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Abstract

The purpose of this work is to extend the methodology presented in Hand-
cock and Stein (1993) for prediction in Gaussian random fields to the case of
transformed Gaussian random fields when the transformation is only known
to belong to a parametric family. As the optimal predictor, the median of the
Bayesian predictive distribution is used since the mean of this distribution
does not exist for many commonly used nonlinear transformations. Monte
Carlo integration is used for the approximation of the predictive density func-
tion, which is easy to implement in this framework. An application to spatial
prediction of weekly rainfall amounts in Darwin Australia is presented.
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1 Introduction

Optimal statistical prediction (interpolation) in random fields is a very im-
portant problem for the study and analysis of spatial data coming from nat-
ural sciences such as epidemiology, geology, hydrology, and meteorology, to
mention a few. There, some quantity of interest, say Z, varies over a certain
domain in space (and/or time) in a complex way, far from being understood.
The quantity Z is measured at a finite set of locations, but inference about Z
(or some other closely related quantity) is required for many other ungauged
-and often ungaugeable- locations in the domain of interest. The observed
data are viewed as part of a realization of a random field, and the unobserved
part of the same realization is predicted using location-dependent covariates,
while exploiting the existing dependence structure in the random field. In-
ference is summarized by the pair (Z(so), 5(so)), where Z(so) is the predictor
for Z(so), the value of Z at location sp, and &(sp) is a measure of prediction
uncertainty associated with Z (so). An example of this is the commonly used
technique of kriging (Cressie, 1993).

In most of the theoretical and applied work it is assumed, explicitly or
implicitly, that the observations form a sample from a single realization of
a Gaussian or nearly Gaussian random field. In the kriging literature, the
Gaussian assumption justifies the use of linear predictors. In the Bayesian
approach to spatial prediction, the Gaussian assumption is also prevalent as
we can see from the recent works of Kitanidis (1986), Handcock and Stein
(1993), Handcock and Wallis (1994), Brown et. al. (1994) and Gaudard
et. al. (1995). However, many data sets from the natural sciences display
markedly non-Gaussian behaviors of various kinds -asymmetric distributions
often with heavy right tails, supported either on the positive real numbers
or on a finite interval as in the case of proportions- making the Gaussian
assumption unsatisfactory in many cases.

A natural way to model moderate departures from Gaussianity is to as-
sume that up to a reasonable approximation, the field of interest was ob-
tained as a result of applying an unknown nonlinear transformation from a
parametric family to a Gaussian random field. The selection of the family
of transformations could be based on theoretical grounds, but more often
this family is used just as a modeling device aimed at mimicking some of the
non-Gaussian features displayed by the type of data under study. The result-
ing model is flexible enough for describing different types of departures from
Gaussianity and its statistical analysis is, as we will show, no more complex



than in the Gaussian case. Another alternative to prediction in non-Gaussian
random fields is the recent work by Diggle et. al. (1995), which is based on
generalized linear models.

The standard kriging approach to prediction in transformed Gaussian
random fields, known as trans-gaussian kriging in the geostatistical litera-
ture, can be summarized as follows: find a transformation for which the
transformed data are (approximately) Gaussian, compute the optimal (Best
Linear Unbiased) predictor on that scale, and finally back-transform the pre-
dictor to the original scale making a bias correction to achieve unbiasedness
(Cressie, 1993). This approach has some drawbacks. First, little is said about
how to identify the ‘normalizing transformation’ (as a rule, the logarithmic
transformation is chosen by default), and on how to transfer the uncertainty
about the ‘normalizing transformation’ to the final prediction. Second, exact
expressions for the unbiased predictor and the mean square prediction error
(MSPE) are available only for the logarithmic transformation and a handful
of others. Approximate expressions for the unbiased predictor and MSPE
are available for general smooth transformations (computed via the delta
method), but no indication is given about how good these approximations
are, except for the requirement that the variance of the Gaussian field must
be small. Finally, the predictor obtained in this way lacks some natural op-
timality property in the original scale, that is, the scale at which the actual
data were measured, and the one that is generally of interest to the scientist
-a meteorologist is mainly interested in efficient prediction of rainfall rather
than log-rainfall.

The purpose of this work is to extend the methodology presented in
Handcock and Stein (1993) for prediction in Gaussian random fields to the
case of transformed Gaussian random fields where the transformation is only
known to belong to a certain parametric family. This extension, following the
Bayesian paradigm, provides an alternative to trans-gaussian kriging and it
mitigates the drawbacks mentioned above. It takes into account some major
sources of uncertainty, including uncertainty about the ‘normalizing transfor-
mation’, in the computation of the predictive density function in the original
scale upon which the predictors and prediction intervals are computed (Ki-
tanidis, 1986).

A peculiar feature in the framework we propose is that for many com-
monly used transformations, the predictive density function based on our
model has no finite mean, requiring the use of some other functional as the
predictor. We will use the median of the predictive density function as our
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predictor, which is the optimal predictor corresponding to absolute error loss
function.

The paper is divided as follows. Section 2 describes the transformed
Gaussian random field model and the computation of the Bayesian predictive
density function as well as summaries of it. Section 3 describes a numerical
integration algorithm based on Monte Carlo integration. In section 4 we ap-
ply this model for the spatial prediction of weekly rainfall amounts collected
in Darwin Australia, and some model checking techniques are adapted to
this spatial setting. Summary and conclusions are given in section 5.

2 The Model

2.1 Model Description

Let {Z(s), s € D}, D C R? be the random field of interest taking real
values, and suppose we have n observations Z = (Z(s1),...,Z(s,)) from a
single realization of this field, where sy,...,s, are known distinct locations
in D. Based on Z and on our prior knowledge about the random field, we
want to predict the unobserved random vector Zg = (Z(so1),.-.,Z(sor)),
where sop,...,Sor are known distinct locations in D. It is assumed that Zg
comes from the same realization as the data vector Z.

Let G = {gA(.) : A € A} be a parametric family of transformations
where each g)(.) € G is a nonlinear monotone transformation, gi(z) exists
and is continuous in A x R. OQur main modeling assumption is that for some
unknown ‘transformation parameter’ A, to a sufficient approximation we have

{Y(s) = 9r(2(s)), s € D}

is a Gaussian random field with the following properties:
z !
E{Y(s)} = >_Bifi(s) = B'f(s), s€ D
J=1

where 8 = (B,...,0,)' € RP are unknown regression parameters, f(s) =
(fi(s),..., fo(s)) is a set of known location-dependent covariates, and

Cov{Y(s),Y(u)} = %Kﬁ(ns —ul); s,ueD



Here 7 is the precision of the random field, 7! = Var{Y(s)}, and ¥ =
(01,...,0;) € ® C R? is a structural parameter controlling the range of
correlation and/or the smoothness of the random field, where for every ¥ € O,
Ky(.) is an isotropic correlation function (||.|| denotes Euclidean distance).

The cases where either the random field {Z(s), s € D} or some known
transformation of it is Gaussian can be considered as special cases of this
model framework where the family contains only one member.

An example of a family of transformations that will be studied later, and
one which is frequently used for ‘normalizing’ positive data, is the Box-Cox
family of power transformations (Box and Cox, 1964)

9 () = { fog—(lw) iii i g (1)

The parametric family of probability distributions resulting from (1) is fairly
rich. In particular, embedded in it are the two models most frequently used
in practice, the Gaussian (A = 1) and the log-Gaussian (A = 0) distributions,
so their fit can be evaluated as well as contrasted with that of other members
of the family.

By the stated assumptions we have that

w2 a0 ~ N (N5 ) 2 (5 3)) @

for some A € A and (B,7,9) € RP x (0,00) x O, where for any vector
a=(a,...,a,) we define g, (a) = (gr(a1),-..,9r(an)), X and X are known
n X p and k X p design matrices, respectively defined by X;; = f;(s:), Xo4; =
fi(s0i), and Ey, By and g are respectively k x k, k xn, and n x n, correlation
matrices defined as : Fy;; = Ky(||soi — soj|), Bs,; = Ko(||soi — s;]|), and
o, = Ko(||si — s;]|). In the sequel, it will be assumed that X has full rank
and ¥V ¥ € O, the matrix ¥, is nonsingular.

A random field {Z(s),s € D} as described above will be called a g;-
Gaussian random field, in analogy with a log-Gaussian random field.

We will denote all densities by p(.), where the argument(s) identify the
respective distribution.

Under this framework we have from (2) that the likelihood of the model
parameters 1 = (B,7,9, ), based on the original data z = (z1,...,2,),
L(n;z) = p(z|n), is given by



L(miz) = ()2 [Zo| /2 exp{~1(g,(2) — XB)'T5"(g,(2) — XB)};

for z; € g5 (R) , and is 0 otherwise, where Jy = [T%, |gA(2)]| is the Jacobian
of the transformation.

The choice of prior distribution for the parameters requires, for this
model, some care because the meaning of 3,7 and ¥ depend on the real-
ized value of A\. More specifically, each transformation (i.e. each A) will
change the location and scale of the transformed data, as well as the corre-
lation structure, to a lesser extent though, so assuming them independent a
priori of A would give nonsensical results (Box and Cox, 1964 ; Hinkley and
Runger, 1984). To determine the prior distribution for the model parameters
in our present framework we use the argument originally given by Box and
Cox (1964) and developed further in Sweeting (1985) for smooth families of
transformations. Assume p(83,7,9|A) o« p(@)h(A)/r for some function h(.)
to be determined, and let A; be any reference value of A for which the like-
lihood is appreciable. By the assumed smoothness of the family G, for all A
in some neighborhood of A1, gA(Z(s)) will be approximately linearly related
to gx,(Z(s)), that is

9A(Z(s)) > ax + Lrgr, (Z(s)) (3)
for some constants ay and [y. Now h(}) is chosen to make the prior distri-
butions involving A and A; consistent with (3) which requires h(A) = [{*.
Box and Cox argued that a pragmatic choice would be to take [ = J i/ ", the
geometric mean of the Jacobian, so

p(9)
TJ/{’/”

p(B,7,9|))

This is an improper distribution with the unusual feature of being dependent
on the data. On the other hand, following Pericchi (1981) we have that if we
start with a conditional prior of the form p(8,7,9|)) oc p(9)h(X)75~1, which
does not assume independence a priori between 8 and 7, then by the same
consistency argument used before we have that ~A(A) must be constant, and
the resulting conditional prior is no longer dependent on the data, although
it has some drawbacks discussed in Sweeting (1985). In this work we will
use the Box-Cox’s alternative as our reference prior. The results of the data
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analysis we perform in section 4 suggest that essentially identical predictive
inferences are obtained by using Pericchi’s alternative.
Our full prior specification is then given by

p(3)p(A)
TJf\’/ "
where p(¥) and p()) are the prior marginals of ¥ and A respectively.

p(B,7,9,})

2.2 Posterior of Model Parameters

We wish now to obtain the joint posterior distribution of the model param-
eters, which can be factored as p(8, 7,9, A|z) = p(B, 7|9, A, z)p(9, A|z). The
key point for all the statistical analysis that follow is to note that conditional
on ¥ and A, ours is a general linear model for the transformed data g,(z),
and so standard Bayesian theory for these models apply (Zellner, 1971a
Broemeling, 1985). Based on this and following Kitanidis (1986) we have
that the conditional posterior p(8,7|9,A,2z) = p(B|r, 9, A, z)p(7|9, A, z) is
Normal-Gamma, since

(ﬁlT,’l?,)\,Z) (1319/\7 (X/E't?lX) )

(7], 5, 2) ~ Ga(” —r 2, (5)
2 Qs

where ,CA'JQM = (X’Eng)‘lX'Eglg)\(z) is the generalized least squares esti-
mate of 3 based on the transformed data when ¥ and A are known, and
G = (g,(2z) — Xﬂﬂ,x)'z)El(g,\(Z) - XBy )

To compute the second factor in the joint posterior we note that p(9, A|z) =
p(B,7,9,\|z)/p(B,7|¥, )\, 2), and applying Bayes theorem in the numerator
we get

__E 1-2
p(9, Mz) o< |o| 721X B3 X |72, T, p(9)p(N) (6)

The proportionality constant that makes the above a pdf can only be de-
termined numerically. This will be accomplished in section 3 by using Monte
Carlo integration.

Remark 1. By (numerically) integrating (6) with respect to ¥, we get
the marginal posterior p(A|z) upon which an estimate of A can be obtained.
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2.3 Prediction of Z,

The purpose of our analysis is to make conditional inference about Zg, an
unobserved part of a realization of the random field, letting the parameter
vector 7 play only an instrumental role, although its uncertainty should be
recognized and taken into account. That is, to base the prediction of Z; on

the Bayesian predictive density function in the original scale (Aitchison and
Dunsmore, 1975)

p(aolz) = [ plzo,mlz)dn
= /Q (20|, 2)p(n|z)dn (7)

where z, = (2o1,.-.,%0k), and @ = R? x (0,00) x @ x A. Evidently, the
Bayesian predictive density function is obtained from both the subjective and
data based information available about Zgy. In this approach to prediction,
the transformation parameter A is just another of our uncertain parameters.
Instead of choosing a single A, pretending it is known, and predicting with
the resulting model, all the entertained models are used in the predictive
inference, and the uncertainty about A is naturally transferred to the final
prediction. We call this the full Bayesian approach.

The joint posterior distribution p(m|z) is obtained as the product of
the densities in (5) and (6), while from (2) we have (g,(%)|8, 7,9, A,2) ~
Nk(Mg,,\, %Dg), where

Mgy = ByYy'g,(z)+ HsB
Hy = Xo — By¥3'X , Dy = Ey— ByL;' B}

Therefore

T

k
p(2.|m,2) = (g)klngﬁl"”zHIg&(zoj)l
i

X exp{-—%(gk(zo) - Mﬁ,k)ngl(Q)\(Z) — My )} (8)

Analogously, as in the general linear model (Kitanidis, 1986), after inte-
grating out analytically B and 7 in (7) we obtain
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pzol) = [ [ plzald,)2)p(8, Alz)dda)
Ia o p(Z0]9, A, 2)p(2|9, A)p(9)p(A)dddA o)
I Jo p(2|9, M)p(¥)p(N)dddA
noting that (g,(Zo)|d, A, z) ~ Ti(n—p,ms,, (Gs,xCs)™'), a k-variate Student

t-distribution with n — p degrees of freedom, location parameter my ), and
scale matrix gy \Cy, where

mox = ByS5'g,(2) + HoBy

Co = Dy + Hﬁ(X/E;,-IX)—lH:?

and therefore

D(=5) IT5-y 194 (205))]

ol¥, A, = ~ 10
(2] z) F(E—{E)Wk/zl(Iﬁ,)\Cﬁllﬂ (10)
1+ (g,(z) = m,\) (d1C0) ™ (g (20) — mo )] 7" F
By integrating p(z, 3, 7|9¥, A) with respect to 3 and 7 we get
P(al9, X) o [ S|~ /2) XS5 X |72g, (11)

where the proportionality constant is independent of ¥ and A, so its value is
irrelevant for the computation of p(z,|z) in (9). We see that the predictive
density function in (9) is a mixture of transformed noncentral t-distributions
with mixing distribution p(d, A|z).

Up to this point all the computations were performed analytically. How-
ever to proceed, the integration of ¢ and A in (9) must be performed numeri-
cally due to the intractable form of the function in the integrand. In the next
section we discuss a numerical algorithm to obtain an accurate and precise
approximation for p(z,|z) as well as summaries of it.

From now on, we specialize our analysis to the case of prediction at a
single location, i.e., k = 1.

Once the predictive density function has been computed, the next step
is to use appropriate functionals of it as predictive summaries. The most
common practice is to use E{Zy|Z} as the predictor for Zy, which is optimal
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under squared error loss, and to use E{Zo|Z} £ 2(Var{Zy|Z})'/? as an ap-
proximate 95% prediction interval. In general this can not be the case for the
present model. For many commonly used transformations of a Gaussian field
the mean of (Zp|Z) does not exist. As an example suppose that we are en-
tertaining the Box-Cox family of transformations given in (1) and A = 0, i.e.,
go(.) = log(.). Then from (10), (Zo|?¥, A, Z) has a log-Student t-distribution.
But the mean of this distribution does not exist (Zellner, 1971b), therefore
neither does the mean of (Zy|Z). The same situation occurs for A < (n—p)~L.
To circumvent this, we will use as our predictor for Z,

Zo = Median of (Zo|2Z)

This predictor has some attractive properties. It is the optimal predictor
corresponding to the absolute error loss function (Aitchison and Dunsmore,
1975). For the model considered here, the predictive distribution is often
skewed, so even for transformations for which the mean does exist, the median
seems a more sensible measure of location than the mean.

As our measure of prediction uncertainty we use the 95% (or some other
level) prediction interval symmetric about Zo, which is readily obtained from

p(z,|2).

3 Numerical Integration Algorithm

In this section we describe a numerical integration Monte Carlo algorithm
as studied in Geweke (1989), in order to obtain approximations for p(z,|z)
as well as summaries of it. This method compares favorably with the more
traditional numerical quadrature methods since it can be easily implemented
and has good convergence properties.

Let us consider the case when the prior distributions p(?) and p()) are
proper, i.e., they integrate finitely. In this case using the second equation in
(9) the algorithm to approximate the predictive distribution p(z,|z) goes as
follows:

e Discretize the effective range of Zy, obtaining the set
S ={20):45=1,...,r} where the approximation is sought.

o Generate independently
Pq,..., 0, i1d. ~ p(F) and Ay, ..., A, 10de ~ p(X).
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e For all z, € S, the approximation to p(z,|z) is given by

?;1 p(z0|0i>’\iaz)p(z|19i”\i) (12)
Y p(z|%, \i)

Pm(2o]2) =

where p(z,|9, A,z) and p(z|?, \) were respectively given in (10) and (11).
The same algorithm was used by Gaudard et. al. (1995).

As shown in Geweke (1989), under mild regularity conditions the above
estimator enjoys the following properties:

1. Pm(20|2) =3 p(2,|2) as m — oo. This assures us that we get an accurate
approximation provided m is chosen large enough.

2. mY%(po(2]2) — p(2]2)) 2 N(0,0?) as m — oo, where 0? can be
estimated consistently. This second result provides a measure of the
precision of the estimator in (12). For any given z,, a consistent esti-
mator of the standard error in the approximation, —{5, is R"f"ﬁ where

m .\ S W W 2
5'; _ Zz:l(p(zolﬂh/\17z)p(Z2|I'9“Ai) pm(zf)'z)) (13)
m

A a.s
and ma2 =% o2

Remark 2. In the case that p(d¥) and/or p(}) are improper, the Bayesian
predictive density can be approximated using Monte Carlo integration by
importance sampling. See Geweke (1989) for details.

4 Application to Rainfall Prediction

The data set that will be analyzed in this section is formed by rainfall totals,
in mm, accumulated over a period of 7 days, from the 76th to the 82th day
of 1991 in Darwin Australia, which is part of the rainy season there. The
rainfall was measured using tipping buckets in n = 24 stations located in a
region -called the D-scale- of about 12 kmx12 km. See Figure 1(a). This
region is located on the coastal plain of the Adelaide river where the terrain
is very flat and no orographic patterns are expected. A schematic description

of the D-scale region, location of the stations and rainfall amounts is shown
in Figure 1(b).
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The family of transformations entertained in this application is the Box-
Cox parametric family given in (1), which offers a great deal of flexibility in
‘normalizing’ positive data. By performing some exploratory data analysis,
no significant relation between rainfall totals and the spatial coordinates
was found. In the absence of additional covariate information we assume a
model with constant mean, so p = 1 and E{Y(s)} = ;. A histogram of
the 24 observations appears in Figure 1(c), suggesting that our data set was
generated by a skewed distribution.

As our working family of isotropic correlation functions we use the general
exponential correlation function (Yaglom, 1987, page 364 ; Diggle et. al.,
1995)

Ks(l) = exp{—vi®}
= 0" (14)
where [ represents Euclidean distance, and v > 0, §; = e € (0,1) and
6, € (0,2] are unknown parameters. In what follows we will work with
the second parameterization in (14) since it eases the interpretation and the
required numerical integrations.

This family, which contains the exponential (§; = 1) and the squared
exponential (§2 = 2) correlation functions as two of its members, is easy
to compute and is parameterized by physically interpretable quantities. 6,
controls the range of correlation and is viewed as the correlation between
two observations 1 km apart; for any fixed 6, the correlation between ob-
servations decays with distance faster for small values of §; when compared
to large values. 6, controls the smoothness of the random field; it is mean
square continuous for §, € (0, 1] while for 8, € (1,2] is mean square differ-
entiable. This is a flexible family covering an ample spectrum of behaviors
regarding range of correlation and smoothness, two aspects of a random field
that strongly influence the shape of the predictive density function, specially
its spread. Another large, but (computationally) more complicated family of
correlation functions was used in Handcock and Stein (1993) and Handcock
and Wallis (1994).

We assume that 6, and 0, are independent a priori and assign them non-
informative prior distributions; 6; ~ Unif(0,1) and 6; ~ Unif(0,2]. Likewise,
since little or no prior information is available about the ‘normalizing trans-
formation’, we assume A ~ Unif(-2,2).
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Remark 3. Strictly speaking @ = (0;,0;)" defines the correlation struc-
ture of the transformed data, which depends on the unknown A, making
elicitation of informative priors quite troublesome in this case, and the use
of noninformative priors the natural choice. Nevertheless, transforming the
original data does not change dramatically the correlation structure due to
the smooth nature of this family of transformations; by setting A; = 1 in
(3) follows that Corr{g\(Z(s)),gr(Z(u))} ~ Corr{Z(s), Z(u)}, at least for

A close to 1.

Applying the algorithm described in section 3 with m = 200, in formula
(12), we computed the predictive density function for Z(sq) as well as its
median and 95% prediction interval for the locations so = (6,5), (9,7), (3,4),
(7,9), (8,3), and (4,9), (they are marked with an ‘x’ in Figure 3(a)) covering
different sections of the region of interest. These are plotted in Figure 2. We
see in this case that the predictive densities are close to being symmetric and
have different location and spread characteristics depending on the relative
positions of sg,s;, ¢ = 1,...,24, and on the data vector z. Note also the large
prediction uncertainty mainly due to the small sample size and lack of co-
variate information. Plots (not shown here) indicate that the standard errors
given in (13) are all on the order of 10~°, providing an adequate precision for
our purposes. If needed, greater precision can be achieved by increasing m.

4.1 Checking model adequacy

In order to check the adequacy of our model for prediction purposes, we use
a cross-validation approach based on single-point-deletion predictive distri-
butions as described in Gelfand et. al. (1992).

Let Z; = Z(s;) be the random variable, z; ., the observed value of Z;
and Z() = (Z1,0bss - - - » Zim1,0bss Zi+1,0bs» - - - » Znyobs) > the data vector with the i-
th observation deleted, 1 = 1,...,24. (the observations were ordered in an
arbitrary way, shown in Figure 3(a), having no influence on the analysis).
The model checking is based on the predictive distributions p(z|z(;),i =
1,...,24. The idea is that if the model is adequate for prediction, then based
on z(;) we expect to be able to predict Z; reasonably well on the average. It
should be noted that this predictive approach to model checking is the most
natural in the present situation since prediction is the intended use of the
model.

Many proposals have been suggested to measure closeness between the
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predicted and observed values. One of them, adapted to our situation where
predictive distributions have no finite moments, is to use the following stan-
dardized residuals: r; = (2;05s — 2)/u; , where Z; = Median of (Z;|z(;)) and
u; = L;/4, L; = length of the 95% prediction interval for Z; based on p(z;|z(;)),
1 =1,...,24. If the model is adequate, the average of these residuals is ex-
pected to be close to zero, with not many large values. These residuals are
plotted for each location in Figure 3(b). We have ¥ = 0.17, and only two
out of 24 have absolute values slightly larger than 2, the ones corresponding
to stations numbered 16 and 17. Note that both stations are on the border
of the convex hull determined by all the stations where prediction becomes
harder. By inspecting the signs of these residuals, no over or underprediction
tendency is noted, and the model seems to perform adequately.

On the other hand, we also plotted all the predictive distributions p(z;|z;),
¢ =1,...,24 in Figure 4, where a vertical line was placed at each z; ;5. Fol-
lowing Geisser and Eddy (1979), the idea now is to consider each of these
densities as a quasi-likelihood; the larger p(z;cbs|2(;)) is, the better the model
is predicting at the i-th location. In our case, in about half of the cases
Z;0bs 18 Very close to the mode of p(z]z(;)) and in just two of the cases z;ops
fails to be inside the corresponding 95% prediction intervals (again stations
numbered 16 and 17). No over or underprediction tendency is noted, and the
model seems also to perform adequately under this criterion. In fact, these
cross-validation predictive densities can be inspected in different ways to
extract useful information. For example, the predictive densities correspond-
ing to the neighboring stations 9 and 13 have significantly larger uncertainty
than the rest of the stations, suggesting that prediction is harder in this
section of the region. In contrast, the predictive densities corresponding to
the neighboring stations 15 and 19 display smaller uncertainty than the rest,
suggesting that prediction is easier in this section of the region.

It must be noted that none of these techniques pretend to prove the cor-
rectness of the model, but just detect the presence of blunders or locations
with troublesome prediction. They are fully exploratory, and in particular
because of the strong dependence among the statistics {r;}?;, no formal in-
ference has been contemplated.

We also investigated the sensitivity of the predictive distributions to the
choice of the prior conditional distribution p(3,r,?|A) given in section 2.
By comparing the results we obtained in Figure 2 using Box-Cox’s alterna-
tive with the predictive distributions corresponding to the same locations
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obtained using Pericchi’s alternative, also given in section 2, we found that
for each one of these locations, the two predictive densities are visually indis-
tinguishable, and for all practical purposes, they provide identical inferences.

Finally, we computed the marginal posterior distribution of A, which is
plotted in Figure 5. Note that the Gaussian model, corresponding to A = 1, is
not a good approximation for our data set since this posterior gives negligible
density to this value. The log-Gaussian model, corresponding to A = 0, is a
frequently used alternative but is not the best single choice for this data set.
The maximum a posteriori (MAP) estimate of A is A = —0.5.

5 Summary and Conclusions

In this work we have presented a Bayesian methodology for prediction in
transformed Gaussian random fields where the transformation is only known
to belong to a parametric family. It provides an alternative to trans-gaussian
kriging for prediction in non-Gaussian random fields. This approach miti-
gates some of the drawbacks of trans-gaussian kriging mentioned in the intro-
duction. The predictors and prediction intervals are based upon the Bayesian
predictive density, accounting for major sources of uncertainty and therefore
producing a more realistic inference. An application of this methodology was
given for the spatial prediction of rainfall amounts.
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