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This paper gives an exposition of the use of the posterior likelihood ratio for testing point null

hypotheses in a fully Bayesian framework. Connections between the frequentist P-value and the

posterior distribution of the likelihood ratio are used to interpret and calibrate P-values in a Bayesian

context, and examples are given to show the use of simple posterior simulation methods to provide

Bayesian tests of common hypotheses.
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1. Introduction

Neyman-Pearson or frequentist inference and Bayes inference

are most clearly differentiated by their approaches to point null

hypothesis testing. With very large samples, the frequentist and

Bayesian conclusions from a classical test of significance for a

point null hypothesis can be contradictory, with a small frequen-

tist P-value casting serious doubt on the null hypothesis, but a

large Bayes factor or Bayesian Information Criterion (BIC) in

favour of the null hypothesis.

A Bayesian approach by Dempster (1974, 1997) through the

likelihood ratio between the null and alternative hypotheses, ex-

tended by Aitkin (1997), provides a different evaluation of the

point null hypothesis, one in which frequentist and Bayesian

conclusions are much closer. The discussion in Aitkin (1997) is

restricted, in both the computational approach and the range of

examples considered, and in this paper we extend both, by using

simple posterior simulation methods for intractable integrations,

and a range of examples of the standard frequentist hypothesis

testing kind, to illustrate the broad generality of the approach.

We also provide the usual Bayes factor comparisons where these

are possible, to illustrate the differences in conclusions.

Section 2 of the paper gives a simple binomial example with

no nuisance parameters to illustrate Dempster’s original ap-

proach, and Section 3 gives the general result from Aitkin (1997).

Section 4 illustrates the general approach with nuisance param-

eters using the two-parameter normal model, discussed analyti-

cally in Aitkin (1997) and by simulation methods in Chadwick

(2002), and illustrates the role of posterior simulation in pro-

viding very simple solutions to the sometimes complex distri-

butional problems of the likelihood ratio. Section 5 extends the

“nested model” approach to encompassing models, and Sec-

tion 6 shows that for the normal multiple regression model,

straightforward posterior simulation methods give Bayesian ana-

logues to backward elimination in frequentist theory. Section 7

illustrates the importance of parametrization with the binomial

(N , p) model which has been considered by many authors. Sec-

tion 8 discusses the Bayesian analysis of the 2 × 2 contingency

table with a well-known example from a randomized clinical

trial. Section 9 gives concluding discussion.

2. Simple null hypotheses

Consider the simple example due to Stone (1997) in the dis-

cussion of Aitkin (1997). A physicist runs a particle-counting

experiment to identify the proportion θ of a certain type of par-

ticle. He has a well-defined scientific (null) hypothesis H1 that

θ = 0.2(= θ1) precisely. There is no specific alternative hypoth-

esis, only the general H2, that θ �= θ1. He counts n = 527, 135

particles and finds r = 106, 298 of the specified type. What is

the strength of the evidence against H1?

The binomial likelihood function

L(θ ) =
(

n

r

)
θ r (1 − θ )n−r ≈ L(θ̂ ) exp

{
−

(θ − θ̂ )2

2SE(θ̂ )2

}

is maximized at θ = θ̂ = 0.201652 with standard error SE(θ̂ ) =
0.0005526. The standardized departure from the null hypothesis

is

Z1 = |θ1 − θ̂ |/SE(θ̂ ) = 0.001652/0.0005526 = 2.9895,
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with a two-sided P-value of 0.0028, strong evidence against the

null hypothesis. The maximized likelihood ratio is L(θ1)/L(θ̂ ) =
0.01146.

The physicist uses the uniform prior π (θ ) = 1 on 0 < θ < 1

under the alternative hypothesis, and computes the Bayes factor

B = L(θ1)

/ ∫ 1

0

L(θ )π (θ ) dθ.

The denominator is

L B =
(

n

r

) ∫ 1

0

θ r (1 − θ )n−r dθ

=
(

n

r

)
B(r + 1, n − r + 1)

≈ L(θ̂ )

∫ 1

0

exp

{
−

(θ − θ̂ )2

2SE(θ̂ )2

}
dθ

=
√

2π SE(θ̂ )L(θ̂ )

= L(θ̂ )/ f (θ̂ ),

where B(r +1, n−r +1) is the complete Beta function, and f (θ̂ )

is the normal posterior density N (θ̂ , SE(θ̂ )2) of θ evaluated at

the mean θ̂ ; since the sample size is so large the actual posterior

Beta density is very nearly normal.

The Bayes factor is thus

B = L(θ1)/L B

= f (θ̂ ) · L(θ1)/L(θ̂ ),

a simple multiple of the maximized likelihood ratio. In this ex-

ample the multiplier is

f (θ̂ ) =
1

√
2π SE(θ̂ )

=
1

0.0013851
= 721.937,

giving the Bayes factor

B = 721.937 · 0.01146 = 8.27,

indicating evidence in favour of the null hypothesis. Thus the

P-value and Bayes factor are in clear conflict. However the pos-

terior distribution of θ is not in conflict with the P-value, since

the posterior probability that θ > 0.2 is

Pr[θ > 0.2 | y] = �(2.9895) = 0.9986 = 1 − P/2.

Any Bayesian using the uniform prior must have a very strong

posterior belief that the true value of θ is larger than 0.2. Equiv-

alently, the 99% equal-tailed Bayesian credible interval for θ

is

θ ∈ θ̂ ± 2.576SE(θ̂ ) = (0.20023, 0.20308)

which is numerically identical to the 99% frequentist confidence

interval, and excludes θ1.

This example illustrates one of the difficulties of Bayesian

analysis, that one may have to choose between “hypothesis test-

ing” and “estimation” approaches when these are in conflict.

Kass and Greenhouse (1989) and Kass and Raftery (1995) give

clear statements of the difference between these approaches.

In his 1974 conference paper, Dempster considered the likeli-

hood ratio between the null and alternative hypothesis models:

L R(θ ) = L(θ1)/L(θ ).

Since θ is unknown under the alternative, L(θ ) is also unknown,

but is a function of θ and so, given the data, it has a poste-

rior distribution π [L(θ ) | y] which can be derived from that of

θ, π (θ | y). Since L(θ1) is a known number, the likelihood ratio

also has a posterior distribution, π [L R(θ ) | y]. We may therefore

find its posterior percentiles, and so can find

Pr[L R(θ ) < 0.1 | y]

for example. A likelihood ratio of 0.1 between fully speci-

fied simple hypotheses would be quite strong sample evidence

against the “numerator” hypothesis; a posterior probability of

0.9 or more that the likelihood ratio was less than 0.1 would

similarly be quite strong evidence against this hypothesis, and

in general the posterior distribution of the likelihood ratio can be

used to assess the strength of the evidence against (or in favour

of ) the null hypothesis.

In the Stone example, approximating the binomial likelihoods

by the corresponding normal likelihoods gives the likelihood

ratio as

L R(θ | y) ≈
φ([θ1 − θ̂ ]/SE[θ̂ ])

φ([θ − θ̂ ]/SE[θ̂ ])
,

or in terms of the “deviance” D(θ ),

D(θ ) = −2 log L R(θ | y) = Z2
1 − Z2,

where

Z =
θ − θ̂

SE(θ̂ )

Here Z has a posterior N (0, 1) distribution, and Z1 is Z with θ

replaced by θ1. Now Z1 = 2.9895 and so

Pr[L R(θ ) < 0.1 | y] = Pr[D(θ ) > 4.605 | y]

= Pr
[
Z2 < Z2

1 − 4.605 | y
]

= Pr
[
χ2

1 < 4.331
]

= 0.9626,

while

Pr[L R(θ ) < 1 | y] = Pr[D(θ ) > 0 | y]

= Pr
[
Z2 < Z2

1

∣∣ y
]

= Pr
[
χ2

1 < 2.98952
]

= 0.9972

= 1 − P

where P is the frequentist P-value from the likelihood ratio test.

This illustrates Dempster’s fundamental result (which he gave

for a p-parameter simple null hypothesis against a general alter-

native) that, with normal likelihoods and flat priors, the P-value

is equal to the posterior probability that the likelihood ratio is
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greater than 1, that is, that the data support the null hypothesis

more strongly than the alternative.

The above form of Bayesian analysis comes to the same con-

clusion as the frequentist analysis, that there is strong sample

evidence against the null hypothesis. Why does the Bayes factor

point in the opposite direction? One point which does not seem

to have been noticed is that we intended to compare the null bi-

nomial model with “some other” binomial model, unspecified.

But the binomial distribution integrated over the flat prior gives

a uniform distribution with mass 1/(n + 1) at the n + 1 possi-

ble values of r. The Bayes factor is comparing the null binomial

model with the uniform distribution for r. This was surely not our

intention, since no binomial distribution is uniform. The inte-

gration has taken us outside the family of binomial distributions

within which we wanted to compare the null model.

The general Bayesian opposition to the use of averaging over

the sample space in frequentist testing is weakened in this ap-

proach, since the P-value has a fully Bayesian interpretation,

though it might be argued that the P-value still overstates the

strength of evidence against the null hypothesis since it refers

only to a preference for the null hypothesis over the alternative.

However we may compute any percentiles of the posterior dis-

tribution of the likelihood ratio; in the example above, there is

strong posterior evidence that the likelihood ratio is less than

0.1, not just that it is less than 1. The information in the full

posterior distribution of the likelihood ratio provides a richer

analysis than just the frequentist P-value, and also calibrates the

P-value from a Bayesian perspective.

This approach was extended to models with nuisance param-

eters in Aitkin (1997).

3. General point null hypothesis testing

problems

We deal with a family of models M, determined by a proba-

bility model f (y | η) depending on a vector-valued parameter

ηT = (θT , φT ). It is helpful to consider the probability model

in the context of a large but finite population of N members, in

which θ and φ represent population properties like the mean and

variance, which could be determined exactly by a census of the

population, though we have only a sample of n values.

Some Bayesians (see for example Geisser 1993) deny the rel-

evance of parameters, insisting that only random variables have

a real existence, but most statisticians regard them as convenient

model components, and survey sampling statisticians take finite

population parameters as the essential feature for statistical in-

ference.

The likelihood for the given data y is

L(θ, φ) = f (y | θ, φ).

In our analysis there are true values of θ and φ; the prior dis-

tribution for these parameters represents our uncertainty about

these true values.

We consider a null hypothesis H1 which specifies the value

θ1 of θ , while φ is unspecified. An alternative hypothesis H2

specifies either that θ is completely unspecified, or that θ has a

different specified value θ2. In either case φ is unspecified.

The joint prior distribution for θ and φ is π (θ, φ). This may

be proper or improper; we make particular use of flat priors

to represent diffuse prior information, with the aim, following

Berger and Bernardo (1989), of developing a reference prior

analysis of these hypothesis testing problems.

The first class of testing problems with an unspecified alterna-

tive was considered by Aitkin (1997), and we review the results

briefly. If the true value of φ, and the true value of θ under the

alternative H2 were known, the likelihood ratio between the hy-

potheses would provide the data evidence for H1 against H2; we

write the likelihood ratio as

L R = L R(θ, φ) = L(θ1, φ)/L(θ, φ),

where the dependence of LR on the data y and the known value

θ1 are suppressed, and the values of θ and φ are understood to

be the true values.

In this approach the inferential function LR is the likelihood

ratio defined by a section through the likelihood at the true value

of the nuisance parameter φ, evaluated at the null hypothesis

value θ1 and at the true value of θ . Though the true values of φ

and θ are unknown, their posterior distribution is known:

π (θ, φ | y) =
L(θ, φ) · π (θ, φ)∫

L(θ, φ) · π (θ, φ)dθdφ

and therefore so is the posterior distribution of LR. In particular,

we may evaluate the posterior probability

Pr[L R < k | y]

for any specified k, like 0.1 or 0.01. It will be convenient to

evaluate such probabilities through the posterior distribution of

the “true deviance” D = −2 log L R.

For normal likelihoods with flat priors, Aitkin (1997) showed

that the result due to Dempster, for a p-parameter simple null

hypothesis, with normal likelihoods and flat priors:

P[L R < k | y] = Fp

[
F−1

p (1 − P) + 2 ln k
]

applies also to nuisance-parameter models (where p is the di-

mension of θ, P is the frequentist P-value from the likelihood

ratio test, and Fp(x) is the cdf of the χ2
p distribution). In partic-

ular, for k = 1,

Pr[L R < 1 | y] = 1 − P,

so again the P-value is the posterior probability that the likeli-

hood ratio is greater than 1, that is that the null hypothesis is

better supported than the alternative.

In finite samples with non-normal likelihoods these are

asymptotic results and hence are insufficient. We now discuss

simulation approaches to obtaining the posterior distribution of

LR or D, in the context of the two-parameter normal model.
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4. Example—the two-parameter normal model

The model for data y is N (µ, σ 2) with σ unknown. A null hy-

pothesis H1 specifies µ = µ1 = 0; the alternative H2 is gen-

eral. A random sample of n = 25 observations gives ȳ = 0.4,

and unbiased variance estimate s2 = 1. What is the strength

of the evidence against H1 in favour of H2? The t-statistic is

t =
√

25 · 0.4/1 = 2.0, with a two-sided P-value of 0.057 from

the t24 distribution.

The likelihood function is

L(µ, σ ) =
1

(2π )n/2σ n
exp

{
−

1

2σ 2
[(n − 1)s2 + n(ȳ − µ)2]

}
,

and given independent diffuse priors on µ and log σ , the con-

ditional posterior distribution of µ | σ is N (µ̂, σ 2/n), and the

marginal posterior distribution of s2/σ 2 is χ2
n−1/(n − 1). The

true deviance is

D = −2 log

{
L(µ1, σ )

L(µ, σ )

}
=

n

σ 2
[(ȳ − µ1)2 − (ȳ − µ)2]

=
n(ȳ − µ1)2

s2
·

s2

σ 2
−

n(ȳ − µ)2

σ 2

= t2 · W − Z2

where Z has a posterior N (0, 1) distribution independently of

W = s2/σ 2 which has the χ2
n−1/(n − 1) distribution. It follows

immediately that

Pr[L R < 1 | y] = Pr[D > 0 | y]

= Pr[Z2/W < t2 | y] = 1 − P,

where P is the P-value 0.057 from the tn−1 distribution.

For other values of k the distribution of D has no simple an-

alytic form, so we simulate it by generating N times a random

value of W and an independent random value of Z, and com-

puting the value of D = t2W − Z2 for the observed t. Figure 1

shows the posterior cdf of D from N = 10, 000 simulations.

The simulated probability that D > −2 log 1 = 0 is 0.945,

with simulation standard error 0.0023, in close agreement with

the known value of 1− P of 0.943, and the simulated probability

that D > −2 log 0.1 is 0.157, with standard error 0.0036.

The probability that the L R < 0.1 is quite low—there is

no convincing evidence against the null hypothesis. This is of

course to be expected since the P-value does not reach even

conventional levels.

The Bayes factor cannot be computed here due to the diffuse

prior on µ.

5. An encompassing model

We now extend these results to the comparison of two specified

values of θ , following Chadwick (2002). We illustrate with the

two-parameter normal model.

The model and data are as in the previous example, but there

are now two point hypotheses, H1 : µ = µ1 = 0 and H2 : µ =

Fig. 1. Posterior distribution of D

µ2 = 1. What is the strength of evidence against H1 in favour

of H2?

The t-statistic regarding H1 as the “null” hypothesis is t1 = 2.0

as before, while that regarding H2 as the null is t2 = 3.0. Clearly

H1 is better supported. The maximized likelihood ratio is

L Rmax =
L(µ1, ̂σ1(µ1))

L(µ2, ̂σ2(µ2))

=
[(

1 +
t2
2

n − 1

)/(
1 +

t2
1

n − 1

)]−n/2

= 7.80,

where

̂σ 2
j (µ j ) = [(n − 1)s2 + n(ȳ − µ j )

2]/n, j = 1, 2.

The true deviance is now

D = −2 log

[
L(µ1, σ )

L(µ2, σ )

]

=
n

σ 2
[(ȳ − µ1)2 − (ȳ − µ2)2]

=
s2

σ 2

[
t2
1 − t2

2

]
.

The only nuisance parameter is σ , and as before s2/σ 2 has the

χ2
n−1/(n − 1) marginal posterior distribution. So for the upper

tail,

Pr[L R > k | y] = Pr[D < −2 log k | y]

= Pr
[
χ2

n−1 > −2(n − 1) log k
/(

t2
1 − t2

2

)]
.

We drop the conditioning on y for notational convenience. For

k = 1 we have immediately

Pr[L R > 1] = 1,
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Fig. 2. Posterior distribution of D

and for k = 10,

Pr[L R > 10] = Pr
[
χ2

24 > 24 · 4.605/5 = 22.10
]

= 0.573.

So H1 is certainly better supported, but the evidence in favour

of H1 is not very strong—the chance that the true LR is greater

than 10 is not much over 50%.

The posterior distributions of D and of LR are graphed in

Figs. 2 and 3. It is of interest that

Pr[L R > 7.80] = Pr
[
χ2

24 > 19.72
]

= 0.713,

Fig. 3. Posterior distribution of LR

so the maximized likelihood ratio is at the 29-th percentile of the

posterior distribution of the true LR; in this case the maximized

likelihood ratio appears to understate the strength of evidence.

Since the parameter space has the same dimension under both

models, the Bayes factor can be computed with the same diffuse

prior on log σ , assuming that the same (arbitrary) prior constant

is used. The integrated likelihood over σ is

L B(µ) =
1

2(2π )n/2
Ŵ(n/2)

[
2

(n − 1)s2 + n(ȳ − µ)2

]n/2

and hence

B F =
[

1 + t2
2

/
(n − 1)

1 + t2
1

/
(n − 1)

]−n/2

= L Rmax = 7.80.

Thus the Bayes factor gives the same understatement of strength

of evidence as the maximized likelihood ratio in this example.

We turn now to more complex examples.

6. Multiple regression

Consider the normal regression model with n observations on a

response Y and a p + 1-vector x of p explanatory variables and

1, with the model

Y | x ∼ N (µ, σ 2), µ = βT x.

Our aim is to assess the important variables through a series

of model comparisons expressed in terms of partitions β =
(β j , γ j ) and hypotheses H j : γ j = 0 in model M j . Paralleling

backward elimination methods in frequentist theory, we examine

the strength of evidence for the various models in the backward

elimination sequence. The approach does not depend on the

choice of variables—any sub-model can be compared with the

full model in the same way.

We use a well-known data set—the gas consumption data of

Henderson and Velleman (1981), which has observations on the

fuel consumption, expressed in miles per (US) gallon, of 32 cars

with 10 design variables on the engine and transmission.

We follow the backward elimination analysis of Aitkin, et al.

(1989, p. 140), using log(mpg) as the response variable and the

explanatory variables, listed in order of backward elimation:

c, drat, s, t , log(disp), cb, g, and log(hp). The corresponding

backward elimination t-statistics for these variables are −0.082,

−0.320, −0.340, −0.461, −0.723, −1.070, 1.052 and −4.372.

Elimination ceases with a final model using log(wt) and log(hp).

In the backward elimination sequence the sums of squares of

eliminated variables are pooled with the error sum of squares

from the full model, so the degrees of freedom of the t-statistics

change at each step.

In the analysis below we maintain the posterior distribution

of β and σ from the full model, as this gives a more realistic

picture of the information about many parameters from the small

sample.
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The likelihood for the full model is

L(β, σ ) =
1

(2π )n/2σ n
exp

{
−

1

2σ 2
(y − Xβ)T (y − Xβ)

}

=
1

(2π )n/2σ n
exp

{
−

1

2σ 2
[RSS

+ (β − β̂)T X T X (β − β̂)]

}

where X is the n × (p + 1) design matrix,

β̂ = (X T X )−1 X T y, RSS = (y − X β̂)T (y − X β̂).

We take flat priors on β and log σ to give the usual joint posterior

distribution, with

β | y, σ ∼ N (β̂, σ 2(X T X )−1), RSS/σ 2 | y ∼ χ2
n−p−1.

Consider the null hypothesis H j : βT = (βT
j , 0T ) for some

partition. The true likelihood ratio and deviance are

L R =
L(β j , 0, σ )

L(β, σ )

D =
1

σ 2

[
RSS j − RSS + (β j − β̃ j )

T X T
j X j (β j − β̃ j )

− (β − β̂)T X T X (β − β̂)
]

where RSS j is the residual sum of squares from model M j , X j

is the partition of X corresponding to β j , and β̃ j is the MLE of

β j in model M j .

The posterior distribution of D or LR is easily simulated, by

generating a random σ from its marginal posterior distribution,

and a random β from its conditional posterior given the gener-

ated σ . The MLEs and residual sums of squares from the models

are known, and the quadratic forms in β are evaluated from the

MLEs and X matrices.

We show in Figs. 4–11 the posterior distributions of D, based

on 1000 simulations, for the successive omitted partitions corre-

sponding to the backward elimination t-statistics: {c}, {c, drat},

{c, drat, s}, {c, drat, s, t}, {c, drat, s, t , log(disp)}, {c, drat, s,

t , log(disp), cb}, {c, drat, s, t , log(disp), cb, g}, {c, drat, s, t ,

log(disp), cb, g, log(hp)}.

The distributions are all remarkably diffuse, with very large

variances, reflecting the very small degrees of freedom of the

residual sum of squares. The tail probabilities that D < 4.605,

that is that L R > 0.1 (weak evidence against the null hypothesis

of zero regression coefficients), are given in Table 1, together

with the P-values from the relevant t-distributions.

Despite this diffuseness the message is very clear: The early

distributions have large probabilities for D < 4.605, around 0.5

for the first four variables eliminated; this drops to around 0.16

at step 5 but increases again to around 0.2 in step 7. At step 8 the

distribution changes drastically, with a tail probability below

4.605 of only 0.036. These results are completely consistent

with the backward elimination t-statistics, though the latter are

not pooled tests of all the variables being eliminated.

Fig. 4. Step 1

Fig. 5. Step 2

7. The importance of parametrization

In his discussion of Aitkin (1997), Dempster expressed concern

about the extension of the approach proposed there, in the sense

of the dependence of the true LR on the parametrization of the

nuisance parameter.

The ideal parametrization would have fully orthogonal pa-

rameters θ and φ, with likelihood of the form

L(θ, φ) = L1(θ )L2(φ).
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Fig. 6. Step 3

Fig. 7. Step 4

Then the true likelihood ratio for a null hypothesis H1 : θ = θ1

is

L R =
L(θ1, φ)

L(θ, φ)
=

L1(θ1)

L1(θ )

for any φ, so the nuisance parameter is irrelevant—any

prior distribution for it gives the same likelihood ratio for

θ .

This parametrization does not generally exist; the next best

has orthogonality in the observed or expected information ma-

trix (Cox and Reid 1987); as the sample size increases and

if the likelihood approaches normality in the parameters this

Fig. 8. Step 5

Fig. 9. Step 6

will give approximately orthogonal parameters. For such a

parametrization, independent priors will be a natural choice

and their effect will dissipate rapidly with increasing sample

size.

The importance of orthogonality is clear from the following

example.

The binomial sample size

Given a sample y1, . . . , yn from a binomial distribution b(N , p)

with both parameters unknown, what can be said about N? The
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Fig. 10. Step 7

Fig. 11. Step 8

likelihood is

L(N , p) =
n∏

i=1

(
N

yi

)
pyi (1 − p)N−yi

=

[
n∏

i=1

(
N

yi

)]
pt (1 − p)Nn−t

where t =
∑n

1 yi .

This problem was originally considered by Olkin, Petkau and

Zidek (1981) in the framework of the “instability” of the MLE

N̂ from samples in the “near-Poisson” region where the sample

mean and variance were close.

Table 1. Pr[D < 4.605] and t P-value for subset elimination

Step Variable omitted Pr[D < 4.605] P-value

1 c 0.585 0.935

2 drat 0.473 0.752

3 s 0.458 0.737

4 t 0.420 0.649

5 log(disp) 0.159 0.476

6 cb 0.111 0.294

7 g 0.196 0.302

8 log(hp) 0.036 0.00014

A recent discussion from a Bayesian perspective, with some

references, was given by Berger, Liseo and Wolpert (1999) who

argued for the general use of integrated likelihoods for the elim-

ination of nuisance parameters, and gave this model and the

following data (considered by Olkin et al. and later authors) as

a persuasive example.

The data from a sample of n = 5 are 16, 18, 22, 25, 27. The

sample mean is ȳ = 21.6 and the (biased) variance estimate s2

is 17.04, giving moment estimates of p̃ = 1 − s2/ȳ = 0.211

and Ñ = ȳ/ p̃ = 102.3. These estimates are highly unstable,

as are the MLEs, in the sense that small changes in the largest

observation produce very large changes in Ñ : for example, if

the largest observation is changed to 28, then ȳ = 21.8, s2 =
19.36, p̃ = 0.112, Ñ = 194.8.

The profile likelihood in N is nearly flat, with a very poorly

defined maximum, and the conditional likelihood conditioned

on t has no internal maximum at all, approaching its maximum

as N → ∞. Berger et al. concluded that “These [likelihoods]

are nearly constant over a huge range of N and are clearly useless

for inference.” They proposed the uniform or Jeffreys priors for

this problem; these give well-defined modes in the integrated

likelihood for N.

Kahn (1987) had earlier considered general conjugate beta

priors

π (p) =
pa−1(1 − p)b−1

B(a, b)
,

and had shown that the integrated likelihood in N,
[

n∏

i=1

(
N

yi

)]
B(t + a, Nn − t + b),

in this example is extremely sensitive to the value of the first beta

parameter a, which controls the location of the mode and the

heaviness of the tail of the posterior distribution of N ; for a = 0

this tail is flat, giving an essentially uninformative posterior for

N, equivalent to the conditional likelihood.

A detailed comparison of profile likelihood and integrated

likelihood inference for this example was given in Aitkin and

Stasinopoulos (1989), who also showed the likelihood in N and

p, which has extremely concentrated banana-shaped contours

along the curve Np = ȳ (Fig. 12).
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Fig. 12. Likelihood in (N, p)

This very strong association between the parameters empha-

sises the difficulty of drawing marginal inferences about N, at

least in this parametrization.

Aitkin and Stasinopoulos derived the (expected) information-

orthogonal nuisance parameter transformation ψ = N p, by

solving a partial differential equation, following Cox and Reid

(1987). The joint likelihood in N and ψ , shown in Fig. 13, is al-

most orthogonal, and whether this joint likelihood is maximized

or integrated over ψ , the resulting likelihood is essentially the

profile likelihood (which is invariant over nuisance parameter

transformation).

The true likelihood ratio shows clearly the difficulty in the

N , p parametrization. Consider two candidate values of the

binomial index, N1 and N2. The true likelihood ratio is, as an

explicit function of p,

L R(p) =
L(N1, p)

L(N2, p)

= (1 − p)(N1−N2)n
∏

i

[(
N1

yi

)/(
N2

yi

)]
.

Fig. 13. Likelihood in (N, ψ)

The ratio of products of binomial coefficients can be expressed

simply using Stirling’s formula (since all of N and the yi are

large) as

∏

i

[(
N1

yi

)/(
N2

yi

)]
≈

(
N1

N2

)t

.

For even moderate differences between N1 and N2 and even

small values of n, the term (1− p)(N1−N2)n depends very strongly

on the prior distribution for p.

In the N , ψ parametrization, the likelihood is

L(N , ψ) =
n∏

i=1

(
N

yi

)(
ψ

N

)t(
1 −

ψ

N

)Nn−t

and the true LR becomes

L R(ψ) =
L(N1, ψ)

L(N2, ψ)

→
(

N2

N1

)t ∏

i

[(
N1

yi

)/(
N2

yi

)]

→ 1

since for large N the last term in the likelihood tends to

exp(−nψ). Thus in the ψ parametrization the likelihood ratio

L R(ψ), based on the section through the L(N , ψ) likelihood at

ψ , does not depend on ψ , nor on the data, and approaches 1.

That is, the tail of the likelihood is flat in N for any given ψ .

This is in accord with the “near-Poisson” nature of the

sample—the maximized likelihood ratio for Poisson to “best bi-

nomial” is 0.935 (Aitkin and Stasinopoulos)—and with the pro-

file likelihood which exhibits this asymptotic behaviour. Since

ψ is bounded above by N, the parameter spaces for N and ψ

are not independent. However the likelihood in ψ goes to zero

rapidly with ψ when far from N, and so the upper bound on the

range for ψ has no practical consequences.

We note finally that independent flat priors on p and N trans-

form to a prior in N and ψ of the form π (N , ψ) = 1/N , and

it is this term in 1/N which “pulls down” the flat N tail of the

likelihood in the N , ψ parametrization, giving the well-defined

mode in N in the N, p parametrization with the uniform prior in

p.

Thus the “useless” profile or conditional likelihoods are in fact

conveying correctly the information in the data about N—the

well-defined modes in the integrated likelihoods for the uniform

and Jeffreys priors are direct consequences of these priors, and

give a misleading impression of the information in the data about

N. As we noted earlier, the use of independent flat priors may

have a strong effect on the marginal posteriors if the parameters

are strongly associated in the likelihood.

8. The 2 × 2 table for randomized clinical trials

In the 2×2 randomized clinical trial, subjects are randomized to

one of two treatment conditions, giving n1 patients in treatment
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Table 2. ECMO trial outcome

ECMO CMT Total

Recover 11 0 11

Died 0 1 1

Total 11 1 12

1 and n2 in treatment 2. The response to treatment is the binary

event of “success” or “failure”, suitably defined. The response

probability in treatment j is p j , and of the n j patients treated, r j

are successes, with r = r1 + r2, n = n1 + n2. What can be said,

in a Bayesian framework, about:

• the attributable risk � = p1 − p2;
• the relative risk ρ = p1/p2;
• the odds ratio ψ = p1/(1−p1)

p2/(1−p2)
and

• the number needed to treat nnt = 1
p2

− 1
p1

?

The likelihood is

L(p1, p2) = p
r1

1 (1 − p1)n1−r1 · p
r2

2 (1 − p2)n2−r2 ,

and using independent conjugate Beta priors

π (p j ) = p
a j −1

j (1 − p j )
b j −1/B(a j , b j ),

the posterior distribution of p1, p2 is the product of independent

Beta posteriors

π (p j | y) = p
r j +a j −1

j (1−p j )
n j −r j +b j −1/B(r j + a j , n j−r j+b j ).

Exact results for the posterior distribution of the attributable

risk or any of the other measures of difference are complex

and involve sums of hypergeometric probabilities (Altham 1969,

Hashemi et al. 1997). However the marginal posterior distribu-

tion of any parametric function of p1 and p2 can be simulated

directly, by generating N realizations from the posterior distri-

butions of p1 and p2, and calculating the appropriate function

(Tanner 1996). This is an extremely simple calculation. We illus-

trate with the following table, from the ECMO study of Bartlett

et al. (1985). This study compared the ECMO (extra corporeal

membrane oxygenation—oxygenation of the blood outside the

body) treatment for respiratory failure in newborn babies with

CMT (conventional medical treatment—oxygen under pressure

in a respirator). The “play the winner” randomization method

used is discussed below; it led to the treatment of 11 babies

with ECMO, of whom all recovered, and 1 baby with CMT, who

died. We use uniform priors here initially; we show the effect of

non-uniform priors below, and comment on the general use of

uniform priors.

The posterior distribution of p1 (for ECMO) is

π (p1 | y) = 12p11
1 ,

and that of p2 for CMT is

π (p2 | y) = 2(1 − p2).

What is the posterior probability that p1 > p2? We have imme-

diately that

Pr[p1 > p2 | y] =
∫ 1

0

2(1 − p2)dp2

∫ 1

p2

12p11
1 dp1

= 2

∫ 1

0

(1 − p2) ·
(
1 − p12

2

)
dp2

= 0.989.

Thus there is strong evidence that ECMO is better. Altham

(1969) gave this probability calculation for the general 2 × 2

table in terms of hypergeometric probabilities; it is expressed

there in terms of the odds ratio being greater than 1. Altham

showed that the Fisher P-value exceeds the posterior probability

for all priors with common indices a j = b j = c for 0 ≤ c ≤ 1,

but this result need not hold for c > 1.

The superiority of ECMO holds for all the measures of dis-

crepancy above. However to determine the extent of its superi-

ority, we need the full posterior distribution of the discrepancy

measures.

We generate N = 10, 000 independent realizations p1 j , p2 j

of p1 and p2 from their posterior distributions with flat prior

distributions. For each pair j we compute the four discrepancy

measures above. The empirical cdfs of the four measures are

shown in Figs. 14–17, on log scales for the relative risk and

odds ratio.

The empirical probability that the attributable risk is posi-

tive is 0.9893, with simulation standard error 0.0010, in close

agreement with the theoretical value. The same probability ap-

plies to the relative risk and odds ratio being greater than 1, or

the nnt being positive. Equal-tailed 95% credible intervals for

the four measures are:

Fig. 14. Posterior distribution of attributable risk
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Fig. 15. Posterior distribution of log relative risk

Fig. 16. Posterior distribution of log odds ratio

• attributable risk—(0.069, 0.948);
• relative risk—(1.09, 69.9);
• odds ratio—(1.78, 4501);
• nnt—(0.095,72.9).

For the number needed to treat, the distribution is extremely

long-tailed, because of the posterior density of p2 having its

mode at zero. This is an inherent difficulty of this discrepancy

measure; if both probabilities can be small, and especially if they

can be equal, the nnt distribution will be extremely long-tailed

in both directions and will have appreciable mass at ±∞, which

Fig. 17. Posterior distribution of number needed to treat

will be unhelpful for interpretation. These and other deficiencies

of the nnt have recently been discussed by Hutton (2000).

The distributions of all the discrepancy measures are very

diffuse, not surprising from the sample of one CMT baby, though

they are all well away from the “null” value, as we saw above.

8.1. Fisher’s “exact” test

The standard test for the 2 × 2 table, especially with small sam-

ples, is Fisher’s “exact” test, based on the conditional hyperge-

ometric distribution of R1 given the marginal total R = r . This

is

Pr[R = r1 | R = r ] = Pr[R = r1, R2 = r2]/Pr[R = r ]

=
(

n1

r1

)(
n2

r2

)
ψr1

/u=u2∑

u=u1

(
n1

u

)(
n2

r − u

)
ψu,

where ψ is the odds ratio, and u1 = max(0, r − n2), u2 =
min(n1, r ). For the ECMO example, the conditional likelihood

from the hypergeometric distribution is

C L(ψ) =
ψ11

11ψ10 + ψ11
=

ψ

11 + ψ
.

At the null hypothesis value ψ = 1, C L(1) = 1/12 = 0.0833.

Since this table is the most extreme possible, the P-value of this

observed table is 0.0833, which does not reach conventional

levels of significance.

This lack of sensitivity of the “exact” test follows from the

loss of information in the conditioning statistic. Although Fisher

argued that the marginal total was ancillary, or at least should

be treated as such, Plackett (1977) showed that the marginal to-

tal R is informative about ψ , though it is difficult to make use
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of this information in a classical framework, and as the sam-

ple sizes tend to infinity, this information becomes negligible

relative to the information in the cells. However we are at the

opposite extreme, where the sample sizes are very small, and

here the information in the marginal total may be appreciable.

This is clear from comparing the maximized conditional like-

lihood ratio for the null hypothesis against the alternative, of

0.0833, with the unconditional maximized likelihood ratio of

(11/12)11 · (1/12)/1 = 0.032 which would provide strong evi-

dence against the null hypothesis, with a P-value of 0.0087 under

the asymptotic χ2
1 distribution, if this were valid.

The posterior distribution of the likelihood ratio requires a

choice of parameterization for the nuisance intercept parame-

ter in the regression model for the 2 × 2 table. For the nor-

mal regression model for a two-group structure with group

sample sizes n1 and n2, the dummy variable coding giving

information-orthogonal parameters is (−n2/n, n1/n). We adopt

this parametrization for the identity link probability model for

the attributable risk, though the resulting information matrix is

not quite orthogonal because of the iterative weights in the gen-

eralized linear model analysis. The parameters transform to

p1 = β0 −
n2

n
β1, p2 = β0 +

n1

n
β1,

with

β0 = (n1 p1 + n2 p2)/n = p̄.

Note that this form of the nuisance parameter is exactly

information-orthogonal to the log-odds ratio parameter, see Cox

in the discussion of Yates (1984). However there is no analytic

relation between these two parametrizations and so we use the

simpler linear model parametrization. The likelihood in the re-

gression parameters is

L(β0, β1) =
(

β0 −
n2

n
β1

)r1
(

1 − β0 +
n2

n
β1

)n1−r1

×
(

β0 +
n1

n
β1

)r2
(

1 − β0 −
n1

n
β1

)n2−r2

,

and under the null hypothesis,

L(β0, 0) = βr
0(1 − β0)n−r .

The likelihood ratio is, in the p1, p2 parametrization,

L R =
p̄r (1 − p̄)n−r

p
r1

1 (1 − p1)n1−r1 p
r2

2 (1 − p2)n2−r2
.

Figures 18 and 19 show the empirical cdf of the likelihood ra-

tio and the corresponding deviance from the 10000 simulations

above.

The empirical probability that L R < 1 is 0.9893, the same

value as the posterior probability that the attributable risk is

positive; the simulated posterior probability that L R > 1 of

0.0107, with simulation standard error 0.0010, is substantially

below the Fisher P-value, but greater than the P-value from the

unconditional LR test using the asymptotic χ2
1 distribution.

Fig. 18. Posterior distribution of likelihood ratio

Fig. 19. Posterior distribution of deviance

The difficulty of calibrating the unconditional test, and the

dependence of its size on the true response probabilities, is re-

solved by the Bayes analysis.

This analysis also resolves the “reference set” difficulties of

the ECMO study, in which the play-the winner randomization

rule used different assignment probabilities of babies to the

ECMO and CMT conditions. The stopping rule for the study

was not well-defined, and this makes it very difficult to deter-

mine the reference set of tables against which this one should be

compared, leading to the six (at least) P-values which have been

proposed for this table, ranging from 0.001 to 0.62; see Ware
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Table 3. Second ECMO trial outcome

ECMO CMT Total

Recover 9 6 15

Died 0 4 4

Total 9 10 19

(1989) and Begg (1990) and their discussions for the range of

P-values, and the arguments for them.

A second randomized trial of ECMO, described in Ware, was

carried out because of the inconclusive P-value results from the

first trial due to the single death under CMT. The second trial

used a different stopping rule and resulted in the outcome shown

in Table 3. Using the same flat priors as for the first study, we

have

π (p1 | y) = 10p9
1,

π (p2 | y) = p6
2(1 − p2)4/B(7, 5)

and hence

Pr[p1 > p2 | y] =
∫ 1

0

p6
2(1 − p2)4dp2

∫ 1

p2

10p9
1dp1

= 2

∫ 1

0

p6
2(1 − p2)4

(
1 − p10

2

)
dp2/B(7, 5)

= [B(7, 5) − B(17, 5)]/B(7, 5)

= 1 −
22

969
= 0.977.

The larger study provided less persuasive evidence against the

null hypothesis, because of the better-defined and much higher

recovery rate under CMT.

8.2. Choice of priors

It may be argued that the Bayes analysis above has arbitrary as-

sumptions of its own, in the choice of priors. If a reference prior

is to be used, why not use the Jeffreys prior—why is the uniform

prior appropriate? Should we not in any case use informative

priors, based on previous experience with both treatments, es-

pecially when the sample sizes are so small? Since changes in

priors affect the conclusions, should we not report a sensitivity

analysis over a range of priors?

We argue that, in studies of this kind involving randomized tri-

als to establish the value of a new treatment, informative priors,

and the Jeffreys prior, should not be used without a reference

analysis with uniform priors. The uniform prior has a unique

position in binomial experiments, since for the (large but finite)

conceptual population of N individuals to whom the treatments

are to be applied, the population number of successes R is neces-

sarily an integer, and so the population proportion of successes

takes values on an equally-spaced grid of values R/N . In the

absence of experimental information, the possible values of this

proportion are equally well supported on this grid, and so p

should be given a uniform prior distribution.

Incorporating the information from previous non-randomized

studies in an informative prior affects the inferences from the

randomized trial—in such a trial it seems to us critical to “let

the data speak” through uniform priors before changing its in-

formation content by introducing informative priors.

We illustrate this point by a second analysis of the first ECMO

table with the Jeffreys prior

π j (p j ) = p−0.5
j (1 − p j )

−0.5/B(0.5, 0.5).

The empirical probability of a positive attributable risk now

changes to 0.9954, and the equal-tailed 95% credible intervals

become

• attributable risk—(0.097, 0.993);
• relative risk—(1.11, 2452);
• odds ratio—(3.27, 1.14 × 106);
• nnt—(0.120, 2540).

The apparent strength of evidence against the null hypothesis has

increased, while the credible intervals have become even more

diffuse. Both response probability posteriors have infinite spikes

at their former finite modes of 1 and 0, the priors accentuating

the information in the likelihood, which makes the Jeffreys prior

choice hard to justify.

9. Conclusion

The possible inconsistency between the conclusions from pos-

terior distributions of “null hypothesis” parameters and those

from Bayes factors for testing the hypotheses can be avoided by

retaining the full posterior distribution of the alternative model

parameters and transforming from this distribution to that of the

likelihood ratio between the models. The resulting inferences

are consistent between “hypothesis testing” and “estimation”, as

they are in frequentist theory, and are closely related to frequen-

tist P-value conclusions, though these need to be recalibrated.

Parametrization issues have to be considered carefully in this

approach, as they do in other Bayesian analyses and in fre-

quentist analyses of models with nuisance parameters. A par-

ticular strength of this analysis is the freedom to use flat, non-

informative or other reference priors in the comparisons of mod-

els in the same way they are used in posterior densities for indi-

vidual model parameters.
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