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We characterize priors which asymptotically match the posterior cov-
erage probability of a Bayesian prediction region with the corresponding
frequentist coverage probability. This is done considering both posterior
quantiles and highest predictive density regions with reference to a future
observation. The resulting priors are shown to be invariant under reparam-
eterization. The role of Jeffreys’ prior in this regard is also investigated. It
is further shown that, for any given prior, it may be possible to choose an
interval whose Bayesian predictive and frequentist coverage probabilities
are asymptotically matched.

1. Introduction. Bayesian analyses are often based on noninformative
priors. One important approach for the development of such priors is based
on the probability matching criterion which requires matching the posterior
coverage probability of a Bayesian credible set for a parameter of interest with
the corresponding frequentist coverage probability asymptotically up to a cer-
tain order. Such priors, originally developed by Welch and Peers (1963), have
received considerable attention in recent years. Among others, one may refer
to Peers (1965), Stein (1985), Tibshirani (1989), Severini (1991, 1993), Ghosh
and Mukerjee (1992), Mukerjee and Jey (1993), Nicolaou (1993), DiCiccio and
Stern (1994), Sweeting (1995), Datta and Ghosh (1995), Datta (1996), Sun
and Ye (1996), Rousseau (1997), Mukerjee and Ghosh (1997), and many other
references contained in these papers.

In the absence of nuisance parameters, the matching criterion based on pos-
terior quantiles leads to Jeffreys’ prior (Jeffreys, 1961) for a scalar parameter.
However, this need not necessarily be so in the presence of nuisance parame-
ters. Furthermore, different matching priors may emerge depending on which
parameter is viewed as the parameter of interest.

A natural alternative approach is to match asymptotically the coverage
probability of a Bayesian credible set of a future observation with the corre-
sponding frequentist probability. This is particularly attractive when the main
problem is prediction, and not estimation, and thus there is no particular rea-
son to treat a certain parameter as the parameter of interest in preference to
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others. The focus in this paper is therefore on prediction. Our study provides
some theoretical insight into the relationship between Bayesian and frequen-
tist approaches to predictive inference. Furthermore, the results of this paper
may contribute to the development of objective Bayesian methodology, which
is an area of increasing interest.

Two popular ways of coverage matching are through (a) posterior quantiles,
and (b) highest posterior density regions. One of the aims of the present article
is to characterize priors that accomplish this goal both via (a) and (b) for the
prediction problem. This has been carried out in Sections 3 and 5 respectively
after presenting the preliminaries in the next section. Since the leading term
in the asymptotic expansion for the posterior predictive density is usually
nonnormal, our results differ from those arising in the context of probabil-
ity matching priors for parameters. For example, under prediction based on
quantiles, even in the scalar parameter case, Jeffreys’ prior does not automat-
ically emerge as a solution of a differential equation but, as Theorem 1 below
reveals, a new approach is needed in examining its role. Also, Bartlett ad-
justability cannot be invoked in handling the highest posterior density region
for prediction (contrast DiCiccio and Stern (1994)). The examples presented in
these sections indicate that the predictive matching approach is a promising
tool for the development of sensible objective priors.

In Section 4 we consider the construction of prediction intervals in the
scalar parameter case which have approximately equal Bayesian predictive
and frequentist coverage probabilities. This provides a predictive analogue of
the construction of posterior intervals having approximately equal Bayesian
and frequentist coverage. The latter problem is considered by Severini (1993)
and Sweeting (1999). The technique used in Section 4 for the construction of
matching prediction regions, however, is quite different from that used for the
construction of matching posterior regions.

The general discussion on Bayesian prediction is admirably presented in the
books of Aitchison and Dunsmore (1975) and Geisser (1993); see also Kuboki
(1998) for a study of reference priors for prediction using an information the-
oretic approach. To our knowledge, however, this matching idea as described
earlier has not been addressed before. Recently, primarily in the context of
frequentist inference under a curved exponential model, Komaki (1996) gave
an asymptotic expression for a posterior predictive density and his overall rec-
ommendation seems to be in favour of Jeffreys’ prior. Our explicit characteri-
zations help in understanding how far Jeffreys’ prior can yield asymptotically
valid frequentist inference for the problem of prediction and demonstrate that
it works only in some but not all situations.

Our method should be of appeal also to frequentists because we are pro-
viding asymptotically valid frequentist procedures which have valid Bayesian
interpretations as well. Our analysis also provides an insight into the theoreti-
cal problem of defining a predictive distribution from a frequentist standpoint.
In this connection, we refer to Barndorff-Nielsen and Cox (1996) and Vidoni
(1998) for recent results on frequentist prediction and further references.
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2. Preliminaries. LetX1�X2� � � � be a sequence of independent and iden-
tically distributed possibly vector-valued random variables with a common
density f�x� θ� where θ = �θ1� � � � � θp�′ is a parameter vector lying in an open
subset � of Rp. We consider Bayesian prediction of Xn+1, with approximate
frequentist validity, based on d = �X1� � � � �Xn�′ using a prior density π�·�
which is supposed to be positive and thrice continuously differentiable for all
θ. Along the lines of Ghosh and Mukerjee (1993), we work essentially under
the assumptions of Johnson (1970) and also need the Edgeworth assumptions
of Bickel and Ghosh (1990). All formal expansions for the posterior, as used
here, are valid for sample points in a set S with Pθ-probability 1 + o�n−1�
uniformly over compact sets of θ. The set S may be defined following Section
2 of Bickel and Ghosh (1990).

Let l�θ� = n−1∑n
i=1 log f�Xi� θ� and θ̂ be the maximum likelihood estimator

of θ based on d. With Dj ≡ ∂/∂θj, let

ajr = �DjDrl�θ��θ=θ̂� ajrs = �DjDrDsl�θ��θ=θ̂� cjr = −ajr�
πj�θ� = Djπ�θ�� fj�x� θ� = Djf�x� θ�� fjr�x� θ� = DjDrf�x� θ��

The matrix C = ��cjr�� will be positive definite over S. Let C−1 = ��cjr�� and
π̃�xn+1�d� be the posterior predictive density of Xn+1 given d under the prior
π�·�. Then algebra similar to that in Ghosh and Mukerjee (1991) [see also
Komaki (1996)] shows that

π̃�xn+1�d� = f�xn+1� θ̂�

+ 1
2n

[
cst

{
cjrajrs +

2πs�θ̂�
π�θ̂�

}
ft�xn+1� θ̂�

+cjrfjr�xn+1� θ̂�
]
+ o�n−1��

(2.1)

In (2.1) and elsewhere, unless otherwise specified, we follow the summation
convention with sums ranging from 1 to p.

3. Frequentist validity of posterior quantiles. We first consider the
case where the Xi, i ≥ 1, are scalar-valued. Then the posterior quantiles of
Xn+1, given d = �X1� � � � �Xn�′ are well-defined. For 0 < α < 1, let q�θ� α� be
such that ∫ ∞

q�θ�α�
f�u� θ�du = α�(3.1)

Denote the posterior probability measure under the prior π�·� by Pπ�·�d�.
Define

µj�θ� α� =
∫ ∞

q�θ�α�
fj�u� θ�du� µjr�θ� α� =

∫ ∞

q�θ�α�
fjr�u� θ�du�(3.2)
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h�π�α� = q�θ̂� α� + 1

nf�q�θ̂� α�� θ̂�

[
cst

{
1
2
cjrajrs +

πs�θ̂�
π�θ̂�

}
µt�θ̂� α�

+1
2
cjrµjr�θ̂� α�

]
�

(3.3)

Then by (2.1), Pπ�Xn+1 > h�π�α��d� = α+ o�n−1�. Thus h�π�α� provides an
explicit representation for the �1 − α�th posterior quantile of Xn+1 up to the
order of approximation o�n−1�.

We now proceed to characterize priors ensuring approximate frequentist
validity of the posterior quantiles of Xn+1. The approach of Ghosh and Muk-
erjee (1993) helps in computing Pθ�Xn+1 > h�π�α��. We take an auxiliary
prior π̄�·�, satisfying the conditions of Bickel and Ghosh (1990), such that π̄�·�
and its first order partial derivatives vanish on the boundaries of a rectan-
gle containing θ as an interior point. We find Pπ̄�Xn+1 > h�π�α��d�, up to
o�n−1�, using an approximation, analogous to (2.1), for the posterior density
of Xn+1 given d under π̄�·�. Then Eθ�Pπ̄�Xn+1 > h�π�α��d��, as computed
up to o�n−1�, is integrated with respect to π̄�·� and finally π̄�·� is allowed to
converge weakly to the degenerate measure at θ to get an approximation for
Pθ�Xn+1 > h�π�α��. By (3.3), the above steps yield

Pπ̄�Xn+1 > h�π�α��d� = α+ 1
n
cst

{
π̄s�θ̂�
π̄�θ̂� − πs�θ̂�

π�θ̂�

}
µt�θ̂� α� + o�n−1��

Pθ�Xn+1 > h�π�α�� = α− 1
nπ�θ�Ds�Istµt�θ� α�π�θ�� + o�n−1��(3.4)

where I ≡ I�θ� is the per observation (expected) Fisher information matrix at
θ and I−1 = ��Ist��.

The right hand side of (3.4) equals α+ o�n−1� if and only if

Ds�Istµt�θ� α�π�θ�� = 0�(3.5)

A prior π�·�, satisfying (3.5) for every α, will ensure frequentist validity, up to
o�n−1�, of the posterior quantiles of Xn+1.

Theorem 1. For scalar θ, if there exists a prior satisfying �3�5� for every α
then it must be Jeffreys’ prior.

Proof. Differentiation of both sides of (3.1) with respect to α yields

− f�q�θ� α�� θ�∂q�θ� α�
∂α

= 1�(3.6)

Suppose there exists a prior, say π0�θ�, satisfying (3.5) for every α. Then

µ1�θ� α� = ψ�α�I�θ�/π0�θ��(3.7)
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where ψ�α� does not involve the scalar-valued parameter θ. Also, following
(3.2),

µ1�θ� α� =
∫ ∞

q�θ�α�
fθ�x� θ�dx�(3.8)

with fθ�x� θ� = ∂
∂θ
f�x� θ�. Transforming x = q�θ�β� in the right hand side of

(3.8) and using (3.6), one gets

µ1�θ� α� =
∫ α

0

fθ�q�θ�β�� θ�
f�q�θ�β�� θ� dβ�(3.9)

Hence differentiation of both sides of (3.7) with respect to α yields

fθ�q�θ� α�� θ�
f�q�θ� α�� θ� = d

dα
ψ�α� I�θ�

π0�θ�
�(3.10)

Now observe that, analogous to (3.9),

I�θ� =
∫ ∞

−∞
�fθ�x� θ��2
f�x� θ� dx =

∫ 1

0

{
fθ�q�θ�β�� θ�
f�q�θ�β�� θ�

}2

dβ�(3.11)

Use of (3.10) in (3.11) shows that I�θ� ∝ �I�θ�/π0�θ��2, that is, π0�θ� ∝
�I�θ��1/2, which proves the result. ✷

In particular, with the one-parameter location model or the one-parameter
scale model, Jeffreys’ prior satisfies (3.5) for every α. This can be verified
along the lines of Example 2 below. Even outside one-parameter location or
scale models, Jeffreys’ prior may satisfy (3.5) for every α. This happens, for
example, with the model specified by

f�x� θ� = θ�1+ θ��x+ θ�−2� 0 < x < 1�

where θ > 0. Here the Jeffreys’ prior is proportional to �θ�1 + θ��−1. At the
same time, even with scalar θ, there can be models where Jeffreys’ prior does
not satisfy (3.5) and hence, by Theorem 1, no solution to (3.5), valid for every
α, is available. The following example serves as an illustration.

Example 1. Let f�x� θ� represent the univariate normal model with both
mean and variance equal to θ�> 0�. Then I�θ� = �2θ+ 1�/�2θ2�, and by (3.1),
(3.2),

q�θ� α� = θ+ zαθ
1/2� µ1�θ� α� = φ�zα�

(
θ1/2 + 1

2zα
)
/θ�

where φ�·� is the standard univariate normal density and zα is the corre-
sponding �1− α�th quantile. Hence it can be seen that for no α Jeffreys’ prior
satisfies (3.5).

Even in situations such as this, where no solution to (3.5) valid for every
α is available, the explicit formula (3.4) can be useful in comparing priors. A
smaller absolute value of the term of order O�n−1� in the right-hand side of
(3.4) is indicative of a closer proximity to the correct frequentist coverage. To
illustrate this point, one may consider Jeffreys’ prior and the prior π�θ� ∝ θ2.
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Following Ghosh and Mukerjee (1993), the latter prior ensures frequentist
validity, up to o�n−1�, of the highest posterior density regions for θ. Then it
can be checked that Jeffreys’ prior entails a smaller absolute value of the term
of order O�n−1� in the right-hand side of (3.4) than the other prior if and only
if either

zα < −�2/3��θ1/2�4+ 5θ��/�1+ θ� or zα > −2θ1/2�(3.12)

For each θ, the condition (3.12) holds for an overwhelming part of the range
(0,1) for α. Thus on the whole, Jeffreys’ prior behaves much better than the
other one with regard to the frequentist coverage of the posterior quantiles of
a future observation.

Theorem 1 does not hold for vector-valued θ. As illustrated by the next ex-
ample, there it is possible that Jeffreys’ prior does not satisfy (3.5) but another
solution to (3.5), valid for every α, is available.

Example 2. Consider the location-scale model given by f�x� θ� =
θ−12 f∗��x − θ1�/θ2�, where −∞ < θ1 < ∞ and θ2 > 0. Let kα be such that∫∞
kα
f∗�u�du = α. Then by (3.1), (3.2), q�θ� α� = θ1+kαθ2, µ1�θ� α� = θ−12 f∗�kα�,

µ2�θ� α� = θ−12 kαf
∗�kα�. Also, Ist = bstθ22 for each s� t, where b

st is free from θ.
It can be seen that (3.5) reduces to

rj�α�Dj�θ2π�θ�� = 0 for all α�

where rj�α� = bj1+bj2kα. Hence π�θ� ∝ θ−12 satisfies (3.5) for every α and it is
the unique prior satisfying this condition. From Mukerjee and Ghosh (1997),
this is also the unique prior ensuring frequentist validity, up to o�n−1�, of the
posterior quantiles of both θ1 and θ2.

As a specific illustration, consider the two-parameter Weibull model given
by f�x� θ� = �θ2/θ1��x/θ1�θ2−1 exp�−�x/θ1�θ2�, where θ = �θ1� θ2�′, x > 0� θ1 >
0 and θ2 > 0. Then, since this model can be written via the transformation y =
log x in the form of a location-scale model with location and scale parameters
φ1 = log θ1� φ2 = θ−12 respectively, it follows that the unique prior satisfying
(3.5) for every α is π�θ� ∝ �θ1θ2�−1.

Finally, we indicate a satisfying invariance property of any solution to (3.5).
Consider any reparameterization of the model given by a one-to-one transfor-
mation of θ. Then it can be shown that a prior π��� satisfies (3.5) for every α
if and only if, under the reparameterization, the transformed version of π���
satisfies the transformed version of (3.5) for every α. This invariance property
can be verified in a straightforward manner for p = 1, while for general p
one has to proceed as in Theorem 3.1 of Datta and Ghosh (1996). This is in
agreement with what happens under the corresponding estimation problem;
cf. Datta and Ghosh (1996).

4. Prediction intervals. For the case of scalar θ, we will now consider
prediction intervals for a scalar-valued future observation Xn+1. It turns out
that, for any given prior, it is often possible to choose an interval which
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has both Bayesian predictive probability and frequentist coverage probabil-
ity equal to α, to the order o�n−1�.

Fix α and let γα�θ� be any function, with functional form free from n, sat-
isfying 0 < α < γα�θ� < 1. Write γα = γα�θ̂�. Then as in the last section,

Pπ�h�π�1− γα + α� < Xn+1 ≤ h�π�1− γα��d� = α+ o�n−1��
and as in (3.4),

Pθ�h�π�1−γα+α�<Xn+1 ≤ h�π�1−γα��=α−
1

nπ�θ�
d

dθ

{
π�θ�ξα�θ�
I�θ�

}
+o�n−1��

where ξα�θ� = ψ�γα�θ�� α� θ� and

ψ�γ� α� θ� =
∫ q�θ�1−γ�

q�θ�1−γ+α�
fθ�x� θ�dx�

If we can find a function γα�θ� for which ψ�γα�θ�� α� θ� = 0, then for any prior
the Bayesian predictive and the frequentist coverage probabilities will agree
to o�n−1�. Sufficient conditions for the existence and uniqueness of such a
function are given in the next lemma. Here F�x� θ� is the common distribution
function of the observations X1�X2� � � � .

Lemma 1. Suppose that, for each θ ∈ �, the equation fθ�x� θ� = 0 has a
unique solution x�θ�, and fθx�x�θ�� θ� �= 0, where fθx�x� θ� = �∂2/∂x∂θ�f�x� θ�.
Let α ≥ α0, where

α0 = sup
θ∈�

�max�F�x�θ�� θ��1−F�x�θ�� θ��� �(4.1)

Then there exists a unique solution γ = γα�θ� in �α�1� to the equation

ψ�γ� α� θ� = 0�

Proof. Without loss of generality, assume that fθx�x�θ�� θ� > 0. Then
fθ�x� θ� < fθ�x�θ�� θ� = 0 for x < x�θ� and fθ�x� θ� > 0 for x > x�θ�. Since∫ ∞

−∞
fθ�x� θ�dx = 0�

we have

ψ�α� α� θ� =
∫ q�θ�1−α�

−∞
fθ�x� θ�dx = −

∫ ∞

q�θ�1−α�
fθ�x� θ�dx < 0(4.2)

provided that q�θ�1− α� ≥ x�θ�, and

ψ�1� α� θ� =
∫ ∞

q�θ�α�
fθ�x� θ�dx = −

∫ q�θ�α�

−∞
fθ�x� θ�dx > 0(4.3)

provided that q�θ� α� ≤ x�θ�. Also, for α < γ < γ′ < 1,

ψ�γ′� α� θ� − ψ�γ� α� θ� =
∫ q�θ�1−γ′�

q�θ�1−γ′+α�
fθ�x� θ�dx−

∫ q�θ�1−γ�

q�θ�1−γ+α�
fθ�x� θ�dx

=
∫ q�θ�1−γ′�

q�θ�1−γ�
fθ�x� θ�dx−

∫ q�θ�1−γ′+α�

q�θ�1−γ+α�
fθ�x� θ�dx > 0�
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The last inequality is justified by the fact that for x in �q�θ�1−γ�, q�θ�1−γ′��,
one has x > q�θ�1 − γ� > q�θ�1 − α� ≥ x�θ�, implying thereby fθ�x� θ� > 0.
Similarly, for x in �q�θ�1−γ+α�, q�θ�1−γ′+α��, one has x < q�θ�1−γ′+α� <
q�θ� α� ≤ x�θ�, implying thereby fθ�x� θ� < 0. Hence the function ψ�γ� α� θ�
is increasing in γ; so (4.2) and (4.3) imply that there is a unique function
γα�θ� with α < γα�θ� < 1 for which ψ�γα�θ�� α� θ� = 0. Finally, the conditions
required for (4.2) and (4.3) are readily seen to be equivalent to (4.1), which
completes the proof. ✷

Computation of γα for any given value of α can easily be achieved using
a Newton iteration. Even though the conditions in Lemma 4.1 appear to be
restrictive (for example, one needs the coverage probability α > 1/2), these
are satisfied for all practical purposes. Also, as pointed out by a referee, the
conditions of the lemma hold for distributions belonging to the one-parameter
exponential family. Although it is not possible to get closed form expressions
for the prediction intervals for an arbitrary member of the exponential family,
Example 3 below indicates that the prediction intervals based on this lemma
are of a natural form.

Example 3. Suppose f�x� θ� = θ−1 exp�−x/θ�. Then x�θ� = θ and
F�x�θ�� θ� = 1− e−1. Thus α0 = 1− e−1. For α = 0�9 or 0.95, condition (4.1) is
satisfied. In fact, considering ψ�γ� α� θ� explicitly, it can be seen that in this
example a unique γα�θ�, as envisaged above, exists for every α in (0,1). This
γα�θ� does not actually involve θ and is given by the unique solution in �α�1�
for γ of

�1− γ� log�1− γ� − �1− γ + α� log�1− γ + α� = 0�

Consider now any prior of the form π�θ� ∝ 1/θr. Then, either from (3.3) or from
the exact predictive distribution, it can be seen that the prediction interval
considered in this section takes the natural form �k1X̄� k2X̄�, where X̄ is the
arithmetic mean of X1� · · · �Xn, and k1 and k2 are constants which involve α
and r.

5. Highest predictive density region. We now turn to the general case
where the Xi, i ≥ 1, are possibly vector-valued. While the posterior quantiles
of Xn+1 are well-defined for scalar Xi, they do not remain so with vector Xi.
Even in the latter situation, however, one may consider a highest predictive
density region for predictingXn+1. We now explore the conditions under which
such prediction has approximate frequentist validity.

For 0 < α < 1, let m�θ� α� be such that∫
A
f�u� θ�du = α�(5.1)

where A ≡ A�θ� α� = �u � f�u� θ� ≥m�θ� α��� Define ξj�θ� α� by

ξj�θ� α� =
∫
A
fj�u� θ�du�(5.2)
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From (2.1), observe that

π̃�xn+1�d� = f

(
xn+1� θ̂+

1
n
g�π�

)
+ 1

2n
cjrfjr�xn+1� θ̂� + o�n−1��(5.3)

where g�π� = �g1�π�� � � � � gp�π��′ with

gt�π� = cst

{
1
2
cjrajrs +

πs�θ̂�
π�θ̂�

}
�

Noting that the second term in the right hand side of (5.3) is free from π�·�,
it follows from (5.1) and (5.3) that the highest predictive density region under
the prior π�·� for predicting Xn+1, with coverage probability α + o�n−1� has
the form

H�π�d� =
{
xn+1 � f

(
xn+1� θ̂+

1
n
g�π�

)
+ 1

2n
cjrfjr�xn+1� θ̂�

≥m

(
θ̂+ 1

n
g�π�� α

)
+ 1
n
ρ�d�

}
�

where ρ�d� is at most of order O�1� and is free from π�·�. The explicit form of
ρ�d� is not needed in the sequel for studying approximate frequentist validity
of H�π�d�.

After considerable algebra, arguing as in Section 3 we get

Pθ�Xn+1 ∈H�π�d�� = α− 1
nπ�θ�Ds�Istξt�θ� α�π�θ�� + o�n−1��(5.4)

The right hand side of (5.4) equals α+ o�n−1� if and only if

Ds�Istξt�θ� α�π�θ�� = 0�(5.5)

A prior π�·�, satisfying (5.5) for every α, will ensure frequentist validity, up to
o�n−1�, of the highest predictive density prediction of Xn+1.

Example 4. We will consider the highest predictive density region in the
bivariate normal model, with zero means for simplicity, and unknown vari-
ances σ2

1 , σ
2
2 and correlation coefficient ρ. Since the matching prior from (5.5)

remains invariant under reparameterization (cf. last paragraph of this sec-
tion), for computational simplicity, we choose to work with an orthogonal
reparameterization given by θ1 = ρσ2/σ1, θ2 = σ2

2 �1 − ρ2� and θ3 = σ2
1 . The

inverse of the information matrix under this reparameterization is given by
I−1�θ� = Diag�θ2/θ3� 2θ22� 2θ23�. It can be checked that

m�θ� α� = �1− α�
2π

√�θ2θ3�
� ξ1�θ� α� = 0�

θ2ξ2�θ� α� = θ3ξ3�θ� α� =
�1− α� log�1− α�

2
�
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and that a class of priors exists as solutions to (5.5) for all α. A subclass
of solutions to (5.5) is given by π�θ� ∝ θ−r2 θr−23 for an arbitrary r, or in the
original parameterization the subclass of solutions is given by π�σ1� σ2� ρ� ∝
�1 − ρ2�−rσ2r−4

1 σ2−2r
2 . Taking r = 3/2, one gets the prior π�σ1� σ2� ρ� ∝

�1 − ρ2�−3/2σ−1
1 σ−1

2 as a solution to (5.5) for every α, which is Jeffreys’ prior
and is probability matching for θ1 and ρσ1/σ2.

Example 5. Consider the multivariate scale model with a density

f�x� θ� = �θ1 � � � θp�−1f∗�x�1�/θ1� � � � � x
�p�/θp��

where x = �x�1�� � � � � x�p��′ and θ1� � � � � θp > 0. Let mα be such that∫
f∗�u1� � � � � up�du = α�

where the integral is over �u � f∗�u1� � � � � up� ≥mα�. Then by (5.1), (5.2),

m�θ� α� =mα/�θ1 � � � θp�� ξj�θ� α� = γj�α�/θj�
with γj�α� free from θ. Also, Ist = bstθsθt for each s� t, the quantities bst

being free from θ. Hence it can be seen that Jeffreys’ prior π�θ� ∝ �θ1 � � � θp�−1
satisfies (5.5) for every α.

Similarly, it can be seen that for the multivariate location model f�x� θ� =
f∗�x�1� − θ1� � � � � x

�p� − θp�, Jeffreys’ prior, given by π�θ� = constant, satisfies
(5.5) for every α. It can also be checked that for the multivariate location-scale
model with a density with different scale parameters

f�x� θ� = �θp+1 � � � θ2p�−1f∗��x�1� − θ1�/θp+1� � � � � �x�p� − θp�/θ2p��
where x = �x�1�� � � � � x�p��′, θ = �θ1� · · · � θ2p�′ and θp+1� � � � � θ2p > 0, or a den-
sity with the same scale parameter

f�x� θ� = θ
−p
p+1f

∗��x�1� − θ1�/θp+1� � � � � �x�p� − θp�/θp+1��
where θ = �θ1� � � � � θp+1�′ and θp+1 > 0, there exist priors that satisfy (5.5) for
every α. In the first case, such a prior is given by π�θ� ∝ �θp+1 · · · θ2p�−1, while
in the second case it is given by π�θ� ∝ θ−1p+1. In both cases, however, Jeffreys’
priors are not solutions to (5.5).

Following Ghosh and Mukerjee (1993), under both the multivariate location
and scale models, Jeffreys’ prior also ensures approximate frequentist validity,
up to o�n−1�, of highest posterior density regions for θ. However, in general,
there is no guarantee that Jeffreys’ prior will always satisfy (5.5) for every
α. In fact, as Example 6 below demonstrates, even with scalar θ and scalar
Xi, i ≥ 1, it is possible that Jeffreys’ prior does not satisfy (5.5) but another
solution to (5.5), valid for every α, is available.

Example 6. We revisit Example 1. By (5.1) and (5.2), writing z∗ = z�1−α�/2,

m�θ� α� = θ−1/2φ�z∗�� ξ1�θ� α� = −θ−1z∗φ�z∗��
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Hence the unique prior, satisfying (5.5) for every α, is π�θ� ∝ �2θ+ 1�/θ. This
is different from Jeffreys’ prior and, following Ghosh and Mukerjee (1993),
also from the priors ensuring frequentist validity, up to o�n−1�, of the highest
posterior density regions for θ.

We now indicate some situations where no prior satisfying (5.5) for every
α is available. Consider the case of scalar θ. Since both I�θ� and π�θ� are
positive for all θ, a solution to (5.5), valid for every α, is available if and only
if ξ1�θ� α� is of the form

ξ1�θ� α� = Q�θ�R�α��(5.6)

whereQ�θ� does not involve α,R�α� does not involve θ, andQ�θ� is positive for
all θ. For the truncated exponential model f�x� θ� = k�θ� exp�−x/θ�, 0 < x < 1,
where k�θ� = 1/�θ�1− exp�−1/θ��� and θ > 0, a factorization as in (5.6) is not
possible. On the other hand, for the bivariate normal model with zero means,
unit variances and correlation coefficient θ �−1 < θ < 1� such a factorization
is possible but one cannot have Q�θ� positive over the entire parameter space.
Hence in these two situations no solution to (5.5), valid for every α, exists. For
the latter model, however, the condition (5.6) together with positiveness of
Q�θ� is met if the parameter space for the correlation coefficient θ is changed
to (0,1) or (-1,0).

Finally, we return to the issue of invariance. In a manner similar to that
described in Section 3, one can check that the same invariance property holds
also with reference to (5.5). This property may be contrasted with the lack
of such invariance under probability matching with highest posterior density
regions for θ itself.

6. Conclusion. The problem of predicting the future value of a random
variable is often viewed as similar to estimation of a suitable parametric func-
tion. Nonetheless, there are important differences between the two problems.
One such difference is highlighted in this paper in the development of prob-
ability matching priors. For instance, while probability matching equations
which provide frequentist justification based on a one-sided credible interval
or a HPD set for a parametric function remain independent of the target cov-
erage probability α, the corresponding equations for prediction usually depend
on α [cf. (3.5) and (5.5)]. Despite this difficulty, there are examples where the
probability matching approach to prediction problems leads to sensible non-
informative priors (cf. Examples 2, 4 and 5). In particular, in Theorem 1, as
in Welch and Peers (1963), we have established that in models depending on
a scalar parameter, Jeffreys’ prior is the only probability matching prior if
one exists. This result lends further support to Jeffreys’ prior as a default
prior in the scalar case. Unfortunately, this result does not hold uniformly
for all models such as a regular one-parameter exponential distribution (see
Example 1).

Our overall assessment of the probability matching approach to prediction
is that it promises to be a valuable tool for the development of sensible objec-
tive priors for Bayesian inference, and is worthy of further study.
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