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BAYESIAN POISSON PROCESS PARTITION CALCULUS WITH AN
APPLICATION TO BAYESIAN LÉVY MOVING AVERAGES

BY LANCELOT F. JAMES1

The Hong Kong University of Science and Technology

This article develops, and describes how to use, results concerning
disintegrations of Poisson random measures. These results are fashioned
as simple tools that can be tailor-made to address inferential questions
arising in a wide range of Bayesian nonparametric and spatial statistical
models. The Poisson disintegration method is based on the formal statement
of two results concerning a Laplace functional change of measure and
a Poisson Palm/Fubini calculus in terms of random partitions of the
integers{1, . . . , n}. The techniques are analogous to, but much more general
than, techniques for the Dirichlet process and weighted gamma process
developed in [Ann. Statist. 12 (1984) 351–357] and [Ann. Inst. Statist. Math.
41 (1989) 227–245]. In order to illustrate the flexibility of the approach, large
classes of random probability measures and random hazards or intensities
which can be expressed as functionals of Poisson random measures are
described. We describe a unified posterior analysis of classes of discrete
random probability which identifies and exploits features common to all
these models. The analysis circumvents many of the difficult issues involved
in Bayesian nonparametric calculus, including a combinatorial component.
This allows one to focus on the unique features of each process which are
characterized via real valued functionsh. The applicability of the technique
is further illustrated by obtaining explicit posterior expressions for Lévy–
Cox moving average processes within the general setting of multiplicative
intensity models. In addition, novel computational procedures, similar to
efficient procedures developed for the Dirichlet process, are briefly discussed
for these models.

1. Introduction. Let N denote a Poisson random measure on an arbitrary
Polish spaceW characterized by its nonatomic sigma-finite mean intensity,

E[N(dw)] = ν(dw).

That is to say,N is a discrete random measure such that, for disjoint setsA andB,
N(A) is independent ofN(B). Additionally, for each bounded setB, N(B) is
a Poisson random variable with finite meanE[N(B)] = ν(B). Following Daley
and Vere-Jones [7],N takes its values in the space of boundedly finite measures,
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say M, equipped with an appropriate sigma-fieldB(M). Denote the law ofN
as P (dN |ν). Additionally, BM(W) denotes the collection of Borel measurable
functions of bounded support onW . The class of nonnegative functions inBM(W)

is denoted asBM+(W). The law ofN is also uniquely characterized by its Laplace
functional given by

LN(f |ν) =
∫
M

e−N(f )P (dN |ν) = exp
(
−

∫
W

(
1− e−f (w))ν(dw)

)
(1)

for eachf ∈ BM+(W), whereN(f ) = ∫
W f (w)N(dw). Note that the Laplace

functional is well defined for all positive functionsf . For additional information,
see [22], Chapter 12. The Laplace functional, (1), will play a fundamental role
in our analysis. An essential part of our presentation involves extensions of the
following well-known disintegration for a joint measure of a pointW ∈ W andN :

N(dW)P (dN |ν) = P (dN |ν,W)E[N(dW)] = P (dN |ν,W)ν(dW),(2)

where E[N(dW)] = ∫
M N(dW)P (dN |ν) and P (dN |ν,W) is a conditional

distribution ofN , given a pointW , and coincides with the conditional law of the
random measure

N + δW ,

whereN is P (dN |ν) andW is a fixed point. The result in (2) is equivalent to the
Fubini theorem∫

M

[∫
W

g(w,N)N(dw)

]
P (dN |ν) =

∫
W

[∫
M

g(w,N)P (dN |ν,w)

]
ν(dw),(3)

for each measurable positive or integrable functiong. Additionally, from the
definition ofP (dN |ν,W), the following change of measure formula holds:∫

W

[∫
M

g(w,N)P (dN |ν,w)

]
ν(dw)

(4)
=

∫
W

∫
M

g(w,N + δw)P (dN |ν)ν(dw).

Within the framework of Palm calculus, the disintegration (2) is well known
and may be found in [21] or [7], whereP (dN |ν,W) is an example of a Palm
distribution. The representation (2) has been used extensively in a variety of
important applications in probability; see, for instance, [35]. However, its use has
been absent from the Bayesian nonparametrics literature. Note that sinceN is not
a random probability measure,P (dN |ν,W) does not have the interpretation of
a posterior distribution. However, the use of (2) is already enough to derive the
posterior distribution of a variety of proper random probability measures when
n = 1.

Random measures based on Poisson processes play an important role in spatial
statistical analysis and Bayesian nonparametric statistics. In this work we will



POISSON PROCESS PARTITION CALCULUS 1773

introduce a methodology we call aPoisson process partition calculus that provides
a unified treatment of the otherwise formidableposterior analysis of such random
measures. The idea appears in the unpublished manuscript of James [18], which
discusses a variety of applications. Here, we will present a streamlined discussion
which focuses specifically on methodology to deduce key properties of general
classes of random probability measures and random intensities, analogous to those
which make the Dirichlet process (see [13]) an attractive process for Bayesian
non- and semi-parametric analysis. The methodology consists of two components
which will be described in more detail in Section 2. The first component is a
Laplace functional/exponential change of measure formula for Poisson random
measures, which can be seen as a form of functional exponential tilting orEsscher
transform. The second is an extension of (2) in terms of partitions of the integers
{1, . . . , n}. One function of this extension is to allow one to bypass otherwise
complex combinatorial arguments. In order to show explicitly the flexibility of our
methods, we describe large classes of random probability measures in Section 1.1
which can be expressed as functionals of Poisson random measures. Additionally,
in Section 1.1.1 we describe the structures of interest that are analogous to those
for the Dirichlet process. Section 2 describes the elements of the Poisson process
partition calculus. Section 3 discusses how to use the results in Section 2 to obtain
the posterior analysis of the class of models described in Section 1.1. Section 4
presents a more explicit posterior analysis of a class of Lévy moving averages
or hazard rates subject to a multiplicative intensity model. We also show, briefly,
how this analysis leads to the development of computational procedures analogous
to those used in Dirichlet process mixture models. Section 5 presents the formal
details of the proof of Proposition 2.2.

1.1. General discrete random probability measures and related concepts. Let
h denote a strictly positive jointly measurable function onW ×M. One may define
a general class of random probability measures,P , onW as follows:

P(dw) = h(w,N)N(dw),(5)

whereh is chosen such that
∫
W h(w,N)N(dw) = 1. The precise conditions onh

may also place restrictions onν. Note, however, that countable additivity ofP

automatically follows from the additivity property of integrals with respect toN .
Formally, we will consider random elementsW1, . . . ,Wn|P which are i.i.d. with
distribution P and P is defined in (5) with law, sayP (dP |ν), determined by
a Poisson random measureN with law P (dN |ν). This gives a decomposition
of the joint distribution of(W,P ). We are interested in identifying explicitly
the disintegration of this joint distribution in terms of the posterior distribution
of P |W, sayπ(dP |W), and the exchangeable marginal distribution ofW given by[

n∏
i=1

P(dWi)

]
P (dP |ν) = π(dP |W)

∫
M

[
n∏

i=1

P(dWi)

]
P (dP |ν).(6)
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In principle, the most difficult task is, of course, to obtain a clear expression for
the posterior distributionπ(dP |W). This can be formidable forn = 1 and due
to obvious nonconjugacy, and other issues to be discussed below, becomes more
difficult for generaln. However, explicit expressions for the marginal distribution
and the posterior distribution are naturally linked. Hence, it is instructive to
examine more closely the marginal distribution. By de Finetti’s theorem, it is
evident that the structure

P(dW|ν) :=
∫
M

[
n∏

i=1

P(dWi)

]
P (dP |ν)(7)

is exchangeable. It is a general analogue of the Blackwell and MacQueen [5] Pólya
urn distribution. Moreover, this distribution is such that the random vectorW
possibly consists of ties and hence, the posterior distribution itself,π(dP |W),
also depends on ties. This suggests, as is natural for exchangeable structures (see
the discussion in [25]), that the characterization of these quantities can involve a
substantial combinatorial component. Here we discuss decompositions of (7) in
terms of random partitions of the integers induced by these ties.

1.1.1. Random partitions, EPPF, marginal distributions. It is clear that there
is a one-to-one correspondence betweenW and (W∗,p), where, using notation
similar to Lo [30], W∗ = (W ∗

1 , . . . ,W ∗
n(p)) denotes the distinct values ofW

and p = {C1, . . . ,Cn(p)} stands for a partition of{1, . . . , n} of size n(p) ≤ n

recording which observations are equal. The number of elements in thej th cell,
Cj := {i :Wi = W ∗

j }, of the partition is indicated byej , for j = 1, . . . , n(p), so

that
∑n(p)

j=1 ej = n. When it is necessary to emphasize a further dependence onn,
we will also use the notationej,n := ej . It follows that the marginal distribution
of W can be expressed in terms of a conditional distribution ofW|p, which
is the same as a conditional distribution of the unique valuesW∗|p and the
marginal distribution ofp. The marginal distribution ofp, denoted asπ(p) or
p(e1, . . . , en(p)), is anexchangeable partition probability function (EPPF), that is,
a probability distribution onp which is exchangeable in its arguments and only
depends on the size of each cell. The best known case of an EPPF is the variant
of the Ewens sampling formula (ESF) associated with the Dirichlet process with
total massθ > 0, given as

pθ

(
e1, . . . , en(p)

) = θn(p)�(θ)

�(θ + n)

n(p)∏
j=1

�(ej ),(8)

which was derived by Ewens [12] and Antoniak [3]. The EPPF can be interpreted
as the distribution of the configuration of ties (clusters) among theW. To
understand this relationship further, note that, analogous to the case of the Dirichlet
process, one can define the following probabilities relevant to (7). Suppose that
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Wn+1 is a newly observed variable. Then the probability thatWn+1 is distinct from
the valuesW, givenp, is

P(Wn+1 is new|p) = q0,n = p(e1, . . . , en(p),1)

p(e1, . . . , en(p))
,(9)

and forj = 1, . . . , n(p), the probability thatWn+1 = W ∗
j , givenp, is

P(Wn+1 = W ∗
j |p) = qj,n = p(e1, . . . , ej + 1, . . . , en(p))

p(e1, . . . , en(p))
.(10)

It is known that, for the case of (8), one hasq0,n = θ/(θ + n) and qj,n =
ej /(θ + n), which are the probabilities associated with the Chinese restaurant
process (see [38], page 60) and the Blackwell–MacQueen prediction rule. In
principle, one can use the probabilities in (9) and (10) to generate samples fromp,
according to the EPPF, via a generalized Chinese restaurant process. See [15] for a
discussion. However, we point out that, in general, unlike the case of the Dirichlet
process, these probabilities are not the probabilities, sayP(Wn+1 = W ∗

j |W) for
j = 1, . . . , n(p), which correspond to the appropriate prediction rule ofWn+1|W.
Rather, the following relationship holds: forj = 1, . . . , n(p),

P(Wn+1 = W ∗
j |p) =

∫
Wn(p)

P(Wn+1 = W ∗
j |W)π(dW∗|p),

where π(dW∗|p) denotes the distribution ofW|p in terms of the unique
valuesW∗.

REMARK 1. The general EPPF concept is described in [36–39], where a
variety of applications are discussed. The notation

∑
p will be used to denote the

sum over all possible partitions of the integers{1, . . . , n}. A general discussion
of the marginal structuresP(dW|ν), such as that presented here, does not seem
available. In the language of the theory of random measures,P(dW|ν) is also seen
to be thenth moment measure ofP . That is, one can use it to obtain the integer
moments ofP and related quantities.

2. Poisson process partition calculus. So far we have pinpointed the type of
structures we would like to obtain. However, what is missing is a systematic and
easy mechanism to get at explicit expressions for these quantities. The idea of this
paper is to focus on the utilization of (partition based) disintegration results related
to the joint measure of(W,N) given by[

n∏
i=1

N(dWi)

]
P (dN |ν) = P (dN |ν,W)

∫
M

[
n∏

i=1

N(dWi)

]
P (dN |ν).(11)

The quantity (11) is not a proper distribution. However, it is this general form
on the left-hand side which appears, explicitly or in augmented form, in all the
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models that will be discussed. The right-hand side, similar to that of (6), consists
of a conditional distribution ofN |W, P (dN |ν,W) and a sigma-finite marginal
measure ofN ,

M(dW|ν) =
∫
M

[
n∏

i=1

N(dWi)

]
P (dN |ν),(12)

which behaves in many respects like an exchangeable urn distribution and,
importantly, can be expressed in terms of(W∗,p). These quantities are direct
extensions of (2). The main purpose of this section is to describe two results
concerning the Poisson process and the disintegration of (11) which are fashioned
as simple tools that can be tailor-made to address inferential questions arising in a
wide range of Bayesian nonparametric models.

2.1. Basic tools. First an exponential change of measure or disintegration
formulae based on Laplace functionals is given below. This is a simple functional
extension of an analogous result for Lévy processes onR or more generally,Rd ,
which may be found in [27], Proposition 2.1.3. Such an operation is commonly
calledexponential tilting.

PROPOSITION2.1. For each f ∈ BM+(W) and each g on (M,B(M)),∫
M

g(N)e−N(f )P (dN |ν) = LN(f |ν)

∫
M

g(N)P (dN |e−f ν),

where P (dN |e−f ν) is the law of a Poisson process with intensity e−f (w)ν(dw).
In other words, the following absolute continuity result holds: e−N(f )P (dN |ν) =
LN(f |ν)P (dN |e−f ν). The result extends to any nonnegative measurable f such
that

∫
W (1− e−f (w))ν(dw) < ∞.

PROOF. By the unicity of Laplace functionals for random measures onW ,
it suffices to check this result for the caseg(N) = e−N(h) for h ∈ BM+(W).
It follows that∫

M
e−N(f +h)P (dN |ν) = LN(f |ν)

∫
M

e−N(h)Pf (dN),

where, for the time being,Pf denotes some law onN . Simple algebra shows that∫
M

e−N(h)Pf (dN) = LN(f + h|ν)

LN(f |ν)

and, hence,Pf (dN) = P (dN |e−f ν). The extension holds by the same argument,
sinceLN(f |ν) > 0. �

Now, while indeed it is possible to use (2) repeatedly to analyze many of the
models discussed in Section 1.1, such an analysis does not circumvent the need
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for what might be formidable combinatorial analysis. One may note, for instance,
the nontrivial arguments used by Antoniak [3] to derive (8). With this in mind, the
next result, in Proposition 2.2, gives a partition-based representation of (11) which
serves to significantly simplify such derivations for more general models. We will
delay a proof of Proposition 2.2 until Section 5. First, we formally identify the
law P (dN |ν,W) appearing in (11) as a conditional distribution ofN , given the
pointsW, which is equivalent to the law of the random measure

N∗
n = N +

n(p)∑
j=1

δW ∗
j
,(13)

whereN is P (dN |ν) independent of the pointsW. Note, by definition, for any
measurable functiong onW ×M, thatP (dN |ν,W) satisfies the following change
of variable, as in the case forn = 1:∫

M
g(W,N)P (dN |ν,W) =

∫
M

g

(
W,N +

n(p)∑
j=1

W ∗
j

)
P (dN |ν).(14)

Using (14), it follows that the conditional Laplace functional ofN with respect to
P (dN |ν,W) is∫

M
e−N(f )P (dN |ν,W) =

[ n(p)∏
j=1

e
−f (W ∗

j )

]∫
M

e−N(f )P (dN |ν)

(15)

= LN(f |ν)

n(p)∏
j=1

e
−f (W ∗

j )
.

We now present the formal partition based disintegration of (11).

PROPOSITION 2.2. Suppose that (W,N) are measurable elements in the
space Wn × M having the joint measure in (11), where N is a Poisson random
measure with sigma-finite nonatomic mean measure ν. Then the following dis-
integration holds:[

n∏
i=1

N(dWi)

]
P (dN |ν) = P (dN |ν,W)

n(p)∏
j=1

ν(dW ∗
j ),

where P (dN |ν,W) corresponds to the law of N determined by (15) and is
representable in distribution as (13). The moment measure is expressible via
conditional moment measures as

M(dW|ν) =
n(p)∏
j=1

ν(dW ∗
j ) = ν(dW1)

n∏
i=2

[
ν(dWi) +

n(pi−1)∑
j=1

δW ∗
j
(dWi)

]
,

where n(pi−1) is the size of the partition pi−1 of {1, . . . , i − 1} encoding the ties
between W1, . . . ,Wi−1.
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One can combine Proposition 2.1 and Proposition 2.2, yielding the following
useful result which will be used in Section 4.

PROPOSITION 2.3. Suppose that (W,N) are measurable elements in the
space Wn × M, where N is a Poisson random measure with sigma-finite
nonatomic mean measure ν. Then for each nonnegative measurable f such that∫
W (1− e−f (w))ν(dw) < ∞, the following disintegration holds:[

n∏
i=1

N(dWi)

]
e−N(f )P (dN |ν)

= LN(f |ν)P (dN |e−f ν,W)

n(p)∏
j=1

e
−f (W ∗

j )
ν(dW ∗

j ).

M(dW|e−f ν) = ∏n(p)
j=1 e

−f (W ∗
j )

ν(dW ∗
j ) is the nth moment measure of a Poisson

random measure with intensity e−f (w)ν(dw).

PROOF. The proof of this result follows by first applying Proposition 2.1 to
get [

n∏
i=1

N(dWi)

]
e−N(f )P (dN |ν) = LN(f |ν)

[
n∏

i=1

N(dWi)

]
P (dN |e−f ν).

Conclude the result by applying Proposition 2.2 withe−f (w)ν(dw) in place
of ν(dw). �

3. Formal Bayesian methodology. We now describe how to use the results
in Section 2 to obtain desired results for models such as (6). First define

ψn(W) =
∫
M

[ n(p)∏
j=1

[h(W ∗
j ,N)]ej

]
P (dN |ν,W)

(16)

=
∫
M

[ n(p)∏
j=1

[h(W ∗
j ,N∗

n ]ej

]
P (dN |ν).

Then an application of Proposition 2.2 yields the following result.

THEOREM 3.1. Let P denote a random probability defined as in (5), where
N is a Poisson random measure with intensity ν. Let W = (W1,W2, . . . ,Wn)

denote a vector of random elements on a Polish space W such that W1, . . . ,Wn|P
are i.i.d. with distribution P . Then the following results hold:
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(i) The posterior distribution of N |W, π(dN |ν,W), corresponds to the
conditional law of the random measure

N∗
n = N +

n(p)∑
j=1

δW ∗
j
,(17)

where now π∗(dN |W) = [ψn(W)]−1P (dN |ν)
∏n(p)

j=1 [h(W ∗
j ,N∗

n )]ej is the condi-
tional law of N , in (17),given W.

(ii) The posterior distribution of P |W is equivalent to the conditional
distribution of the random probability measure

P ∗
n (dw) = h(w,N∗

n )N∗
n (dw) = h(w,N∗

n )N(dw) +
n(p)∑
j=1

h(W ∗
j ,N∗

n )δW ∗
j
(dw),

where the law of N |W is π∗(dN |W)

(iii) The joint exchangeable marginal distribution of W is given by P(dW|ν) =
ψn(W)

∏n(p)
j=1 ν(dW ∗

j ). Additionally, the EPPF derived from the marginal distrib-
ution of W is expressible as

p
(
e1, . . . , en(p)

) =
∫
Wn(p)

ψn(w)

n(p)∏
j=1

ν(dw∗
j ).(18)

PROOF. The key point to note is that, sinceP is a functional of N ,
results for the joint distribution of(W,P ) follow from the corresponding joint
distribution of(W,N). From (6), the joint distribution of(W,N) is expressible as
[∏n

i=1 h(Wi,N)][∏n
i=1 N(dWi)]P (dN |ν). Applying Proposition 2.2, along with

the identity
∏n

i=1 h(Wi,N) = ∏n(p)
j=1 [h(W ∗

j ,N)]ej , the joint distribution of(W,N)

can be expressed as[ n(p)∏
j=1

[h(W ∗
j ,N)]ej

]
P (dN |ν,W)

n(p)∏
j=1

ν(dW ∗
j ).(19)

One now only needs to apply simple Bayes rule to obtain an expression in terms
of the posterior distribution ofN |W and the marginal distribution ofW. Formally,
to obtain the marginal distribution ofW, one integrates outN in (19), yielding
the form ofP(dW|ν) in (iii). The expression in (18) is then evident. Now, since
ψn(W) > 0, it follows that the posterior distribution ofN |W is π(dN |W) =
[ψn(W)]−1[∏n(p)

j=1 [h(W ∗
j ,N)]ej ]P (dN |ν,W). Statement (i) now follows by the

change of measure formula (14). That is, the posterior Laplace function ofN |W is

∫
M

e−N(f )π(dN |W) =
[∫

M
e−N(f )π∗(dN |W)

] n(p)∏
j=1

e
−f (W ∗

j )
.
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Statement (ii) follows from the fact thatP(dw) = h(w,N)N(dw) and the
representations of the posterior distribution ofN |W in statement (i). �

REMARK 2. Statement (ii) describes the posterior distribution ofP |W via the
distribution ofP ∗

n determined byπ∗(dN |W). As one application, the prediction
rule ofWn+1|W can be readily computed as

P(dWn+1|W) =
∫
M

P ∗
n (dWn+1)π

∗(dN |W).

3.1. Discrete random probability measures defined by completely random
measures. The random probability measures defined in (5) are actually a bit
different than the random probability measures commonly used in Bayesian
nonparametrics. In particular, as we shall show, the classP contains augmented
forms of, say, the Dirichlet process or Doksum’s [8] neutral to the right processes.
In Bayesian nonparametrics many random probability measures are actually
functionals of completely random measures (see [23, 26]), say,µ defined over
a Polish spaceY. The class of completely random measures contains, for instance,
the gamma process and the random hazard processes discussed in [14]. Completely
random measures, ignoring fixed points of discontinuity, are representable in a
distributional sense as functionals of Poisson random measures. We now describe
this construction. SpecifyW = J ×Y, whereJ = (0,∞). Additionally, for points
w = (s, y), N(ds, dy) denotes a Poisson random measure with mean intensity

E[N(ds, dy)] = ν(ds, dy) = ρ(ds|y)η(dy).

Furthermore, it is assumed thatρ andη are selected such that, for each bounded
setB in Y, ∫

B

∫
J

min(s,1)ρ(ds|y)η(dy) < ∞.(20)

Now define a random measureµ on Y such that it may be represented in a
distributional sense as

µ(dy) =
∫
J

sN(ds, dy).(21)

Following Daley and Vere-Jones [7], the condition (20) guarantees thatµ is in
the space of boundedly finite measuresM equipped with an appropriate sigma-
field, B(M). If ρ does not depend ony, then µ is said to be homogeneous.
Furthermore, ifY = (0,∞), thenµ is sometimes called a subordinator. That is
to say, a nonnegative Lévy process with stationary increments. Similar to the
definition ofP in (5), one can define a general class of discrete random probability
measures onY as

Pµ(dy) = q(y,µ)µ(dy) = q(y,µ)

∫
J

sN(ds, dy),(22)
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whereq is a strictly positive measurable function such thatPµ is a well-defined
random probability measure. Note that the second representation in (22) reveals,
via a natural augmentation, a class of random probability measures onJ × Y
defined as

P̃µ(ds, dy) = q(y,µ)sN(ds, dy).(23)

That is to say,P̃µ(ds, dy) defined in (23) is a special case of (5) with the choice of
h(s, y,N) = sq(y,µ).

Now setWi = (Ji, Yi) for i = 1, . . . , n points inJ × Y and denote the unique
values asW ∗

j = (Jj,n, Y
∗
j ) for j = 1, . . . , n(p). Additionally, define a random

measure

µ∗
n(dy) =

∫ ∞
0

sN∗
n (dy) = µ(dy) +

n(p)∑
j=1

Jj,nδY ∗
j
(dy).

Noting the form in (23), it follows that forW = (J,Y),

ψn(J,Y) =
[ n(p)∏

j=1

J
ej

j,n

]
φn(J,Y),

whereφn(J,Y) =
∫
M

[ n(p)∏
j=1

[q(Y ∗
j ,µ∗

n)]ej

]
P (dN |ν).

Additionally, let s = (s1, . . . , sn) and (s1,n, . . . , sn(p),n) denote the arguments of
J = (J1, . . . , Jn) and the collection(Jj,n), respectively. These facts lead to the
following result.

THEOREM 3.2. Let Pµ denote a random probability defined as in (22),where
N is a Poisson random measure on W = J × Y, with mean intensity ν(ds, dy) =
ρ(ds|y)η(dy). Let Y = (Y1, Y2, . . . , Yn) denote a vector of random elements on Y
such that Y1, . . . , Yn|Pµ are i.i.d. with distribution Pµ. Then the following results
hold:

(i) The posterior distribution of N |Y corresponds to the conditional law of
the random measure N∗

n = N + ∑n(p)
j=1 δJj ,Y ∗

j
, where the conditional law of N in

this representation, given J,Y, is

π∗(dN |J,Y) = [φn(J,Y)]−1

[ n(p)∏
j=1

[q(Y ∗
j ,µ∗

n)]ej

]
P (dN |ν).

Additionally, the distribution of J|Y is P(dJ|Y, ν) ∝ φn(J,Y)
∏n(p)

j=1 J
ej

j,nρ(dJj,n|
Y ∗

j ). The law of µ∗
n(dy) = ∫ ∞

0 sN∗
n (ds, dy), given Y, determined by the law

of N∗
n |Y, corresponds to the posterior distribution of µ|Y.
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(ii) The posterior distribution of Pµ|Y is equivalent to the conditional distrib-
ution, given Y, of the random probability measure Pµ∗

n
(dy) = q(y,µ∗

n)µ
∗
n(dy).

(iii) P(dY|ν) = [∫Jn(p) φn(s,Y)
∏n(p)

j=1 s
ej

j,nρ(dsj,n|Y ∗
j )]∏n(p)

j=1 η(dY ∗
j ) is the ex-

changeable marginal distribution of Y. The EPPF derived from the marginal dis-
tribution of Y is expressible as

p
(
e1, . . . , en(p)

) =
∫
Jn(p)×Yn(p)

φn(s,y)

n(p)∏
j=1

s
ej

j,nρ(dsj,n|y∗
j )η(dy∗

j ).(24)

PROOF. First note the representationµ(dYi) = ∫
J JiN(dJi, dYi) for i =

1, . . . , n. Augmenting the joint distribution of(Y,Pµ) by J yields the distribution

of (J,Y, P̃µ). Noting thatW = (J,Y), and using the identity
∏n

i=1 Ji = ∏n(p)
j=1 J

ej

j,n,

the posterior distribution ofN |J,Y and, hence, that ofµ and P̃µ, follows
directly from Theorem 3.1. Similarly, the joint distribution ofJ,Y is given by
statement (iii) of Theorem 3.1. This in turn yields the distributions ofJ|Y andY.
The distribution ofPµ follows from the fact thatPµ(dy) = ∫

J P̃µ(dy, ds). �

REMARK 3. The results in Theorems 3.1 and 3.2 serve the purpose of
exploiting the common features of many random probability measures. This in turn
allows one to avoid otherwise cumbersome intermediate arguments and focus on
the unique features of each process. That is to say, similar to parametric Bayesian
results obtained via classical Bayes rule, one will often require a finer analysis
which now, given the results in Theorems 3.1 and 3.2, depends on exploiting the
specific features ofh andν.

REMARK 4. If one setsρ(ds|y) := ρ(ds) such that
∫ ∞
0 ρ(ds) = ∞, and

specifiesη(dy) to be a probability measure, then the choice ofh(s, y,N) = s/T

for T = ∫ ∞
0

∫
Y sN(ds, dy) = µ(Y) yields the homogeneousPoisson–Kingman

random probability measures. This class has been discussed in varying generalities
and contexts in, for instance, [18, 24, 35, 38–40]. The Dirichlet process with total
massθ arises by the choice ofρ(ds) = θs−1e−s ds. Using this choice, one can
recover (8) from (24) or (18). More generally, using this choice ofh, one obtains
the EPPF given by Pitman [39].

REMARK 5. James [20] shows that Doksum’s [8] neutral to the right
processes can be obtained by the choice ofh(s, y,N) = se−Z(y−), for (s, y) in
[0,1] × (0,∞), whereZ(y−) = ∫ 1

0
∫ ∞
0 I{x<y}[− log(1 − u)]N(du,dx), where

nowρ(ds|y) is a Lévy measure on[0,1] andη is modeled as a cumulative hazard.
The work of James [20] is an example of the type of refined analysis mentioned in
Remark 3.
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REMARK 6. One may define analogues of Dirichlet process mixture models
(see [30]) by mixingP or Pµ with a known density or probability mass function.
The posterior analysis of such models follows as a simple consequence of
Theorem 3.1 or Theorem 3.2 and Fubini’s theorem. In particular,P(dW|ν) plays
the role of a mixing measure, in analogy to the Blackwell–MacQueen distribution.
A further generalization of these types of models is given in [33]. However,
structurally such models are more closely related to models we will describe
in the next section. That is to say, their analysis does not follow directly from
Theorem 3.1 or Theorem 3.2.

4. Multiplicative intensity models and Lévy–Cox moving averages. Sim-
ilar to Lo and Weng [32] (see also [10]), one can define random hazard rates or
spatial intensities on a Polish spaceX as

λ(x|µ) =
∫
Y

k(x|y)µ(dy) =
∫
Y

∫ ∞
0

k(x|y)sN(ds, dy),(25)

wherek(x|y) denotes a known positive measurable kernel on a Polish spaceX×Y
assumed to beη-integrable overY. Additionally,k is chosen such that, for a sigma-
finite measureτ on X and each bounded setB,

∫
B k(x|y)τ(dx) < ∞ for each

fixed y. Under this condition one may define a random cumulative intensity for
each bounded setB as ∫

Y

[∫
B

k(x|y)τ(dx)

]
µ(dy).(26)

The models (26) are also known as Lévy–Cox moving average models as discussed
in [41, 42]. The models (25) can be used to model intensities of counting process
models, or hazard rates of distribution functions. In particular, ifX = (0,∞), then
one can define a random densityf as

f (x|λ) = e−�(x)λ(x) = S(x|λ)λ(x),(27)

where�(x) = ∫ x
0 λ(v) dv = ∫

Y[∫ x
0 k(v|y)dv]µ(dy) is a cumulative hazard and

S(x|λ) := e−�(x) is the survival function denoting the probability that a random
variable X1 ≥ x. We, of course, assume that�(∞) = ∞. We will provide a
detailed posterior analysis of the general class of Lévy moving averages assuming
a multiplicative intensity likelihood, which we now describe. Suppose, as in [2],
that, for eachi = 1, . . . ,m, and fixedµ, there is an independent counting process
with mean intensityλ(x)Ui(x), whereUi(x) is a predictable process which is
observable. We discuss some specific interpretations of this function below. Under
this assumption the counting processes correspond to classes of multiplicative
intensity models as discussed in [1]. Jacod [17] (see also [2, 32]) showed that the
likelihood of such counting processes is absolutely continuous to the likelihood of
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Poisson process models. Here, forn ≤ m, we work with the multiplicative intensity
likelihood with a random intensity (25) which can be represented as

L(X|µ) = e−µ(gm)
n∏

i=1

∫
Y

k(Xi |Yi)µ(dYi),(28)

wheregm(y) = ∑m
i=1

∫
X Ui(x)k(x|y)τ(dx) and, hence,

µ(gm) =
∫
X

[
m∑

i=1

Ui(x)

]
λ(x)τ (dx).

Note that throughout we assume thatk and (Ui) are chosen such thatgm is
in BM+(Y). The model (28) suggests that there areX1, . . . ,Xn completely
observed points andm−n points, sayXn+1, . . . ,Xm, which are partially observed.
Meanwhile,Y = (Y1, . . . , Yn) can be viewed as missing data. The multiplicative
intensity likelihood captures a large variety of models which appear in event
history analysis. For example, ifX = (0,∞) and one setsUi(x) = I{Xi≥x}I{x∈Bi}
for a random setBi independent ofXi , then one can use this to model various
censoring mechanisms. Specifically, settingBi = [0,Di] for a random variableDi

corresponds to a right censoring model. An extension to left truncation and
right censored models is given by the choiceBi = (Vi,Di], where Vi is a
random variable almost surely less thanDi (see [2], Section III.2). On the
other hand, setting

∑m
i=1 Di(x) = 1 leads to the likelihood of an inhomogeneous

Poisson process with mean intensityλ(x)τ (dx). Before proceeding to the posterior
analysis, we first describe some more details about the special case of the class of
random distributions defined by (27).

4.1. Random hazard rates and densities. Some specific examples of kernelsk

used to define hazard ratesλ include the Dykstra and Laud [10] kernel, which
corresponds tok(x|y) = I{y≤x}, where it follows that

K(t |y) :=
∫ t

0
k(x|y)dx = (t − y)I{y≤t} and

(29)
�(t) =

∫ ∞
0

(t − y)I{y≤t}µ(dy)

for t ≥ 0. This choice ofk generates the family of nondecreasing hazard rates.
Dragichi and Ramamoorthi [9] establish the consistency of this class of random
hazard rates under wide choices ofµ. If one chooses an exponential kernel
k(x|y) = e−xy , then

K(t |y) =
∫ t

0
e−xy dx = y−1(1− e−yt ) and �(t) =

∫ ∞
0

y−1(1− e−yt )µ(dy).

As discussed in [32], this induces hazard rates which are completely monotone.
See [34] for a variation of this model. If one is unsure of the shape of the hazard,
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then one can use any of the convolution kernels that one finds in classical kernel
based density estimation, where, fory = (m,σ) ∈ (−∞,∞) × (0,∞), a fairly
simple choice is the rectangular kernelk(x|m,σ) = I{|x−m|≤σ }. See [16, 32, 41,
42] for various choices ofk on the real line and for spatial models. Notice that
for a random variableT the quantityλ(t) represents the hazard rate ofT givenµ,
that is,

λ(t) dt = P(t ≤ T < t + dt |T ≥ t,µ).

Note, however, that the quantityE[λ(t)] does not have the interpretation as a prior
specification for the hazard rate. For instance, in the case of the stable law of index
0< α < 1, one has

E[λ(t)] =
∫
Y

k(t |y)E[µ(dy)] =
∫
Y

k(t |y)

[∫ ∞
0

1

�(1− α)
s−α ds

]
η(dy) = ∞,

and we see that it is possible thatE[λ(t)] = ∞ for all t . It follows that to
appropriately evaluate the marginal hazard rate ofT , one needs to first find
the distribution of µ or N , given T ≥ t . Setting U1(x) = I{x<t}, we have
g1(y) = ∫ t

0 k(x|y)dx := K(t |y). Hence, settingf1(s, y) = g1(y)s, it follows that
S(t |λ) = e−N(f1) and an application of Proposition 2.1 gives

S(t)P (dN |ν) = P (dN |e−f1ν)E
[
S
(
(t)|λ)]

,

where

E[S(t |λ)] = LN(f1|ν) = e
−∫

Y

∫ ∞
0 (1−e−sK(t |y))ρ(ds|y)η(dy)

denotes the marginal survival function ofT . The quantityP (dN |e−f1ν) denotes
the law of a Poisson random measure with mean intensitye−sK(t |y)ρ(ds|y)η(dy)

and represents the posterior distribution ofN |T ≥ t . The marginal hazard rate is
obtained as

E[λ(t)|T ≥ t] =
∫
M

λ(t)P (dN |e−f1ν)

=
∫
Y

k(t |y)

[∫ ∞
0

e−sK(t |y)sρ(ds|y)

]
η(dy).

In the stable case the marginal hazard rate becomes
∫
Y k(t |y)[K(t |y)]α−1η(dy).

Noting the specifications for the Dykstra and Laud kernel in (29), in the stable
case withη(dy) = dy, the prior predictive hazard rate and survival function are

λ0,α(t |DL) = α−1tα and S0,α(t |DL) = e−(1/(α(α+1)))tα+1
,

which corresponds to a Weibull distribution. We now show that a likelihood
for this model based on right censored data is a special case of (28). Suppose
that T1, . . . , Tn|µ are i.i.d. random variables with densityf (t |λ). Then their
joint density can be expressed as

∏n
i=1 f (Ti |λ) = ∏n

i=1 S(Ti)λ(Ti). If there are
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additionallyTn+1, . . . , Tm random times which are right censored by random times
Dn+1, . . . ,Dm, that is,Tl > Dl for l = n + 1, . . . ,m, where we assume that the
distribution of the censoring times does not depend onµ, then the likelihood ofµ
based onn completely observed times andm − n right censored times takes the
form [

m∏
l=n+1

S(Dl|λ)

]
n∏

i=1

S(Ti |λ)λ(Ti) =
[

m∏
i=1

S
(
min(Ti,Di)|λ)] n∏

i=1

λ(Ti),(30)

where we setDi = ∞ for i = 1, . . . , n. Setting Ui(x) = I{Ti≥x}I{x≤Di} =
I{x≤min(Ti ,Di)} for i = 1, . . . ,m, one can write

m∏
i=1

S
(
min(Ti,Di)|λ) = e−µ(gm),

where, in this case,gm(y) = ∑m
i=1

∫ min(Ti ,Di)
0 k(x|y)dx. Hence, it is not difficult

to see that (30) is a special case of (28) withµ(gm) = ∑m
i=1 �(min(Ti,Di)).

4.2. Posterior analysis of Lévy moving averages. We now show how Proposi-
tion 2.3 is used to obtain the posterior distributional properties of the class of Lévy
moving averages under the multiplicative intensity model. Here we actually focus
onµ. The approach used has similarities to that of Lo and Weng [32] in the case of
weighted gamma processes. The analysis proceeds, as in the proof of Theorem 3.2,
by introducing a suitable augmentation and then establishing the appropriate re-
sults forN . First, settingfk,m(s, y) = gm(y)s, it follows thatN(fk,m) = µ(gm).
We now provide some notation which will be used in the description of the poste-
rior distribution. Throughout we assume, for integersl,m and fixedy, the condi-
tion

κl(e
−fk,mρ|y) =

∫ ∞
0

sle−gm(y)sρ(ds|y) < ∞.(31)

Define C(X) = ∑
p

∏n(p)
j=1

∫
Y[∏i∈Cj

k(Xi |y)]κej
(e−fk,mρ|y)η(dy). Additionally,

for j = 1, . . . , n(p), define distributions of the unique jumpsJj,n, each depending
on a correspondingY ∗

j , as

P(Jj,n ∈ ds|Y ∗
j ) = sej e

−gm(Y ∗
j )s

ρ(ds|Y ∗
j )

κej
(e

−f ∗
k,mρ|Y ∗

j )
.(32)

Using Proposition 2.3 and straightforward algebraic manipulations, that is, an
appeal to Bayes rule, one arrives at the following description of the posterior
distribution ofµ, givenX and related quantities.

THEOREM 4.1. Let µ(dy) = ∫ ∞
0 sN(ds, dy) denote a completely random

measure on a Polish space Y with law determined by the law of the Poisson
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random measure N with mean ν(ds, dy) = ρ(ds|y)η(dy) on J × Y. Suppose
that X|µ has the multiplicative intensity likelihood specified in (28). Then the
posterior distribution of µ|X can be described in terms of the posterior distribution
of µ|Y,X mixed over the posterior distribution of Y|X, which is described as
follows:

(i) The posterior distribution of N |Y,X is equivalent to the conditional law
of the random measure N∗

n,m(ds, dy) = Nfk,m
(ds, dy) + ∑n(p)

j=1 δJj,n,Y ∗
j
(ds, dy),

where conditional on (J,Y,X), Nfk,m
is a Poisson random measure with intensity

E
[
Nfk,m

(ds, dy)
] = e−fk,m(s,y)ν(ds, dy) = e−gm(y)sρ(ds|y)η(dy),(33)

not depending on (Jj,n). Additionally, given (Y,X), the (Jj,n) are conditionally
independent of Nfk,m

and are mutually independent with each Jj,n having the
distribution depending on Y ∗

j specified in (32).
(ii) Statement (i) implies that µ|Y,X is equivalent to the conditional distribu-

tion, given (Y,X), of the random measure

µ∗
n,m(dy) =

∫ ∞
0

sN∗
n,m(ds, dy) = µgm(dy) +

n(p)∑
j=1

Jj,nδY ∗
j
(dy),

where conditional on Y and X, µgm(dy) := ∫ ∞
0 sNfk,m

(ds, dy) is a completely
random measure with Lévy measure specified in (33). Additionally, the (Jj,n) are
conditionally independent of µgm .

(iii) If λ is a random hazard rate or intensity defined in (25), then its posterior
distribution, given (Y,X), is equivalent to the conditional distribution of the
random measure

λ∗
n,m(x) =

∫
Y

k(x|y)µgm(dy) +
n(p)∑
j=1

Jj,nk(x|Y ∗
j ).

(iv) The conditional distribution of Y|X can be expressed via the conditional
distributions of Y|p,X and p|X as follows: The distribution of Y|p,X is such
that the unique values of Y, Y ∗

1 , . . . , Y ∗
n(p), are conditionally independent with

distributions

P(dY ∗
j |p,X) := π(dY ∗

j |Cj) ∝
[ ∏

i∈Cj

k(Xi |Y ∗
j )

]
κej

(e−fk,mρ|Y ∗
j )η(dY ∗

j ).(34)

π(p|X) = [C(X)]−1 ∏n(p)
j=1

∫
Y[∏i∈Cj

k(Xi |y)]κej
(e−fk,mρ|y)η(dy) is the posterior

distribution of p|X.

PROOF. Similar to the proof of Theorem 3.2, we work with an (augmented)
joint distribution of (X,N). Removing the integrals inL(X|µ) and making ap-
propriate substitutions, it follows that a distribution of(J,Y,N,X) is proportional
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to

e−N(fk,m)

[
n∏

i=1

k(Xi |Yi)Ji

][
n∏

i=1

N(dJi, dYi)

]
P (dN |ν).(35)

Using the identity
∏n

i=1 k(Xi |Yi)Ji = ∏n(p)
j=1[

∏
i∈Cj

k(Xi |Y ∗
j )]J ej,n

j,n , combined
with an application of Proposition 2.3 to (35), shows that the joint distribution
of (J,Y,N,X) is proportional to

LN(fk,m|ν)P (dN |e−fk,mν,J,Y)

n(p)∏
j=1

[ ∏
i∈Cj

k(Xi |Y ∗
j )

]

(36)
× J

ej

j,ne
−gm(Y ∗

j )Jj,nρ(dJj,n|Y ∗
j )η(dY ∗

j ),

whereP (dN |e−fk,mν,J,Y) corresponds to the conditional law, given(J,Y,X),
of the random measureN∗

n,m(ds, dy) = Nfk,m
(ds, dy)+∑n(p)

j=1 δJj,n,Y ∗
j
(ds, dy) de-

scribed in statement (i). The distribution ofJ|Y,X is then obtained by integrating
out N in (36) and applying Bayes rule, using the finiteness condition (31). A sim-
ilar procedure yields the distributions ofY|X. �

REMARK 7. Note that the law ofNfk,m
is also determined by first applying

Proposition 2.1 to (35) to obtain

e−µ(gm)P (dN |ν) = P (dN |e−fk,mν)LN(fk,m|ν).

See [20] for a similar type of calculation for spatial NTR processes. Notice also
that, conditional on(J,Y,X), the dependence ofNfk,m

(andN∗
n,m) on X is only

through the functionfk,m.

REMARK 8. The marginal distribution ofY|X can also be written as

π(dY|X) = [C(X)]−1

[
n∏

i=1

k(Xi |Yi)

]
Mµ(dY|e−fk,mν),(37)

where

Mµ(dY|e−fk,mν) =
n(p)∏
j=1

κej

(
e
−f ∗

k,mρ|Y ∗
j

)
η(dY ∗

j )

(38)

=
∫
M

[
n∏

i=1

µ(dYi)

]
P (dN |e−fk,mν)

assumes a role analogous to the Blackwell–MacQueen Pólya urn distribution
in Dirichlet process mixture models. This viewpoint becomes important when
designing computational procedures.
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REMARK 9. James [19] gives results for semi-parametric weighted gamma
process mixture models under more complex multiplicative intensity structures,
that is, for cases where the kernelk depends on a Euclidean parameterβ, andβ

has prior distributionπ(dβ). A careful examination of that work, coupled with the
results given here, provides an obvious way to obtain the corresponding result for
the general processes, via a straightforward application of Bayes rule. A notable
wrinkle is that the Laplace functionals will depend onβ, and, hence, one does not
have the cancellation of the semi-parametric version ofLN(fk,m|ν). A discussion
of this is omitted for brevity. See [16] for further details in the case of the weighted
gamma process.

4.3. Posterior intensity rates and predictive hazards. Similar to the case of
Dirichlet process mixture models, many posterior quantities can be expressed in
terms of functionals of the missing valuesY or the partitionp. For example, the
posterior intensity rate depends upon the posterior mean forµ. From Theorem 4.1,
it follows that the posterior mean ofµ|X,Y is given by

E[µ∗
n,m(dy)|X,Y] = κ1(e

−fk,mρ|y)η(dy) +
n(p)∑
j=1

E[Jj,n|Y ∗
j ]δY ∗

j
(dy),(39)

where

E[Jj,n|Y ∗
j ] = κej+1(e

−fk,mρ|Y ∗
j )

κej
(e−fk,mρ|Y ∗

j )
=

∫ ∞
0 sej+1e

−gm(Y ∗
j )s

ρ(ds|Y ∗
j )∫ ∞

0 uej e
−gm(Y ∗

j )u
ρ(du|Y ∗

j )
.

The quantity (39) is also the conditional moment measure ofµgm , given (Y,X).
Using these expressions, we obtain the following generalization of Lo and Weng
([32], Theorem 4.2).

COROLLARY 4.1. Theorem 4.1 implies that the posterior expectation of the
intensity (25),given X and Y, is

E[λ(x)|Y,X] =
∫
Y

k(x|y)κ1(e
−fk,mρ|y)η(dy) +

n(p)∑
j=1

k(x|Y ∗
j )E(Jj,n|Y ∗

j )

and, hence, the posterior expectation given X is

E[λ(x)|X] = ∑
p

(∫
Y

k(x|y)κ1(e
−fk,m |y)η(dy)

+
n(p)∑
j=1

∫
Y

k(x|y)E[Jj,n|y]π(dy|Cj)

)
π(p|X).

Note, importantly, that a predictive hazard rate is defined asE[λ(Xn+1)|X].
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REMARK 10. Corollary 4.1 shows that the posterior mean for the intensity
rate can be estimated from Monte Carlo draws involving onlyp andY∗. Thus, in
problems where inference focuses on estimating the intensity, there is no need to
draw values from the posterior ofµ. From a computational perspective this can
greatly simplify algorithms.

4.4. Monte Carlo procedures. Ishwaran and James [16] show that efficient
sampling schemes used to approximate the posterior distributional properties of
Dirichlet process mixture models can be applied with some modification to sample
the posterior distribution of mixtures of weighted gamma processes in the present
setting. A key point was to note the similarities between the distribution ofY|X
for Dirichlet process models relative to the Blackwell–MacQueen urn and (37)
in the case of the weighted gamma process. Lo and Weng [32] and Lo, Brunner
and Chan [31] also exploited this idea. Here we note that the explicit expression
of (38) and its description in Theorem 4.1, for general processesµ, allows one to
extend some of these procedures. First note that if one wants to sampleµ|X, one
can obtain a draw fromY|X and then draw from the distribution ofµ∗

n,m|X,Y
described in (ii) of Theorem 4.1. Here we give some ideas on how to sample
from Y|X, noting that steps such as draws fromµ|Y,X are natural additions.
For brevity, we only sketch out some details, focusing on identifying the relevant
probabilities, as one can deduce the operational formalities either from [15, 16]
or other relevant cited works. Note that (38) is thenth moment measure of a
completely random measure with Lévy measure specified in (33). That is, (38) is
the nth moment measure ofµgm described in (ii) of Theorem 4.1. It follows
that (38) can also be represented via its conditional moment measures [see (39)] as

κ1(e
−fk,mρ|Y1)η(dY1)

n−1∏
r=1

[
κ1(e

−fk,mρ|Yr+1)η(dYr+1)

+
n(pr )∑
j=1

κ1+ej,r
(e−fk,mρ|Y ∗

j )

κej,r
(e−fk,mρ|Y ∗

j )
δY ∗

j
(dYr+1)

]
,

wherepr = {C1,r , . . . ,Cn(pr ),r} is the partition of{1, . . . , r} encoding the ties in
the first r observationsYr = (Y1, . . . , Yr) and ej,r is the cardinality ofCj,r . In
order to simulateY from (37), one can construct an analogue of the Pólya urn
Gibbs sampler of Escobar [11] or sequential importance sampler (SIS) of Liu [28]
by working with a density constructed fromE[λ(x)|Y,X]. These procedures are
duals. We first describe the idea for the SIS procedure. This procedure samples
Y1, . . . , Yn sequentially based on the conditional densities, forr = 0, . . . , n − 1,

P(Yr+1 ∈ dy|Yr ,X) = l0,r

cr

λr(dy) +
n(pr )∑
j=1

lj,r (Y
∗
j )

cr

δY ∗
j
(dy),(40)
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whereλr(dy) ∝ k(Xr+1|y)κ1(e
−fk,mρ|y)η(dy) and

l0,r =
∫
Y

k(Xr+1|y)κ1(e
−fk,mρ|y)η(dy)

and

lj,r (Y
∗
j ) = k(Xr+1|Y ∗

j )
κ1+ej,r

(e−fk,mρ|Y ∗
j )

κej,r
(e−fk,mρ|Y ∗

j )
.

Furthermore,cr = l0,r + ∑n(pr )
j=1 lj,r (Y

∗
j ). The importance weights for this scheme

are
∏n−1

r=1 cr . Now, for r = 0, . . . , n − 1, let Y−(r+1),n denote the collection of
n−1 random variables determined by removingYr+1 from (Y1, . . . , Yn). A general
analogue of the Pólya urn Gibbs sampler for generatingY1, . . . , Yn is implemented
by drawing valuesYr+1 from the probabilitiesP(Yr+1 ∈ dy|Y−(r+1),n,X) for r =
0, . . . , n−1. These probabilities are defined analogously to (40), whereY−(r+1),n)

plays the role ofYr . See [16] for more details in the case of the weighted gamma
process.

As in the case of Dirichlet process mixture models, the SIS and Gibbs
sampling procedures described above are attractive as one does not need to
perform complex integration. However, if integration is manageable, then, due
to a Rao–Blackwellization argument, it is generally better to apply the following
new variation of the general weighted Chinese restaurant algorithms discussed
in [15, 31]. We will describe an SIS procedure which has a dual Gibbs sampling
procedure analogous to the collapsed Gibbs samplers. The key to the procedure is
to generate partitionsp based on probabilities defined using thepredictive hazard
rate. That is, forr = 0 . . . , n − 1, define

l(r) = l0,r +
n(p)∑
j=1

lj,r ,

wherelj,r = ∫
Y lj,r (y)π(dy|Cj,r ). The distributionπ(dy|Cj,r ) is the distribution

for the j th unique value, givenCj,r , defined similarly to (34). The special case
whenr = 0 corresponds to

l(0) =
∫
Y

k(X1|y)κ1(e
−fk,mρ|y)η(dy).

By Corollary 4.1 it follows thatl(r) is the predictive hazard rate givenX1, . . . ,Xr

and pr . From this, it is possible to define a sequential algorithm to generate
an importance draw forp from the posterior. The method can be described in
terms of n customers who enter a restaurant sequentially, similar to the class
of WCR algorithms. However, now the role played by the EPPF for random
probability measures in such algorithms is replaced by cumulants,κ , arising
from Lévy measures. The first customer is seated to a table with probability
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l(0)/ l(0) = 1. Now at stepr + 1, given a configurationpr = {C1,r , . . . ,Cn(pr ),r}
of the integers{1, . . . , r}, one determines the partitionpr+1 by noting whether a
customerr + 1 sits at a new table or sits at one of the existing tablesCj,r for
j = 1, . . . , n(pr ). The seating rule is defined as follows. To seat customerr + 1,
sit him at an occupied tableCj,r with probability Pr(pr+1|pr ) = l(r)−1lj,r , where
pr+1 = pr ∪ {r + 1∈ Cj,r} for j = 1, . . . , n(pr ). Otherwise, customerr + 1 sits at
a new unoccupied tableCn(pr+1) with probability Pr(pr+1|pr ) = l(r)−1l0,r , where
pr+1 = pr ∪ Cn(pr+1). After n customers are seated, the algorithm will yield a
partition p = {C1, . . . ,Cn(p)} of {1, . . . , n}. By James ([18], Lemma 2.3), this
partition has densityq(p) satisfying

L(p)q(p) =
n(p)∏
j=1

∫
Y

[ ∏
i∈Cj

k(Xi |y)

]
κej,n

(e−fk,mρ|y)η(dy),

whereL(p) = ∏n
r=1 l(r − 1). In other words, for any integrable functiont (p),

∑
p

t (p)π(p|X) =
∑

p t (p)L(p)q(p)∑
p L(p)q(p)

.

Thus, q(p) is an importance density for drawing posterior valuesp with
importance valuesL(p). This fact, combined with Theorem 4.1, now suggests a
method for approximating posterior quantities from the multiplicative intensity
model:

1. Draw p = {C1, . . . ,Cn(p)} from q(p). Condition onp and drawY ∗
j indepen-

dently fromπ(dY ∗
j |Cj) for j = 1, . . . , n(p).

2. Use the value forY from step 1 to drawµ from µ|Y,X. That is, drawµ from
the random measureµgm + ∑n(p)

j=1 Jj,nδY ∗
j
.

3. To approximate the posterior law of a functionalg(µ), run the previous stepsB
times independently, obtaining valuesµ(b) with importance weightsL(p(b)),
for b = 1, . . . ,B. Approximate the lawP {g(µ) ∈ ·|X} with∑B

b=1 I {g(µ(b)) ∈ ·}L(p(b))∑B
b=1 L(p(b))

.

To approximate functions of the formt (p), for instance,E[λ(t)|X], then step 2
can be eliminated and estimation is based on∑B

b=1 t (p(b))L(p(b))∑B
b=1 L(p(b))

.

REMARK 11. Note that the main difficulty in step 2 is to approximate a
draw from µgm . There are several methods discussed in the literature. See, for
instance, [4, 6, 42] for some possible ideas and further references in the general
setting.
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We next present some explicit examples of the posterior distribution ofµ based
on the results in Theorem 4.1.

4.4.1. Generalized gamma process. Brix [6] proposes an interesting class of
measures by specifyingµ to be a generalized gamma random measure. Using the
description of Brix [6], these areµ processes with Lévy measure

ρα,b(ds) = 1

�(1− α)
s−α−1e−bs ds.

The values forα and b are restricted to satisfy 0< α < 1 and 0≤ b < ∞ or
−∞ < α ≤ 0 and 0< b < ∞. Different choices forα andb in ρα,b yield various
subordinators. These include the stable subordinator whenb = 0, the gamma
process subordinator whenα = 0 and the inverse-Gaussian subordinator when
α = 1/2 andb > 0. Whenα < 0, this results in a class of gamma compound
Poisson processes. Nieto–Barajas and Walker [34] provide analysis for a random
distribution function on(0,∞), as in (27), wherek is an exponential kernel and
whereµ is modeled as a weighted version of a gamma compound Poisson process.
This turns out to be an inhomogeneous variation of a subclass of the models of
Brix [6] with α = −1 andb = b(y) in BM+(Y). The weighted gamma process
considered in [32] corresponds to the choice ofα = 0 andb = b(y).

The posterior distribution ofµ, given (X,Y), is equivalent to the conditional
distribution of the random measureµgm + ∑n(p)

j=1 (b + gm(Y ∗
j ))−1Gj,nδY ∗

j
, where

µgm is an inhomogeneous generalized gamma process with intensity

1

�(1− α)
e−(gm(y)+b)ss−α−1 ds η(dy),

and(Gj,n) are independent gamma random variables with shapeej,n − α and unit
scale. It follows that the conditional moment measure is

E[µ∗
n,m(dy)|X,Y] = (

b + gm(y)
)α−1

η(dy)

+
n(p)∑
j=1

(
b + gm(Y ∗

j )
)−1

(ej,n − α)δY ∗
j
(dy).

The joint moment measure ofY can be expressed as

Mµ

(
dY|ρα,b+gmη

) =
[ n(p)∏

j=1

�(ej,n − α)

�(1− α)

] n(p)∏
j=1

(
b + gm(Y ∗

j )
)−(ej,n−α)

η(dY ∗
j ),

which, if b = b(y), generalizes an expression for the weighted gamma process;
see [19, 32]. Note that, forr = 0,1, . . . , n − 1,

l0,r =
∫
Y

k(Xr+1|y)
(
b + gm(y)

)α−1
η(dy)
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and

lj,r (Y
∗
j ) = k(Xr+1|Y ∗

j )

(b + gm(Y ∗
j ))

(ej,r − α).

4.4.2. Smoothed spatial beta process. Given the conjugacy properties of the
beta process when used as a cumulative hazard prior in [14] under right censoring,
it is natural to think of a smooth version of this process to model hazard rates.
This is in analogy to smoothing the Nelson–Aalen estimator. Here we allow an
extension toY = (Y1, Y2) ∈ (0,∞) × Y2 by specifying

ρ(ds|y1) = c(y1)s
−1(1− s)c(y1)−1 ds

and writing η(dy1, dy2), where c is some positive function. Note, however,
that the posterior behavior is quite different in this context than in [14]. The
measureµgm corresponds to a completely random measure with Lévy measure
c(y1)e

−gm(y)ss−1(1 − s)c(y1)−1 ds η(dy1, dy2) and, hence, is not a beta process.
Additionally, the distribution ofJj,n is

P(Jj,n|Y ∗
j ) = e

−gm(Y ∗
j )s

sej,n−1(1− s)
c(Y ∗

1,j )−1
ds∫ 1

0 e
−gm(Y ∗

j )u
uej,n−1(1− u)

c(Y ∗
1,j )−1

du
,

where the normalizing constant depends on the Laplace transform of a beta
random variable evaluated atgm(Y ∗

j ). In other words, it is related to theconfluent
hypergeometric function

1F1
(
ej,n, c(Y

∗
1,j ) + ej,n,−gm(Y ∗

j )
)

= �(c(Y ∗
1,j ) + ej,n)

�(c(Y ∗
1,j ))�(ej,n)

∫ 1

0
e
−gm(Y ∗

j )u
uej,n−1(1− u)

c(Y ∗
1,j )−1

du.

For some simplification, hereafter we setc equal to the constantθ . Then it follows
that one can writeE[µ∗

n,m(dy)|Y,X] as

θ

[∫ 1

0
e−gm(y)s(1− s)θ−1 ds

]
η(dy)

+
n(p)∑
j=1

ej,n

ej,n + θ

1F1(ej,n + 1, θ + ej,n + 1,−gm(Y ∗
j ))

1F1(ej , θ + ej ,−gm(Y ∗
j ))

δY ∗
j
(dy),

and the joint marginal measureMµ(dY|e−fk,mν) is

[ n(p)∏
j=1

�(ej,n)�(θ)

�(ej,n + θ)

] n(p)∏
j=1

1F1
(
ej,n, θ + ej,n,−gm(Y ∗

j )
)
η(dY ∗

j ).
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5. Proof of Proposition 2.2. In this section we present two results which
when combined lead to a proof of Proposition 2.2.

PROPOSITION5.1. Suppose the (W,N) are measurable elements in the space
Wn × M having the joint measure in (11),where N is a Poisson random measure
with sigma-finite nonatomic mean measure ν. Then the following disintegration
holds: [

n∏
i=1

N(dWi)

]
P (dN |ν)

(41)

= P (dN |ν,W)ν(dW1)

n∏
i=2

[
ν(dWi) +

n(pi−1)∑
j=1

δW ∗
j
(dWi)

]
,

where P (dN |ν,W) corresponds to the law of N determined by (15) and is
representable in distribution as (13). The statement implies that M(dW|ν) =
ν(dW1)

∏n
i=2[ν(dWi) + ∑n(pi−1)

j=1 δW ∗
j
(dWi)].

PROOF. First note the equivalence forM(dW|ν) follows by integrating outN
in (41). The result proceeds by induction. The case forn = 1, (2), is true. Now
assuming that the result is true forn = r , it follows that[

r+1∏
i=1

N(dWi)

]
P (dN |ν) = N(dWr+1)P (dN |ν,Wr )M(dWr |ν),

which implies the form ofM(dWr+1|ν), and, hence, it remains to show that

N(dWr+1)P (dN |ν,Wr ) = P (dN |ν,Wr+1)

[
ν(dWr+1) +

n(pr )∑
j=1

δW ∗
j
(dWr+1)

]
.

First, for functionss andf in BM+(W), note that, by a change of measure,∫
M

∫
W

s(w)e−N(f )N(dw)P (dN |ν,Wr )

(42)

=
[ n(pr )∏

j=1

e
−f (W ∗

j )

]∫
M

g(N∗
n )e−N(f )P (dN |ν),

where g(N∗
n ) = ∫

W s(w)N∗
n (dw) = ∫

W s(w)N(dw) + ∑n(pr )
j=1 s(W ∗

j ). Applying
Proposition 2.1 to the right-hand side of (42) shows that the expressions in (42)
are equal to

LN(f |ν)

[ n(pr )∏
j=1

e
−f (W ∗

j )

][∫
M

∫
W

s(w)N(w)P (dN |e−f ν) +
n(pr )∑
j=1

s(W ∗
j )

]
.
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It follows that the conditional Laplace functional ofN , givenWr+1 := (Wr ,Wr+1),
relative toM(dWr+1|ν), is determined by the expression

LN(f |ν)

[ n(pr )∏
j=1

e
−f (W ∗

j )

][∫
W

s(Wr+1)e
−f (Wr+1)ν(dWr+1) +

n(pr )∑
j=1

s(W ∗
j )

]
.

Now define a functiont (Wr+1) to bee−f (Wr+1) if Wr+1 is not equal to any of the
{W ∗

1 , . . . ,W ∗
n(pr )

} and is set to be one otherwise. Then, sinceν is nonatomic, it
follows that

∫
W

s(Wr+1)t (Wr+1)

[
ν(dWr+1) +

n(pr )∑
j=1

δW ∗
j
(dWr+1)

]

=
∫
W

s(Wr+1)e
−f (Wr+1)ν(dWr+1) +

n(pr )∑
j=1

s(W ∗
j ).

Hence, the conditional Laplace functional ofN , given Wr+1, with respect
to M(dWr+1|ν) is

LN(f |ν)

[n(pr )∏
j=1

e
−f (W ∗

j )

]
t (Wr+1) = LN(f |ν)

[ n(pr+1)∏
j=1

e
−f (W ∗

j )

]
,(43)

as desired. �

The next result, which builds on Proposition 5.1, establishes the partition
representation ofM(dW|ν).

PROPOSITION 5.2. For i = 1, . . . , n, let gi be nonnegative functions in
BM(W). Then

∫
M

[
n∏

i=1

∫
W

gi(wi)N(dwi)

]
P (dN |ν) = ∑

p

n(p)∏
j=1

∫
W

[ ∏
i∈Cj

gi(w
∗
j )

]
ν(dw∗

j ).(44)

Equivalently, M(dW|ν) = ∏n(p)
j=1 ν(dW ∗

j ).

PROOF. The proof of (44) proceeds by induction. Casen = 1 is obvious. Now
suppose it is true forn = r . Let pr+1 denote a partition of{1, . . . , r + 1}, and
define, for eachr > 0,

φg(pr ) =
n(pr )∏
j=1

∫
W

[ ∏
i∈Cj,r

gi(w
∗
j )

]
ν(dw∗

j ).
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It follows that φg(pr+1) is φg(pr )
∫
W gr+1(v)ν(dv) if n(pr+1) = n(pr ) + 1.

Otherwise, if the indexr + 1 is in an existing cell/tableCi,r , then it is equivalent
to φg(pr )

∫
W gr+1(v)πg(dv|Ci,r ), where

πg(dv|Ci,r ) = [∏l∈Ci,r
gl(v)]ν(dv)∫

W [∏l∈Ci,r
gl(v)]ν(dv)

for i = 1, . . . , n(pr ). Note that this implies that

∑
pr+1

φg(pr+1) = ∑
pr

φg(pr )

[∫
W

gr+1(v)ν(dv) +
n(pr )∑
i=1

∫
W

gr+1(v)πg(dv|Ci,r )

]
.

Now, by (simple algebra) and the induction hypothesis onr , it follows that∑
pr+1

φg(pr+1)

=
∫
Wn

[∫
W

gr+1(v)ν(dv) +
n(pr )∑
j=1

gr+1(W
∗
j )

][
r∏

i=1

gi(Wi)

]
M(dWr |ν).

Now, utilizing the fact thatM(dWr+1|ν) = [ν(dWr+1) + ∑n(pr )
j=1 δW ∗

j
(dWr+1)] ×

M(dWr |ν) concludes the proof. Note this last statement relies on the result in
Proposition 5.1. �

REMARK 12. The proof of Proposition 5.2 follows closely an unpublished
proof by Albert Lo for the case of gamma processes. That is, it is an alternative
proof for Lemma 2 in [30] which yields the appropriate partition representation
for integrals with respect to a Blackwell–MacQueen urn distribution derived from
a Dirichlet process. The style of proof exploits properties of partitions similar to
those stated in [36], Proposition 10. Details in the proof of Proposition 5.2 translate
into justifications for generalizations of weighted Chinese restaurant algorithms.
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