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Abstract In this article, we develop a fully integrated and dynamic Bayesian approach to

forecast populations by age and sex. The approach embeds the Lee-Carter type models

for forecasting the age patterns, with associated measures of uncertainty, of fertility,

mortality, immigration, and emigration within a cohort projection model. The method-

ology may be adapted to handle different data types and sources of information. To

illustrate, we analyze time series data for the United Kingdom and forecast the compo-

nents of population change to the year 2024. We also compare the results obtained from

different forecast models for age-specific fertility, mortality, and migration. In doing so,

we demonstrate the flexibility and advantages of adopting the Bayesian approach for

population forecasting and highlight areas where this work could be extended.

Keywords Bayesian . Lee-Carter model . Population forecasting . uncertainty .

UnitedKingdom

Introduction

This work is guided by two aims. The first is to have a flexible platform for forecasting

populations. Most statistical offices in developed countries utilize data obtained from
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different sources, including administrative registers, surveys, and censuses with varying

levels of quality and measurement. Cohort component models have long been the

standard apparatus for producing projections, but wide differences remain in the

underlying assumptions, especially regarding the treatment of migration and the level

of detail provided. The forecasting approach we have developed is one that can be

adapted to include all demographic components of change by age and sex, and provides

measures of the accuracy of the forecasts.

As we move away from deterministic population projections to those that provide

measures of uncertainty, we believe it is important to integrate the various sources of

uncertainty into the modeling framework. The rationale for considering a Bayesian

approach is that it offers a natural probabilistic framework to predict future populations.

Variability in the data and uncertainties in the parameters and model choice can be

explicitly incorporated by using probability distributions, and the predictive distribu-

tions follow directly from the probabilistic model applied. The approach also allows the

inclusion of expert judgments, together with their uncertainty, in the model framework.

The second aim of this article is to provide a flexible and consistent method for

forecasting the age patterns of fertility, mortality, and migration that drive our forecast

results. A vast literature focuses on modeling demographic events (e.g., Bongaarts and

Bulatao 2000), but approaches for forecasting the age patterns are less abundant.

Methods for forecasting migration, in particular, represent a persistent weakness in

population forecast models (Bijak 2010).

Our population forecasting model is developed with these two aims in mind. We

focus on generalizing and extending the Lee-Carter model for forecasting mortality to

age-specific fertility and migration (Lee and Carter 1992), and integrating these into the

cohort projection mechanism. One of the contributions of the proposed approach is

forecasting age-specific emigration rates and immigration volumes, following the

suggestions of Rees (1986:148). Because the age patterns of immigration and emigra-

tion are more regular than those observed for net migration, they are better amenable to

modeling by using Lee-Carter models.

Background

Forecasting the Age Patterns of Fertility, Mortality, and Migration

There is a long history of modeling the age patterns of fertility, mortality, and migration

events (Booth 2006). This work has demonstrated the persistent and strong regularities

in the age patterns over time and across space (Preston et al. 2001:191–210; Rogers

1986; Rogers and Little 1994) driven by biological and social life course mechanisms

(Courgeau 1985). The age regularities exhibited in demographic patterns allow popu-

lation forecasters to simplify their underlying assumptions and models. Indeed, some

forecasts focus on indicator variables, such as the total fertility rate (TFR), life

expectancy, or net migration rate, which are then converted into an assumed age

distribution (see, e.g., Raftery et al. 2012; Wilson and Bell 2007).

The main approaches for modeling the age patterns of demographic components

include the imposition of empirical tables obtained from other countries and historical

settings (Coale and Demeny 1966), parametric model schedules (Coale and McNeil
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1972; Coale and Trussell 1974; Heligman and Pollard 1980; Knudsen et al. 1993;

Rogers 1986; Rogers and Castro 1981; Rogers et al. 1978), relational models (Brass

1974), functional models (De Beer 2011; Hyndman and Booth 2008; Hyndman and

Ullah 2007; Lee and Carter 1992), and hierarchical Bayesian models (Czado et al.

2005; Girosi and King 2008). Of these, the most successful and widely used for

forecasting future patterns and uncertainty have been the relational and functional

models—particularly, the Lee-Carter model for mortality (Booth and Tickle 2008).

Relational and functional models include standards or time-invariant patterns,

which are then perturbed based on a set of parameters. Because the shapes of age-

specific fertility, mortality, and migration largely remain the same over time, these

approaches provide a powerful tool for forecasting. In the Lee-Carter case, single-

or five-year age groups are altered on the basis of time series equations. The main

critique of the original Lee-Carter approach is that it can produce implausible

forecasts for particular age groups (see Girosi and King 2008:38–42). As a

consequence, several extensions have been developed to accommodate cohort

effects, correlation between sexes, and smoothing (Booth and Tickle 2008; Lee

2000), as well as to forecast fertility rates (Lee 1993).

Bayesian Population Forecasting

The need to incorporate probabilistic uncertainty into population estimates and fore-

casts is well known. Probabilistic forecasts have the advantage over variant style

projections in that they specify the chances or probability that a particular future

population value will be within any given range (Ahlburg and Land 1992; Alho and

Spencer 1985, 2005; Bongaarts and Bulatao 2000; Keilman 1990; Lee and Tuljapurkar

1994; Lutz 1996). With variant projections, on the other hand, the user has no idea how

likely future population values are, but only that they are plausible scenarios

representing the “most likely” and the “extreme” high and low possibilities.

However, despite the known advantages of probabilistic forecasts, they have yet to

be widely adopted by statistical agencies (Lutz and Goldstein 2004). The reason is that

there are many types of uncertainties to consider, and including them in projections is

not always straightforward.

According to Alho (1999), probabilistic population forecasting within the Bayesian

framework has a tradition dating back over 60 years to the seminal works of Leo

Törnqvist and colleagues (Hyppölä et al. 1949). However, it was not until the 1980s

that probabilistic methods began entering mainstream demography. These included

time series extrapolations, expert-based forecasting, and past error propagation (for a

detailed overview of different approaches, see Bijak 2010). Examples of Bayesian

models for population forecasting were practically non-existent until the past few years,

with the notable exception of Daponte et al. (1997). Recent advances in fast

computation and numerical methods have enabled a more widespread use of the

Bayesian approach in many fields of application, including population forecasting. At

a global level, Raftery et al. (2012) proposed a generic model for all countries of the

world, based on aggregate indicators (TFRs and life expectancies) and model life

tables. At the opposite end of the data spectrum, Bryant and Graham (2013) suggested

a comprehensive Bayesian approach to reconcile different data sources for New

Zealand, a country with very good availability of population statistics.

Bayesian Population Forecasting 1037



Bryant and Graham’s (2013) approach uses an accounting framework for

estimating New Zealand’s current population disaggregated by regions, age, sex

and time. It combines various data sources, including vital events registers,

censuses, and school and electoral rolls. The model constrains the true values

of the demographic components by the population accounting equation. Also,

age, time, sex and regional patterns are specified by main effect and two-way

interaction terms within a Poisson-gamma model, similar to non-Bayesian

approaches of Smith et al. (2010) and Raymer et al. (2011b).

Concurrently, Wheldon et al. (2013) undertook Bayesian estimation and

projection of populations to reconstruct past population data. Their approach

is based on modeling the three population components—fertility, mortality, and

net migration—and accounts for the varying quality of the population figures

available from the censuses. Census data are treated as biased estimates of the

true unknown population count. Their approach does not provide a systematic

modeling of the age profiles and does not account for changing behaviors over

time. The information about the model parameters is fed into the model in the

form of the informative prior distributions. The component forecasts are

inserted in the cohort-component model similar to the one described in the

upcoming subsection on the population projection model.

Methodology

In this section, we first introduce the forecasting model proposed by Lee and Carter

(1992) and then describe how it can be extended and applied within a Bayesian

framework. The Lee-Carter model was originally designed to forecast age-specific

mortality rates with the following specification:

logμx;t ¼ αx þ βxκt þ ξx;t; ð1Þ

where the logarithm of the age and time-specific mortality rate μx,t is

decomposed into an overall age profile, αx, averaged over the entire period

under consideration, and age-specific changes in mortality βx. The subscripts x

and t denote age and time, respectively. The βx parameter describes how fast

the rates decline over time in response to changes in the time-specific effect κt.

The error term ξx,t is assumed to be normally distributed with a mean of 0 and

a constant variance. To forecast mortality rates into the future, a simple random

walk with drift model for κt was proposed:

κt ¼ ϕþ κt−1 þ εt: ð2Þ

To ensure identifiability of the model parameters, constraints are imposed such

that a sum of βx over age is 1 and a sum of κt over time is 0 (Lee and Carter

1992:661). Lee (1993) subsequently proposed a similar model to forecast age-

specific fertility for the United States. In that model, several constraints were

introduced to represent the prior information on fertility.

In this article, we extend and adapt the Lee-Carter model to create a general

framework for forecasting mortality, fertility, emigration and immigration. In this
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framework, we first assume that count data on a given population component Yx,t
g,k

follow a Poisson distribution:

Y
g;k
x;t ePoisson μ

g;k
x;t R

g;k
x;t

� �
; ð3Þ

where g ∈ {D,B,E,I} denotes a component of population change: D represents

deaths (mortality), B is births (fertility), E is emigration, I is immigration, sex k =

F denotes females, and k = M stands for males. Parameter μx,t
g,k denotes a ratio of

counts of demographic event scaled to the size of the population exposed to risk

of these events, Rx,t
g,k. As in the original Lee-Carter model, t and x denote time and

age, respectively. For mortality and emigration, the population at risk is the same;

for fertility, it consists of women of reproductive age. For immigration, we forecast

the counts rather than rates; hence, we assume that Rx,t
I,k = 1 for all x, t, and k.

Czado et al. (2005) developed the extension of the Lee-Carter model to incorporate

Poisson variability of death counts within the Bayesian framework.

Second, we assume that the logarithm of the rate follows a normal distribution:

logμ
g;k
x;t e N αg;k

x þ βg;k
x κ

g;k
t þ γ

g;k
t−x; τ

g;k
� �

; ð4Þ

where αx
g,k, βx

g,k, and κt
g,k represent the same parameters as in the Lee-Carter model, and

γt− x
g,k denotes a cohort effect. The cohort effect, introduced by Renshaw and Haberman

(2006) for mortality, is incorporated in our framework for the sake of generality, but it

may be omitted if not required. Throughout this article, N(μ,τ) denotes a normal

distribution with a mean of μ and precision (inverse variance) τ. The normal distribu-

tion assumed for rates is an extension of the Czado et al. (2005) model. It allows

capturing the overdispersion that is not explained by the variability resulting from the

Poisson sampling of count data.

Third, for the time-specific effects, κt
g,k, we require a time series model,

which facilitates the forecasting. This model can be univariate, such as random

walk with drift in the original Lee-Carter specification, for each component and

each sex; alternatively, the model can be multivariate (e.g., vector

autoregression (VAR)), which allows exploring correlations between sexes and

components. A time series model is also utilized for a cohort effect, γt − x
g,k . In

our application, we use a univariate model. However, more general multivariate

frameworks can be used.

To ensure identification of the parameters αx
g,k, βx

g,k, κt
g,k, and γt− x

g,k , the following

constraints are imposed:

Xz

x ¼ 0

βg;k
x ¼ 1; κ

g;k
1 ¼ 0; γ

g;k
1 ¼ 0; ð5Þ

where z denotes the oldest age group. These constraints suffice to identify the bilinear

model in Eq. (4) as long as there is a clear differentiation in the βx—that is, as long as

they are not all equal to 1 / z, in which case the model reduces to the linear age-period-

cohort (APC) model. The problem of identification of the period and cohort effects in

the APC model has long been discussed in the literature (see Luo 2013, with a

comment by Fienberg 2013).
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To learn about the model parameters, and specifically about the forecasts of the

population components, we use Bayesian inference. Bayes theorem states that the

posterior distribution of the model parameters (e.g., forecasts of the age-specific

mortality rates) is proportional to the product of the likelihood for the data and the

prior distribution. In our approach, Bayesian inference integrates uncertainty from the

demographic event (count) data expressed by the Poisson likelihood with weakly

informative prior distributions that give preference to the historical data.

Subsequently, all four components of population change are combined within the

cohort component projection model.

In the following subsections, we present specific adaptations of the preceding

framework to forecast mortality, fertility, and migration. We adopt a convention of

proposing a very simple model for the data (such as the original Lee-Carter model)

with a more general one. Because our extensions of the Lee-Carter model lead to a

relatively complex specification of the probabilistic model, the closed forms of the

posterior distributions are difficult to obtain analytically. Hence, we sample from

the posterior distributions by using the Markov chain Monte Carlo (MCMC)

algorithms implemented in the OpenBUGS software (Lunn et al. 2009). The example

code used for the simulations for fertility is available in Online Resource 1 (section A.3).

The other codes are available from the corresponding author upon request.

Forecasting Mortality

To forecast the mortality of males and females, we consider the Bayesian version of the

original Lee-Carter model, denoted as M1, and a general extension of this model,

denoted by M2. The Lee-Carter model M1 is specified as in Eqs. (1) and (2), and the

age-specific mortality rates are calculated as μx,t
D,k=Yx,t

D,k / Rx,t
D,k. Model M2 for death

counts Yx,t
D,k follows Eqs. (3) and (4).

In M1, the time-specific parameters κt
k (we drop the superscriptD for each parameter

for clarity of notation) follow univariate random walk with drift models, as in the

original Lee-Carter specification. In M2, κt
k for both sexes follow a bivariate vector

autoregressive VAR(1) process with drift:

κF
t

κMt

� �

eMNV 2
ϕ01

ϕ02

� �
þ

ϕ11 ϕ12

ϕ21 ϕ22

� �
κF
t−1

κMt−1

� �
;Tκ

� �
; ð6Þ

where MVN2 denotes a two-dimensional multivariate normal distribution, with the

precision matrix Tκ; ϕij, i, j = 1, 2 are the parameters of the VAR(1) model, with

ϕ0j, j = 1, 2 being drift terms. The instantaneous and lagged correlations assumed for

males and females reflect the assumption of parallel improvements in health conditions

over time. 1 Finally, the cohort effect γt − x
k for each sex k follows a univariate

autoregressive process AR(1) with parameters ψ0
k and ψ1

k:

γkt−x e N ψk
0 þ ψk

1γ
k
t−x−1; τ

k
γ

� �
: ð7Þ

1 Li and Lee (2005) proposed an alternative approach to include correlations between sexes; they added a

commonality factor to Eq. (1).
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Forecasting Fertility

For forecasting age-specific fertility rates, we apply a simple version of the Lee (1993)

model, here called F1. The extended model, denoted by F2, includes a cohort effect

(see also Cheng and Lin 2010; Lee 1993, 2000). The population at risk represents all

women of reproductive age.

The time component in F1 follows an ARMA (1,1) process (again we suppress the

superscripts B and k because the model relates only to females):

κt e N ϕ0 þ ϕ1 κt−1 − ϕ0ð Þ þ ϕ2ξt−1; τκð Þ; ð8Þ

where ξt = κt−ϕ0−ϕ1(κt−1−ϕ0)−ϕ2ξt−1.

In Model F2, we use a simple univariate autoregressive process AR(1) for the time

component κt and for γt−x:

κt ∼ N ϕ0 þ ϕ1κt−1; τκð Þ ;
γt−x ∼ N ψ0 þ ψ1γt−x−1; τγ

� 	
:

ð9Þ

Forecasting Immigration Counts and Emigration Rates

To forecast immigration counts and emigration rates, we introduce two models: (1) a

univariate model, denoted by IE1, which assumes no correlation between emigration

and immigration of males and females; and (2) a multivariate model, denoted by IE2, in

which we assume correlation between the time parameters κt for both sexes and both

directions of migration. In both models, we incorporate smoothing, built in into the

prior distributions for the age-specific model parameters αx and βx. Unlike mortality

and fertility, there is no clear rationale for including a cohort effect parameter in

forecasting immigration and emigration. Also, because immigration does not have an

easily defined population at risk, we model the counts, which is a common practice in

population projections (McDonald and Kippen 2002; Rees 1986).

In IE1, we assume a random walk without drift for emigration rates and immigration

counts for both sexes:

κ
g;k
t e N κ

g;k
t−1; τ

g;k
κ

� �
: ð10Þ

This simple model leads to forecasts with a constant expectation (as the last observa-

tion) and increasing uncertainty.

For IE2, we assume instantaneous correlation in the time parameters for emigration

and immigration for both sexes:

κt e MVN 4 ϕ0 þϕ1log tð Þ þϕ2t þ ∘ϕ3κt−1;Tκ½ �; ð11Þ

where κt = (κt
E,F, κt

E,M, κt
I,F, κt

I,M)′, ϕi = (ϕi1, . . . ,ϕi4)′, Tκ is a precision matrix, (∘)
denotes element-wise multiplication, and the prime notation (′) denotes transposition.

We simplify the model by having the time parameters, κt, depend only on their own

lagged values and not on the direction of the flow. This model includes a drift termϕ0,

an autoregressive parameter ϕ3, a logarithmic trend with parameter ϕ1, and a linear

trend with parameter ϕ2.
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Prior Distributions

In the absence of any prior information, we suggest using weakly informative distri-

butions that will allow the data to drive the estimation. For the general forecasting

model, we propose a set of priors, the hyperparameters of which may differ in particular

applications. For both sexes k, the specifications of the prior distributions for the model

parameters are as follows:

αk
x e N 0; 0:01ð Þ f or all x ;

βk
1:z−1 e MVN z−1 1 = z; τkβΨ

k
β

� �
; βk

z ¼ 1−
Xz−1

i¼1

βk
x
;

τkβ e Γ 0:001; 0:001ð Þ;

ϕi j ∼ N 0; 1ð Þ; for all i and j;

ψk
i ∼ N 0; 1ð Þ; i ¼ 0; 1;

σk ∼ U 0; 100ð Þ; τk ¼ σk
� 	−2

; σk
γ ∼ > U 0; 100ð Þ; τkγ ¼ σk

γ

� �−2

;

Tκ ∼ Wishart lIl; lð Þ;

ð12Þ

where Γ(a,b) denotes the gamma distribution with a mean of a / b and variance a / b2;U

denotes uniform distribution; andΨβ
k is a precision matrix for a conditional distribution

of βx, given that they sum to 1 (details are presented in Online Resource 1, section A.2).

The preceding prior distributions imply weak information a priori about the model

parameters. For the age-specific parameters αx and βx, we avoid specifications based on

the data (i.e., the empirical Bayes approach) suggested by Czado et al. (2005). For the

precision parameters τk and τγ
k, we follow Gelman’s (2006) suggestions of avoiding

conjugate gamma distributions, and we use uniform priors for standard deviations over a

large range. TheWishart distribution is a standard prior distribution for precision matrix

in the multivariate time series model and is easy to implement in the OpenBUGS

software. The subscript l denotes the number of series in the model: males and females

for mortality (i.e., l = 2) or male and female migration in both directions (i.e., l = 4). In

the univariate model (e.g., for fertility or for a single sex), we replace the Wishart prior

with a uniform prior for the standard deviation; that is, σκ ~ U(0,100),τκ=(σκ)
−2.

For low-quality data, smoothing of the age profile may be required. In this case, we

propose a smoothing technique that is embedded in the specification of the prior

distributions for parameters αx and βx. Smoothing prevents the artificial age patterns

resulting from the sample data from being propagated in the forecasts. Our smoothing

method is based on the spatial autoregressive processes (see, e.g., Besag 1986).

Prior densities for smoothing the age-specific parameters αx are constructed in the

following way, with the sex and population component superscripts omitted for clarity.

For the youngest and oldest age groups, we assume that the mean of the prior

distribution depends on the second-youngest and second-oldest group, respectively:

α0 e N α1;
1

2
τα

� �
; αz e N αz−1;

1

2
τα

� �
: ð13Þ
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For the remaining age groups, we assume that their means depend on the average of the

two neighboring age groups x – 1 and x + 1:

αx e N
1

2
αx−1 þ

1

2
αxþ1; τα

� �
; x ∉ 0; zf g: ð14Þ

The preceding construction of the conditional precisions for each age group ensures

that the unconditional precision is constant for all age groups. Finally, we assume a

priori that τα=100, which is based on our assessment of results obtained with various

values for this parameter and from visual inspections of the model fits. It implies a

moderate degree of smoothing for αx.

For βx, we assume the same pattern of smoothing as for αx, but we derive a

distribution conditional on ∑βx=1. The resulting multivariate normal distribution is

β1:z−1 ∼ MVN z−1 1=z; τβΨβ

� 	
; βz ¼ 1−

Xz−1

x¼1

βg;k
x

; τβeΓ 0:00001; 0:00001ð Þ: ð15Þ

This prior distribution is similar to the one in Eq. (12). However, the matrix

Ψβ here is derived analogously to Eqs. (13) and (14) by assuming that all

elements of βx follow an autoregressive process that in the limit tends to a

random walk, but also conditional on ∑βx=1 (for more details see Online

Resource 1, section A.2). The smoothing parameter τβ can be sex-specific

and direction-of-flow-specific, or one parameter can be used for all four flows,

which allows borrowing of strength. The gamma distribution assumed for this

parameter is characterized by a very heavy tail; thus, it allows this parameter to

explore regions of large values that lead to “smoother” age profiles. Because

the smoothing parameter has a vague prior distribution, the whole smoothing

procedure is driven by the data rather than by subjective judgment. However,

the results exhibit sensitivity to the specification of the prior for the smoothing

parameter. Other prior distributions, such as truncated t or Cauchy, can be used.

The degree of smoothing may also be controlled by fixing τβ at some value,

which can be found by a grid search, for example.

Population Projection Model

The results of forecasting the four components of population change—that is, samples

from the posterior distributions of mortality, fertility, and emigration rates, as well as

immigration counts—are subsequently combined into a cohort component projection

model (see Preston et al. 2001:117–137; Rogers 1995). The projection model is

specified as

(16)
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where Pt
k=(P0,t

k ,…,Pz,t
k )′ is vector of midyear population sizes by age and sex k and

It
k=(μ0,t

I,k,…,μz,t
I,k)′ is a vector of forecasted immigration counts. Further, bt

k=(0,…,b14,t
k ,

…,b45,t
k ,…,0) is vector of birth rates,

skt ¼

sk0;t 0 0 ⋯ 0

0 sk1;t 0 ⋯ 0

⋮ ⋱ ⋮
0 0 ⋯ skz−2;t 0 0

0 0 ⋯ 0 skz−1;t skz;t

2
666664

3
777775

is a matrix of survivorship rates, and a = 1 / 2.05 is the assumed proportion of female

births in the population. Finally, 0 = (0, . . . , 0) is a vector of length z, andO is a matrix

of zeros of size (z – 1 × z). The survivorship rates come from the mortality and

emigration models (Rogers 1995:104–107):

skx;t ¼
1 − 0:5 μ

D;k
x;t þ μ

E;k
x;t

� �

1þ 0:5 μ
D;k
xþ1;t þ μ

E;k
xþ1;t

� �; for x ≠ z; ð17Þ

skz;t ¼
1 − 0:5 μ

D;k
z;t þ μ

E;k
z;t

� �

1þ 0:5 μ
D;k
z;t þ μ

E;k
z;t

� �: ð18Þ

They include the standard transformation of the mortality and emigration rates, both of

which result in the decrease of the population, into the survival rates. For the last year of

age x = z, we assume the standard formula following Rogers (1995:107). Finally, the

birth rates are constructed by using the fertility rates obtained from our model for

forecasting fertility and survivorship of infants from the mortality forecasting model:

bkx;t ¼
1

1þ 0:5μD;k
0;t

1

2
μB;F
x;t þ sFx;tμ

B;F
xþ1;t

� �
: ð19Þ

Model Validation and Selection

The models for the population components that underlie the population forecast are

selected from the models proposed in the previous sections. The selection process is

based on (1) visual evaluation of goodness of fit of the model to the data and the

forecasts, (2) ex-post evaluation of the in-sample forecasts of the population compo-

nents based on the 1975–2000 truncated data set and, where appropriate, (3) the

deviance information criterion (DIC) as a formal criterion for model selection

(Spiegelhalter et al. 2002).

The DIC is a tool for assessing the goodness-of-fit of a model to the data,

which enables selecting the best performing model. It is often considered a

generalization of the Akaike information criterion (AIC) for comparing complex

Bayesian hierarchical models. It utilizes a deviance of the likelihood evaluated at

the mean of the posterior distribution of the likelihood as the goodness-of-fit
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measure, corrected with the “effective number of parameters” in a model (for

definitions and formal derivation, see Spiegelhalter et al. 2002). The requirement

for using the DIC is that the posterior distribution is approximately multivariate

normal. Selecting the best performing model is similar for the AIC—namely, the

lower the value of the criterion, the better fit of the model.

Illustration: The Case of the United Kingdom

Data

In this section, we illustrate our forecasting method with the data for the United

Kingdom (UK). These data represent a case in which the counts of all population

components by single year of age and sex are available but their quality is varying.

Because the data on vital events are recorded by the registers, they are considered to be

precise and of relatively good quality. Immigration and emigration counts are, however,

produced by using the International Passenger Survey (IPS) and include both sampling

and nonsampling errors, especially in the age profiles by single year of age.

The data used to produce our forecasts represent the period 1975–2009. The data on

mortality rates were obtained from the Human Mortality Database (n.d.). The emigra-

tion and immigration counts were obtained from the Office for National Statistics. The

data on births were obtained from the Office for National Statistics (England and

Wales), Northern Ireland Statistics Research Agency, and National Records of

Scotland. The UK midyear population estimate for 2009, used as a baseline for

predictions, was also obtained from the Office for National Statistics. Logarithms of

single year mortality rates for females and males from 1975 to 2009 are presented in the

upper row of Fig. 1. We observe that (1) mortality at all ages, and for both sexes, have

been decreasing over time; (2) females have lower mortality than males; and (3) males

exhibit considerably higher mortality in the young adult years.

Fertility rates by age of mother are presented in the bottom row of Fig. 1. Over

time, we observe a shift from a peak level of fertility at ages 23–26 in 1970 toward

one at ages 29–33 years in 2009. The reasons for this shift are related to fertility

postponement and a subsequent recuperation. Because of the relatively small counts

for very young and very old ages, the data on births were aggregated into age groups

under 15 years and 45 years and older. To compute fertility rates, the same female

population at risk that was used to calculate the age-specific mortality was applied,

except for the age groups under 15 and 45 and older, for which the population at risk

was aggregated for ages 12–14 years and 45–50 years, respectively. Further, in our

illustration, an implicit assumption was made about fertility—namely, that the rates

for boundary ages (i.e., under 15 years and 45 years and older) are applied to the

population aged 14 years and 45 years, respectively. However, because these rates are

very small, the overall effect is negligible.

The total flows of immigration and emigration from 1975 to 2009 are presented in

the top row of Fig. 2. We observe similar trends in male and female migration over

time. The immigration levels increased rapidly from the 1990s through around 2005.

For emigration, the increase is less noticeable and appears to be more volatile, which

may be caused by random sample variation in the underlying data source, the
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International Passenger Survey. Larger irregularities appear when the data are disag-

gregated by single year of age, as illustrated for immigration and emigration in the

middle and bottom rows, respectively, of Fig. 2 (see also Raymer et al. 2011a).

Results

In this section, we present the results of forecasting the population components with the

models described in the previous section. For each component, we discuss the model’s

goodness-of-fit to the data and forecasts of the future patterns, and select the underlying

model to be used for the population forecast.

Forecasts of Mortality

In the first row of Fig. 3, we present the fit of the models M1 and M2 to the 2009 data.

It can be observed that the fit of the model M2 with the cohort component reflects the
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data better than M1, which is especially clear when comparing the fits for life

expectancy (third and fourth rows). In particular, M2 is able to reproduce the mortality

volatility of the cohort born during the influenza pandemic in 1918–1919. Mortality

projected with M1 is lower than that projected with M2 for age groups 0–15 and 35–70,

and the age pattern is more uncertain, as depicted in the second row of Fig. 3. For life

expectancy (third row), the fit to the data is more uncertain under M1 than M2; in the

case of predictions, however, uncertainty is larger under M2. Also, M1 leads to lower

predicted life expectancy than M2.

Recent literature has pointed to the importance of the cohort effect in measuring and

predicting period mortality rates and the resulting life expectancies (Luy 2010; Luy and

Wegner 2009). In particular, cohort effects are likely to stem from the long-lasting
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effects of early-life events and circumstances on mortality, rather than being a result of

whole life trajectories experienced by particular cohorts, as demonstrated in a series of

longitudinal studies (e.g., Bengtsson and Mineau 2009; for a general overview and a

critical discussion, see also Murphy 2010). An alternative argument for the inclusion of
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the cohort effect in the model is lifelong processes that might affect mortality, such as

smoking (e.g., Doll et al. 2004).

To support our rationale for selecting model M2, we analyze the in-sample forecasts

from both models based on the 1975–2000 truncated data set. Model M1 (the original

Lee-Carter model) yields forecasts that slightly underpredict the observed life expec-

tancy, which is presented in the bottom plot of Fig. 3. For M2, the posterior distribution

is much wider than the results obtained with the full data set. Here, the median

predictions seem to be slightly lower than the observed life expectancy, but the

observed values are inside the predictive intervals because of larger uncertainty. A

comparison of the ex-post forecasts reveals that 59 % of the observed mortality rates for

years 2001–2009 fall into the 80 % predictive intervals in the M1 model. For the 95 %

predictive interval, 82 % of the observations fall into it. The M2 model performs better;

the percentages of the observed mortality rates falling into 80 % and 95 % predictive

intervals are 75 % and 89 %, respectively. Because we model mortality rates in M1 and

death counts in M2, the DIC cannot be used here to compare both models.

Our life expectancy forecasts can be compared with the official ones prepared by the

Office for National Statistics (2011). For 2024, the official predictions of 85.3 for

females and 81.6 for males fall inside the 80 % predictive intervals. Median life

expectancies are 83.9 and 80.0 under M1, and 85.1 and 80.6 under M2. Hence, the

model with cohort effect (M2) leads to slightly lower predictions of life expectancy

compared with the official ones, but higher predictions compared with M1.

Forecasts of Fertility

The age-specific forecasts for fertility are presented in Fig. 4. In the first row, we

observe the fit of the models F1 and F2 to the 2009 data. The model with the cohort

effect (F2) provides a better fit with lower uncertainty. Also, the 2024 forecast (second

row) appears more plausible than the forecast based on the F1 model, which produces

an unrealistic median fertility rate of 0.3 for females aged 33–35 years.

The resulting TFRs are presented in the third row of Fig. 4. It is clear from the plots

that F2 fits the data better than F1. Moreover, the projected TFR from F1 shows an

explosive pattern that we consider unrealistic, with an explosive predicted TFR. Hence,

we believe that the pattern of gradual diminishing of the recently increasing TFR

produced by F2 better reflects our expectations about future fertility in the UK.

The in-sample forecasts of the fertility rates confirm our rationale for choosing F2 as

the foundation of the population forecast. Again, F2 appears to fit the data better (see

the fourth row of Fig. 4). The resulting forecasts of TFR under F2 seem to be more

uncertain than those of F1. However, F1 misses the decline in early 2000s. These

results are confirmed by the ex-post analysis of the fertility rates. For F1, 58 % of

observed fertility rates fall into the 80 % predictive interval, and 75% fall into the 95 %

predictive intervals; for F2, the percentage of data falling into respective predictive

intervals are 62 % and 74 %. The official forecast of the TFR used by the Office for

National Statistics (2011) is 1.84, and it falls inside the 80 % predictive interval of our

2014 forecast under F2. Our median TFR forecast for 2024 is 1.12.

The DIC cannot be used to compare F1 and F2 because different types of data are

used in the models. Nevertheless, the ex-post analysis of the in-sample forecasts, as

well as the visual assessment of the results, clearly point to the model with the cohort

Bayesian Population Forecasting 1049



effect included. This rationale is supported by the vast demographic literature on the

quantum and tempo effects in fertility (Bongaarts and Feeney 1998). In particular, we

refer to the recent postponement and subsequent recuperation of fertility in many

developed countries, where the cohort effects are the most profound (see, e.g.,

Sobotka et al. 2011). In our results, slightly declining but still uncertain fertility rates

may indicate a possibility of yet another period of postponement.
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Forecasts of Emigration and Immigration

To forecast emigration rates and immigration counts for the UK we need to reflect on

the quality of the survey data on migration and their implications for modeling. To

overcome the irregularities described in the earlier Data section, we modified the

models described in the section Forecasting Immigration Counts and Emigration

Rates to account for rounding to the nearest thousand and included smoothing in the

model. Detailed equations are presented in Online Resource 1 (section A.1).

The results of forecasting emigration rates and immigration counts for fe-

males are summarized in Figs. 5 and 6, respectively (the similar patterns for

males are not shown because of space constraints). In the first row, we present

the IE1 and IE2 forecasts for 2009. We observe that both models fit the data

reasonably well. As expected, the univariate random walk model in IE1 leads to

stable forecasts over time, with increasing uncertainty for both emigration rates

and immigration counts. The drift term and log-linear trend incorporated in the

IE2 lead to ever-increasing immigration and emigration.

The DIC leads to choosing the IE2 model over IE1 in the case of the full sample

predictions: the DIC is 25,484 for IE1 and 25,480 for IE2. In the case of the truncated

data set, however, the DIC prefers the IE1 with random walk (18,928 vs. 18,930). This

is supported by the visual inspection of the in-sample predictions of mean emigration

rates and total immigration counts (fourth rows of Figs. 5 and 6, respectively). This

result is not surprising because the patterns in the migration data changed substantially

after the year 2000. Hence, different models may be more suitable for both data sets. In

terms of predictive coverage, there is almost no difference between IE1 and IE2. Under

IE1, 37 % of observed migration fall into the 80 % predictive interval, and 48 % fall

into the 95 % predictive interval; for IE2, the percentages of data falling into respective

predictive intervals are 37 % and 47 %. The rather small percentages of the observed

values falling into the predictive intervals ought not to be surprising due to the

irregularities observed in the data.

Population Forecasts

A final step in forecasting population is combining the population components within

the cohort component projection model. As an illustration, we select models M2 for

mortality, F2 for fertility, and IE2 for migration.

The age composition of the predicted UK population in 2024 is presented in the first

row of Fig. 7. Forecasts of the total population for females and males are presented in

the second row. We observe that the age profile of the 2024 population is shaped mostly

by future migration and, to a lesser extent, fertility. The largest uncertainty concerns the

youngest population, as well as the population aged 20–45, for both males and females.

These findings are in line with Keyfitz’s (1981) observation on the plausible limits of

population forecasting, which were set to about 20 years ahead. We also expect that the

number of the elderly persons will be larger in 2024 but the population aged 20–45 will

be most numerous.

Our forecast can be compared with the official deterministic projections for 2024

prepared by the Office for National Statistics (2011). The dashed line in Fig. 7

represents the principal projection, whereas the dotted lines are low and high population
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scenarios. The main drivers of differences between these projections are assumptions

about fertility and migration. We observe that the population aged 20–35 is substan-

tially smaller in all scenarios of the Office for National Statistics projections compared

with our forecast. This results from the assumption that net migration stays constant at

the levels observed in recent years: at the level of 200,000, 140,000, and 260,000

persons annually in the principal, low, and high scenarios, respectively (Office for
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National Statistics 2011). Moreover, our results suggest that the uncertainty about the

age profile of future population is considerably larger than it is reflected in the

deterministic projections based on scenarios.

As far as the total population size is concerned, the forecast indicates that there will

be only 49,000 fewer females than males in 2024, whereas the difference was more
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than 1 million in 2009 and was 1.5 million in favor of females in 1975. This is most

likely due to the larger proportion of male migration and a gradual closing of the life

expectancy gap between the sexes. The median size of the 2024 population is 70.8

million, which is around 9 million larger than the population size observed in 2009. In

the principal projection for 2024 prepared by the Office for National Statistics (2011),

the predicted total population is 69.0 million (i.e., 1.8 million lower), whereas the low

and high scenarios are 66.4 and 71.1 million, respectively. However, only high scenario

falls into our 80 % predictive interval for the total population. Also, the population

predicted by the Office for National Statistics seems to be growing more slowly than in

our forecast. This results from the aforementioned more-conservative prediction of

international net migration.
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As a further validation step in population forecasting, we present an in-

sample population forecast in Fig. 8, based on the data truncated in year 2000.

In general, the data can be truncated at various points to make the validation

procedure more robust. The predictive intervals for the age profiles in 2009

match the reported figures reasonably well. Differences are observed for early

childhood ages, for which the model underpredicts the fertility increases in the

first decade of the 2000s, and for the young adult ages, caused by the

underprediction of migration (especially for females). The EU enlargement

in May 2004 resulted in a faster increase than anticipated by the historical

data for both emigration and immigration levels, which explains a large part

of the underprediction.
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Discussion

In this article, we have demonstrated that extension of the Lee-Carter model can

serve as a general platform for estimating age schedules of the four demographic

components of population. We then combined these components into a single

forecast by means of a cohort-component projection model. We also explored the

correlation of each of the components in time, as well as between sexes and

components (for emigration and immigration), which is embedded in our exten-

sion of the Lee-Carter method. For emigration and immigration, we provided a

tool for smoothing irregularities in the data. This tool, however, can be easily

extended to fertility or mortality. Finally, we have illustrated the use of the

forecasting model on the UK’s data.

This research makes two contributions to the literature. The first is the devel-

opment of a new approach for integrating demographic components to provide

stochastic population forecasts by age and sex. The Bayesian approach that we

adopted accounts for the uncertainties embedded in births, deaths, and emigration

and immigration, as well as across age and sexes. We show that the same general

framework of the Lee-Carter approach for modeling age and sex patterns of

mortality and fertility can be coherently applied to model corresponding patterns

of migration. Irregularities in the data, such as those observed for the UK, can also

be accounted for within the model.

The second contribution is the application of the approach to a situation of relatively

good yet imperfect data availability. In this way, we position our work between the

generic global approach with far fewer data requirements, which has been proposed by

Raftery et al. (2012), and a specific multiple-data situation discussed by Bryant and

Graham (2013). Where possible, population forecasting should follow a bottom-up

approach, in which the age-specific rates of the demographic components are utilized.

The rates describe the underlying processes more comprehensively than summary

aggregates, such as TFRs or life expectancies, in the top-down approach.

Further research should explore other models for forecasting age patterns of demograph-

ic components, such as the functional models developed by Hyndman and Booth (2008).

Analogously, various specifications for the time component models (such as ARIMA or

VAR models of higher order) should be investigated. Next, the underlying models of

components for the population forecast can be selected by using various techniques, of

which Bayesian model averaging (Raftery et al. 1997) seems to be most appealing. In this

way, the model uncertainty would be accounted for coherently. Finally, the uncertainty of

the baseline population size used for projections could be incorporated into the projection.

We believe this work provides a strong foundation for such extensions.
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