Paracyprichromis brieni 
Oreochromis niloticus 
Tylochromis polylepis 
Boulengerochromis microlepis 
Bathybates sp. 
Cichlasoma citrinellum 

Malawi 
Malawi 
Malawi 
Malawi 
Malawi 
Tropheini 
Tropheini 
Limnochromini 
Tropheini 
Ectodini 
Ectodini 
Ectodini 
Ectodini 
Ectodini 
Lamprologini 
Lamprologini 
Lamprologini 
Lamprologini 
Lamprologini 
Lamprologini 
Lamprologini 
Perissodini 
Perissodini 
Tropheini 
Eretmodini 
Limnochromini 
Cyprichromini 
Tilapiini 
Tylochromini 
Tilapiini 
Bathybatini 
Central America 

A 
A 
A 
A 
A 
B 
B 
B 
B 
C 
C 
C 
C 
C 
D 
D 
D 
D 
D 
D 
D 
E 
E 
E 

Unattached 
E 
E 
F 
F 
F 
F 

Outgroup 
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((01 ((0203)04))05) ((01 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA((02WW)05) ((01 (02(0304))05) 

Figure 4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASupported subtopological variation within the 

Malawi flock A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{1,2,3,4,5}. Variability is confined to co- 

alescences involving taxa {2,3,4}. Marginal posterior probiG 

bilities are 0.776, 0.183, and 0.041, respectively. 

(Hasegawa, Kishino, and Yano, 1985). Table 3 shows some in- 

formation about these species and their standard taxonomy. 

The HKY85 model is an example of the branching Markov 

substitution models discussed in Section 3. Four base compo- 

sition parameters, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX A ,  X C ,  X G ,  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATT represent the long-run 

relative frequency of each nucleotide base in a single popu- 

lation, and these are used as the probability distribution of 

base values at the root of the phylogeny. The overall rate of 

substitutions is 0. A parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK characterizes the difference 

in substitution rates between transitions (changes between A 
and G or between C and T )  and transversions (any other 

change) (see Hasegawa et al., 1985, with a = KO and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = 0, 
for details). Each DNA sequence contains 1044 sites that can 

be partitioned into three blocks of sites according to codon 

position, and our analysis allowed different parameter values 

across blocks. Across all species, 567 of these sites are con- 

stant. Rather than entertain a full Bayesian analysis of this 

problem, we fixed parameters at estimated values and approx- 

imated the posterior distribution of the unknown phylogeny 

only (Appendix I discusses how we got parameter estimates). 

There are more than lo4' topologies in this problem, as 

compared to 2 x lo6 in the Clarkia example, thus presenting a 

significant challenge to  model-based analysis. After extensive 

program testing, we can report with some confidence a Monte 

Carlo approximation to the posterior distribution. Our sum- 

mary of most probable topologies was calculated by combin- 

ing results from 10 independent realizations of the Metropolis 

chain. Each realization started at a phylogeny randomly sam- 

pled from the uniform prior distribution and proceeded for 

1,100,000 steps. The first IEg = lo5 steps were discarded as 
burn-in, and the remaining chain was subsampled every 200 
steps to produce a stored sequence of 5000 phylogenies. The 

tuning parameter b was selected adaptively during the initial 

stage of the run but attained a fixed post-burn-in value of 

0.00098 in all 10 runs, equal to about 3% of the total height of 

a typical sampled tree. The acceptance rate of proposed trees 

was about 40% with this window. A C-language implemen- 

tation using efficient likelihood evaluation and storage tech- 

niques took about 20 hours per realization on a Pentium 200 
PC. Convergence diagnostics are described in Appendix 11. 

Summarizing the empirical distribution of sampled phylog- 

enies presented a challenge. In the combined runs, we found 

that 34 topologies accounted for half the posterior probabil- 

ity. A 90% credible region contained nearly 600 different tree 

topologies. Evidently, much of this variation was caused by 

Table 4 
Most probable tree topologies f rom the combined runs for the cichlid fish data set. The  posterior probabilities 
are averaged over the 10 separate runs. The standard deviation, minimum, and maximum of the computed 

posterior probabilities of the 10 separate runs are in the last three columns. Letters indicate monophyletic groups, 
and subscripts denote subtopologies within these clades. Subtopologies for the A clade are depicted in Figure 4. 

Posterior Variation among runs 
Parenthetic representation 

Rank of the topology Probability Cumulative SD min max 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
33 
150 

0.0714 
0.0567 
0.0342 
0.0293 
0.0271 
0.0238 
0.0215 
0.0200 
0.0188 
0.0171 
0.0139 
0.0124 
0.0102 

/0.0050 
~0.0010 
/o.ooo 1 

0.0714 
0.1281 
0.1623 
0.1916 
0.2187 
0.2425 
0.2640 
0.2840 
0.3028 
0.3199 
0.3337 
0.3461 
0.3563 
0.4924 
0.7367 
0.9258 

0.0062 
0.0080 
0.0088 
0.0062 
0.0064 
0.0024 
0.0057 
0.0041 
0.0028 
0.0022 
0.0021 
0.0041 
0.0033 

0.0630 
0.0464 
0.0216 
0.0210 
0.0166 
0.0186 
0.0104 
0.0138 
0.0156 
0.0144 
0.0110 
0.0038 
0.0044 

~ 

0.0844 
0.0708 
0.0458 
0.0422 
0.0366 
0.0264 
0.0278 
0.0274 
0.0232 
0.0210 
0.0176 
0.0170 
0.0152 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

B1 = (((0607)09)08) D1 = (((15( 1920))((1617)18))21) Fl = ((2829)(3031)) 
B2 = (((0607)08)09) F2 = (((2829)30)31) 
C1 = ((10(1112))(1314)) El = (((2223)27)(2426)) F3 = (((2829)31)30) 
C2 = (10((1112)(1314))) 

0 2  = ( (15( ( ( 1617) 18) (1920)))21) 

E2 = (( (2223) (2426))27) 
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Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 

Marginal posterior probabilities for the top three subtopologies within each clade 

of cichlids. Subtopologies within clades are numbered in order of their posterior 

probability. Their combined posterior probabilities are summed. The final 

column is the probability that the constituent species are not monophyletic. 

Clade zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx3 Combined probability Probability not a clade 

A 0.776 0.183 0.041 1.000 
B 0.709 0.239 0.034 0.982 
C 0.856 0.141 0.003 1.000 
D 0.661 0.338 0.001 1.000 
E 0.608 0.191 0.023 0.822 
F 0.446 0.393 0.125 0.964 

0 
0 
0 
0 
0.161 
0.036 

uncertainty in subtopological branching structure in the pres- 

ence of fairly well supported monophyletic groups or clades. 

We have identified six such clades of between four and seven 

taxa, four of which appeared in every saved tree. Figure 4 
shows three probable subtopologies for a clade of five species. 

Other subtopologies are defined at the bottom of Table 4 and 

simplify the presentation of topology uncertainty in that ta- 

ble. 

Compelling evidence for the effectiveness of our MCMC 

algorithm is the reproducibility of probability estimates from 

independent realizations, especially because the starting posi- 

tions arise from a uniform distribution. The last three columns 

in Table 4 quantify the variation from run to run in the poste- 

rior probability of individual topologies. For example, Monte 

Carlo standard error is less than 0.3% for the top 13 topolo- 

gies. 

Marginal probabilities are natural in Bayesian analysis and 

suggest further effective summaries of the posterior distribu- 

tion. Table 5 shows the posterior distribution of subtopologies 

within clades. Clearly, the designation of clade is appropriate 

for A, B, C, D, whereas F and especially E are not necessar- 

ily monophyletic. Note that B includes a member from the 

Limnochromini tribe, so it is somewhat surprising that this 

artificial clade is so unambiguously supported. 

A second posterior summary is the distribution over clade 

trees, i.e., the uncertainty in how clades are connected to form 

the tree. Table 6 shows the most probable tree topologies, 

ignoring variability within clades. Notice that clades A, B,  
C, and D ,  the four clades with unanimous support in our 

samples, also are connected to one another unambiguously. 

Finally, we compare our estimate with two phylogenies re- 

constructed using traditional methodologies. Kocher et al. 

(1995) use a distance matrix method (neighbor joining) on 

the third codon position to  identify clades A, B, C, D, and F.  
The authors then apply maximum parsimony to four of those 

clades to obtain optimal subtopologies, rooting each with a 

taxon from an adjoining clade as an outgroup. We obtained a 

maximum likelihood estimate with the program Dnamlk from 

Phylip (version 3.572c), which, like our method, assumes a 

molecular clock that maintains a constant rate of mutation 

along each branch. 

Because of our codon-position-specific model and different 

methodology, it is not surprising that our answer does not 

agree in whole with either reconstruction. There is a fair de- 

gree of similarity in the different solutions arrayed in Table 7. 

Each estimate has clades A, B,  C, D ,  and F in common, re- 
inforcing the current taxonomic scheme based on geographic 

proximity. The greatest disparity between estimates involves 

the attachment of taxa from clade E .  Except for the con- 

trol pair {22,23}, these species are dispersed throughout Lake 

Tanganyika. Interestingly, the three methods concur in plac- 

ing the B clade closer to the Malawi flock zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA,  rather than 

Table 6 
Variation in the interclade coalescence of cichlids. Although A and B always merge together first, 

we continue to differentiate them to emphasize their disparate geographic origins. Uncertainty in the 

location of taxa in clade E and taxon 25 cause almost all the variability at this level of summary. 

Clade trees Posterior probability Cumulative probability 

0.645 
0.102 
0.040 
0.033 
0.027 
0.024 
0.017 
0.017 
0.015 

0.645 
0.747 
0.789 
0.821 
0.848 
0.872 
0.889 
0.906 
0.921 
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Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 
Comparison of the Markov chain Monte Carlo estimate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the phylogeny for  the cichlids with 

estimates using other methods. I n  the neighbor-joining solution, the use of [ , I  indicates how species 
in clade E have been redistributed across clades. A n  additional subtopology is B5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ((06(0708))09). 

Technique Topology 

Neighbor-joining plus parsimony 
Maximum likelihood 
Markov chain Monte Carlo 

to members from its own flock and in preferring a B clade 

that admits a taxon from another tribe. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8. Simulation S tudy  

Further support for the efficacy of our proposed algorithm 

came from a simulation study. We generated 10 synthetic data 

sets analogous to the cichlid data set. Each one had 32 aligned 

sequences of length 1044, separated into blocks of sites corre- 

sponding to the three codon positions, and each one was ob- 

tained using the simulation software Seq-Gen (version 1.04) 

from Rambaut and Grassly (1996). To mimic the complexity 

of the cichlid problem, we fixed the true phylogeny in this sim- 

ulation equal to one sampled from the posterior in Section 7. 

In particular, the corresponding tree topology was the most 

probable one (Table 4). We also used the same substitution 

parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas those obtained in the cichlid problem. 

For each synthetic data set, we ran our MCMC algorithm 

twice, using the same burn-in, subsampling rate, and total 

chain length as before. Having two runs enables us to  com- 

pare variation both within and between data sets and hence to 

gauge Monte Carlo error. The posterior distribution is fairly 

diffuse for all synthetic data sets, as it is in the cichlid prob- 

lem. The posterior probability of the top 10 tree topologies 

ranges from 0.22 to 0.79 across the twenty runs with a mean 

of 0.49, as compared to 0.32 in Table 4. The number of tree 

topologies in a 90% credible set ranges from 20 up to 409. 

This is smaller than the 600 or so topologies reported in the 

cichlid data analysis using all 10 runs but comparable to that 

from any single realization. 

The variation between runs is small compared to  the vari- 

ation among synthetic data sets. Considering the probability 

assigned to the top 10 tree topologies, the absolute difference 

between runs was 0.01 on average. For any tree topology, the 

difference between runs in estimated posterior probability was 

consistently smaller than 0.021. 

The true tree topology was captured very well by the es- 

timated posterior distributions: the modal tree topology was 

equal to the true one in 1 case, differed by a single branch 

placement in 8 cases, and differed by 2 branch placements for 

one synthetic data set. In 7 of the 10 cases, the true topology 

appeared in the top 10. This is about what we expect when 

the average posterior mass assigned to  the top 10 topologies is 

0.49. Overall, the posterior probability of the true tree topol- 

ogy ranged from 0.0076 to 0.3103. Evidence is emerging that 

as we increase the number of sites of simulated data, more 

posterior mass is concentrated on the true tree topology. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

9. Discussion and Extensions 

The analysis of the Clarkia data set and restriction site model 

is straightforward, allowing us to introduce concepts and no- 

tation required in the more complex cichlid fish example. We 

therefore confine our remarks to  the second, more challenging 

example. 

Table 7 compares the estimates from the three methods but 

not the methods themselves. Both maximum parsimony and 

maximum likelihood have solutions that maximize objective 

functions determined by the data. By contrast, our method 

provides a distributional assessment in which pockets of high 

posterior probability are located as the chain traverses tree 

space. Our estimate of the phylogeny is a simple by-product of 

that assessment. We simulate a chain of trees where the long- 

run relative frequency of hitting any particular tree topology 

is proportional t o  its marginal posterior probability. For mod- 

erate number of taxa and a discriminating set of data, almost 

all tree topologies have essentially zero probability mass and 

as such are unseen in even extremely long chains. Neverthe- 

less, reproducible samples from the posterior are generated 

efficiently. Other methods require bootstrapping to appraise 

the quality of their estimate. At best, a few hundred such 

phylogenies provide confidence coefficients on how well each 

node of the original estimate is supported by the data. Our 

method automatically provides posterior probabilities, as il- 

lustrated in Table 4 for the cichlids, from which confidence 

coefficients for a particular tree can be calculated if one so 

chooses. 

For large numbers of taxa, other methods rely on incom- 

plete heuristic searches and time-consuming rearrangements 

that do not guarantee to produce an absolute maximum. We 

claim a clear advantage in this regard because averaging over 

local maxima (tree islands in the phylogenetic context) goes 

to the very heart of MCMC technology. The likelihood surface 

for phylogeny can contain numerous local modes, depending 

on the number of taxa, the data, and the model. The proposal 

distribution we have developed appears t o  navigate reason- 

ably well between modes in the two examples presented. 

Our claim that we are accurately sampling from the pos- 

terior density of the cichlid fish example rests primarily on 

the close agreement in the estimates of posterior probabilities 

in different runs from widely dispersed random starting trees. 

We appreciate that researchers might not have the luxury of 

conducting multiple runs when run times approach a day in 

duration. To that end, time-series diagnostics and intraclade 

switching statistics from a single realization support our claim 

that the chain is mixing well given our level of subsampling. 

Notwithstanding, we echo the caveat of Cowles and Carlin 
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(1996, p. 902) that no single convergence diagnostic is infalli- 

ble and that making comparisons between a few parallel runs 

from disparate starting trees is necessary. 

Our experience with the fish data indicates that stickiness 

can occur when one employs models that exhibit a significant 

lack of fit. For example, application of the standard HKY85 

model equally to all sites generated chains with strongly auto- 

correlated log posteriors that did not mix within the E pseu- 

doclade. Modification of our method might be necessary to 

increase the rate of mixing within clades to successfully solve 

a wider range of data sets and models. 

The technique described herein supposes a molecular clock. 

This constraint is a particular concern for the cichlid fish data, 

where significantly higher mutation rates have been observed 

among members of the Ectodini tribe (Kocher et al., 1995, 

p. 425). An alternate viewpoint considers additive trees in 

which leaves are not constrained to be contemporaneous and 

branch lengths are measured in units of evolution instead of 

time. We have implemented such a nonclock model by decom- 

posing additive trees into dendograms and star components 

(see Lapointe and Legendre, 1992). The proposal distribution 

described in this paper is applied to the dendogram. A vari- 

ant of Q 2 ,  indexed by leaf labels, is applied simultaneously to  

the star component. The subsequent hybrid driver has been 

applied successfully to the cichlid data, and we plan to report 

the results elsewhere. 

Our reported calculations have assumed rate constancy 

within blocks of sites, although models allowing more general 

rate variation are available that might further improve the fit 

(Yang, 1996). Independence between sites is a more difficult 

assumption to relax. Schijniger and von Haeseler (1994) look 

at protein coding regions where the first two codons are as- 

sumed correlated. General dependent models are described in 

Tavark and Feng (1995). Fortunately, our method is indepen- 

dent of the particular form of the likelihood (or the prior). 

Provided that the likelihood is computable and the number 

of additional parameters in the model remains manageable, 

one should be able to substitute into the acceptance ratio and 

run the chain in a reasonable amount of time. 

Since the original submission of this article, we have be- 

come aware of efforts of others to run Markov chains on the 

space of phylogenetic trees. Kuhner, Yamato, and Felsenstein 

(1997) use MCMC to sample genealogies to  estimate the prod- 

uct of the effective population size and the mutation rate per 

site. Yang and Rannala (1997) and Li, Pearl, and Doss (1996) 

have proposed MCMC algorithms for Bayesian phylogenetic 

inference that differ greatly from the method we have devel- 

oped. The global nature of the tree update, coupled with the 

existence of a tuning parameter that moderates the overall 

acceptance rate, distinguishes our approach. 
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RESUMB 

Nous dkrivons une chaine de Markov pour kchantillonner zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8. 
partir de la distribution a posteriori pour un arbre phylogkn6- 
tique conditionnellement zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA l’information de sequence prove- 
nant de l’ensemble correspondant des organismes, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB un modkle 
stochastique pour ces donnkes, et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& une distribution a priori 
sur l’espace des arbres. Une transformation de l’arbre en une 
forme canonique de matrice cophknktique suggitre une dis- 
tribution simple et efficace pour sklectionner des arbres can- 
didats proche de l’arbre courant dans la chaine. Nous illus- 
trons l’agorithme avec des donnkes de site de restriction sur 
neuf espkces de plantes, puis nous l’ktendons aux skquences 
d’ADN provenant de 32 espitces de poisson. L’algorithme fonc- 
tionne bien dans les deux exemples a partir d’arbres de depart 
alkatoires, en gknkrant des estimations reproductibles et des 
ensembles plausibles pour le chemin d’kvolution. 
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APPENDIX I 

Estimation of Separate Parameters for  Three 
HKY85 Models, One for Each Codon Position 

Exploratory data analysis of the cichlid DNA sequences by 

codon position shows striking differences in the percentage 

of variable sites (31.5%, 14.9%, and 90.5%, respectively) and 

in base composition. We first estimated the values of T sep- 

arately for each codon position using observed base counts. 

To estimate different values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA19, we ran three separate simu- 

lations using data from each position alone, updating K. each 

cycle, and used the subsequent relative total tree heights to 

find values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA01 = 1.4, 02 = 1.0, and 03 = 8.3. Finally, with 

these three values of 0, we ran a chain with all the data al- 

lowing K. to change separately for each position, estimating 

nl = 7.5, ~2 = 2.5, and ~3 = 10.75. All subsequent runs were 
conducted with these parameter values fixed. 

APPENDIX I1 

Convergence Diagnostics for  Cichlid Data Set 

The choice of chain length, subsampling rate, and burn-in 

parameters was affected by the limitations of computer speed 
and memory, but the analysis of output from test runs was 

also helpful. Figure 5 shows a time-series plot of the log like- 

lihood of saved phylogenies from 1 of the 10 final runs. It is 

typical to see a dramatic increase in log likelihood during the 

burn-in period, with stabilization at what appears to be a 

stationary series after about lo4 basic steps. The autocorre- 

lation function in Figure 6 indicates that trees separated by 

about 20 storage steps present approximately independent log _. 

ing molecular sequence data. Biometrics 52, 193-210. likelihoods. 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5.  Time-series plot of the log posterior for 5500 

subsampled trees of cichlids. The log posterior plateaus at a 

mean value of -7868 after 75 sample points, indicating that 

a burn-in of 500 is fairly conservative for this particular run. 

Lower panel shows the second half of our run. 

An especially useful measure for assessing mixing is the 

frequency of topological changes within individual clades. Ta- 

ble 8 tabulates these switching counts from one run on the 

cichlid data. Ideally, the number of switches would be close 

to the expected number, assuming independent sampling. In- 

deed, Table 8 shows that the number of switches between 

the subtopologies within clade A for one typical run agrees 

A1 
A2 
A3 

remarkably well with the expected counts, assuming indepen- 

dence shown here: 

A1 3019 722 144 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
' 42  722 173 34 
A3 144 34 7 

The other clades do not mix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas rapidly, with the number of 

observed switches only a small fraction of that expected zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas- 
suming independence. The rate of mixing within these clades 

is sufficient, however, to give us reproducible results over sep- 

arate runs. 

1 1  

0 20 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA40 60 80 100 

lag 

Figure 6. Autocorrelation function of the log posterior dis- 

played in Figure 5 .  ACF drops below noise level at about 20 

lags. 

Table 8 
Swapping between subtopologies f o r  a single run  o n  the cichlid data. Each TOW shows the distribution 
of the subtopologies that immediately follow a given subtopology an the saved sequences zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof trees. FOT 

example, subtopology A2 followed A1 719 tames in the 5000 saved tree topologies. Topologies that appear 
only infrequently have been collapsed. A tree in which a clade does not appear is  tabulated under zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-. 

Ai ' 42  A3 

3024 719 142 
715 180 34 1175 765 
146 30 9 

39 5 12 

18 1836 734 364 1407 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Ex 148 28 237 192 205 
- 222 112 32 464 161 - 


