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ABSTRACT 
Automatic vehicle type recognition (make and model) is very 
useful in secure access and traffic monitoring applications. It 
compliments the number plate recognition systems by providing a 
higher level of security against fraudulent use of number plates in 
traffic crimes. In this paper we present a simple but powerful 
probabilistic framework for vehicle type recognition that requires 
just a single representative car image in the database to recognize 
any incoming test image exhibiting strong appearance variations, 
as expected in outdoor image capture e.g. illumination, scale etc. 
We propose to use a new feature description, local energy based 
shape histogram ‘LESH’, in this problem that encodes the 
underlying shape and is invariant to illumination and other 
appearance variations such as scale, perspective distortions and 
color. Our method achieves high accuracy (above 94 %) as 
compared to the state of the art previous approaches on a standard 
benchmark car dataset. It provides a posterior over possible 
vehicle type matches which is especially attractive and very 
useful in practical traffic monitoring and/or surveillance video 
search (for a specific vehicle type) applications.  
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1. INTRODUCTION 
The need for vehicle identification and classification has become 
relevant in recent years as a result of increased security awareness 
for access control systems in parking lots, buildings and restricted 
areas. Vehicle recognition also plays an important role in road 
traffic monitoring and management. It may also prevent the 
fraudulent use of bogus registration plates by providing an 
additional security mechanism to automatic number plate 
recognition systems. Vehicle classification have been limited 
mostly to algorithms distinguishing between broad categories of 
vehicles i.e. car, bus, truck etc. In contrast, an effective vehicle 
recognition system requires correctly identifying the make and 

model of vehicles within a given category. Recent research in this 
direction aims at identifying the correct make and model from a 
frontal or rear image of a vehicle. Methods dealing with vehicle 
make and model recognition ‘MMR’ typically extract relevant 
features from the vehicle image and either directly matches them 
in a template matching fashion or use a classifier to pose it as a 
multiclass learning problem. A relatively limited number of 
techniques that directly relate to vehicle MMR have been 
proposed in literature. Petrovic and Cootes [9] proposed 
techniques for the recognition of cars by extracting different 
gradient features from images. A number of feature extraction 
algorithms including direct and statistical mapping methods were 
applied to frontal views of cars. These feature vectors were then 
extracted and classified using simple nearest neighbor 
classification methods. Munroe and Madden [8] investigated the 
use of machine learning classification techniques in vehicle 
MMR. Initially a Canny edge detector followed by a dilation 
process was used to extract feature vectors. Subsequently 
different machine learning classifiers were used to determine 
vehicle make and model associated with each feature vector. 
Dlagnekov [2] explored the problem of MMR by using Scale 
Invariant Feature Transforms (SIFT) features [5].  Kazemi et.al in 
[3] investigated the use of Fast Fourier Transforms, Discrete 
Wavelet Transforms and Discrete Curvelet Transforms based 
image features in vehicle MMR. Rahati et.al in [10] proposed the 
direct replacement of Curvelet transforms in [3] with Contourlet 
transforms for vehicle MMR. Zafar et al.[13] extended the work 
of [10] by restricting the contourlet features in different subbands 
and reported superior performance. Clady et.al [1] proposed an 
oriented-contour point based voting algorithm for multiclass 
vehicle type recognition, which is particularly proven to be 
effective under occlusion.  
The methods proposed in the literature so far may be categorized 
largely in two domains.  After a feature extraction stage, The first 
one matches an incoming unknown vehicle image features 
directly with that of the registered vehicle images in the database 
by using some distance measure [2][3]. The test image is assigned 
the label for which the similarity is highest. The problem with this 
approach, however, is that it can not cater for the high in-class 
appearance variability present in the vehicle images. Its 
performance therefore depends on the effectiveness of the 
extracted features. The second one tries to learn a classifier 
directly in the multidimensional feature space. It therefore pose 
the problem as a multi-class classification problem [1][13]. Such 
an approach however, requires sufficiently large training 
examples for each class (vehicle type in this case). Furthermore, 
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such a multi-class learning approach is meaningful only when the 
feature dimensionality is low as opposed to the current feature 
extractions (used in MMR) that results in very high dimensional 
features. Another problem with such an approach is the 
requirement of re-training the models whenever a new class 
(vehicle) is added in the database.  
In this contribution, we attempt to solve the aforementioned 
problems by proposing to use a new feature extraction method 
that is based on local energy model of feature perception and is 
proven to be invariant with in-class variability due to 
illumination, scale and other appearance variations.  The vehicle 
MMR problem, then, is formulated in a Bayesian framework. In 
particular instead of modeling the extracted features directly in a 
typical multi-class learning strategy, we rather model the 
computed similarities between the examples when the class 
(vehicle) is same and when it is different. Such a strategy is 
beneficial in that it turns a multi-class problem in to two-class one 
and does not depend on the dimensionality of the feature space. 
An offline training set is used to learn the prior ‘same’ and 
‘different’ models from the distributions of the computed 
similarities. These prior models are then used to classify an 
incoming unknown test image by using its similarity with each of 
the representative reference vehicle image in the database (single 
per class) in a pure Bayesian setting. This provides us with a 
posterior over possible matches that is more meaningful in such 
applications since it gives the probabilities and the confidence for 
each class label. Note that because the models are learnt once, 
offline, for the same and different classes, adding a new vehicle 
image in the database does not require any retraining. In section 2 
we explain the feature extraction stage. Section 3 provides details 
on the proposed method. In section 4 we demonstrate the 
effectiveness of our method by providing experimental results 
followed by discussion and conclusion in section 5. 

2. Feature Extraction 
Feature extraction is the first stage in any vehicle MMR 
application. Most of the existing MMR systems focus on minute 
portions of the image and use interest point based feature 
detectors such as SIFT. While such a bag-of-feature based 
approach has proven useful in general object recognition tasks, 
the vehicle MMR relies more on the global configuration of local 
parts, since it is the only discriminating feature between images of 
vehicle as an object category. We, therefore advocate the use of a 
global feature description (preserving the configural relationships 
of the local parts) summarizing the local content of the image 
parts in a scale, color and illumination invariant manner. For this 
we propose to use a new feature description, local energy based 
shape histogram “LESH’, introduced in our earlier work in the 
context of head pose estimation [13] [14]. The rest of the section 
details LESH extraction slightly adapted for the purpose of 
vehicle MMR in this work. 

2.1 Local Energy Model 
The local energy model developed by [7] postulates that features 

are perceived at points in an image where the local frequency 
components are maximally in phase. 
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where nA  and nφ  are the magnitude and phase of the nth 
Fourier component. This frequency information must be obtained 
in a way such that underlying phase information is preserved. 
This is achieved by convolving the image with a bank of Gabor 
wavelets kernels tuned to 5 spatial frequencies and 8 orientations. 
At each image location, for each scale and orientation, it produces 
a complex value comprising the output of even symmetric and 
odd symmetric filter, which gives the associated magnitude and 
phase of that pixel, , , ,( , ) ( , )* ( )n v n v n vG e o I x y zψ= , where 

,n vψ  is the bank of Gabor kernel and ,n v  is the scale and 

orientation, (·)G is the response at image position (x,y) having a 
real and imaginary part comprising output of even symmetric and 
odd symmetric filter at scale n and orientation v.  The amplitude 

nA  and phase nφ  in equation 1, thus can be written in terms of 
these responses at a given scale n as, 
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Originally [11] has proposed to use cosine of the deviation of  
each phase component from the mean phase as a measure of the 
symmetry of phase, however, this measure results in poor 
localization and is sensitive to noise. [4] extended this framework 
and developed a modified measure, as given in equation 3, 
consisting of sine of the phase deviation, including a proper 
weighing of the frequency spread ‘W’ and also a noise 
cancelation factor ‘T’. The normalization by summation of all 
component amplitudes makes it independent of the overall 
magnitude of the signal, making it invariant to illumination 
variations in images. For details of this measure see [4]. 

2.2 Local Energy based Shape Histogram- 
LESH  
The local energy analysis in the preceding section is intended to 
detect interest points in images with a high reliability in presence 
of illumination and noise. We use this raw energy information and 
attempt to encode the underlying shape. This is done in a way that 
makes it invariant to scale variations. Motivated by the fact that 
this local orientation energy response varies with respect to the 
underlying shape and since local energy signifies the underlying 
corners, edges or contours, we generate a local histogram 
accumulating the local energy along each filter orientation on 
different sub-regions of the image. The local histograms are  



Figure 1. Example LESH feature extraction on two of the vehicle images from our database 

extracted from different sub-regions of the image, and then 
concatenated together, to keep the spatial relationship between 
vehicle parts. We proceed by obtaining an orientation label map 
where each pixel is assigned the label of the orientation at which 
it has largest energy across all scales. The local histogram h is 
extracted according to the following, 

 ,r b r Lbh w E δ= × ×∑  (4) 

where subscript b represents the current bin, L is the orientation 
label map, E is the local energy, as computed in equation 3, Lbδ  
is the Kronecker delta and w is a Gaussian weighing function 
centered at region r.  
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This weight is used to provide soft margins across bins by small 
weighted overlap among neighboring sub-regions to overcome the 
problems induced due to scale variations. 

As mentioned earlier, in order to keep the spatial relation between 
vehicle parts, we extract 8 bins local histogram corresponding to 8 
filter orientations on 16 image partitions, which makes it a 128-
dimensional feature vector. Example feature extraction and 
associated energy and orientation maps on two different vehicle 
images, from our database, are shown in figure 1. 

3. Proposed Recognition Framework 
As mentioned earlier, instead of modeling the extracted features 
directly in a multi-class learning manner, we rather formulate the 
whole problem in a similarity feature space. This is achieved by 
computing similarities between images of the vehicle, when the 
class (make and model) is same and when it is different, from a 
offline training set. This effectively turns the multiclass problem 
into a two class problem. Motivated by the success of similar 
approach [6][12] ,our approach briefly is to learn probabilistic 
models describing the approximated joint probability of registered 
(database) and test vehicle image. Since we assume that only one 
representative vehicle image in each class is available in our 

database, we learn such models by explicitly modeling the vehicle 
appearance change when the class is similar and when it is 
dissimilar. This is done by using the distributions of the 
similarities from the offline generic training set. These 
distributions are used to obtain the likelihood functions of the 
form  

( , | ) { , }r tP I I C where C same diff∈   (6) 

C  refers to classes when the registered database image Ir and test 
image It are similar (same) and dissimilar (diff) in terms of vehicle 
identity (make and model).  

3.1 Prior Appearance Models 
We approximate the joint probability of test and database image 
as,  

( , | ) ( | , )r t rtP I I C P Cχ≈ Ω  (7) 

where rtχ  is the similarity between test and registered images 

and ( , )same diffθ θΩ =  are the model parameters for the  

similar and dissimilar class. The distributions of the extracted 
similarities from the offline training set are used to learn these 
model parameters. We employ a Gaussian model to approximate 
these similarities distributions. 
Any distance metric may be used to compute the similarity. We 
however use the cosine metric, 
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where ·  denotes the Euclidean norm of the vectors. 

The likelihoods in equations 7 are then obtained from the similar 
(same) and dissimilar (diff) distributions of similarities.  Figure 2a 
depicts the histogram of these prior same and diff distributions 
obtained from the offline training set. These distributions are 
approximated by using a Gaussian density. Figure 2b shows the  



Figure 2. Similarity distributions for similar and dissimilar classes. x-axis denotes the similarity χ  and y-axis the density 
approximation.  (a) Histograms for prior same and different distributions. (b) Gaussian density fits to obtain prior models. 
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fitted Gaussian model on these distributions. The Gaussian model 
parameters ( , )same diffθ θΩ =  are estimated directly from 

these distributions. The parameters are the means and variance of 
the estimated density i.e. ( , )same same sameθ μ σ=  and 

( , )diff diff diffθ μ σ= .  

Note that the more separated the two distributions are the more 
power it has to discriminate between the same and different 
classes. It is clear that the similarities distributions obtained, as 
depicted, provides a good basis to derive the prior models. 

3.2 Vehicle Type Recognition  
Prior models obtained in the previous section can now directly be 
used in computing the posterior probability of two images to be 
similar or dissimilar. By using this posterior as a match score we 
can now decide for a test image It of unknown make and model, if 
it is coming from the same vehicle type as database Ir , with each 
of the registered database images. Using Bayes rule the posterior 
probability can be written as in equation 9.  The conditional 
probabilities ( | , )samrt eP sameχ θ and ( | , )difrt fP diffχ θ
are found from the offline training set as detailed in the previous 

section.  ( )P same  and ( )P diff  are the class priors. The 

class priors are set to ( )P 1same  and 

( )P 1 ( )diff P same= −  in all of our experiments.  

We compute this posterior for an unknown test vehicle image 
with all of the registered database images and choose the make 
and model of the database image with the highest score as 
recognition result.  

4. Experimental Setup and Results 
Experiments are performed on a database of cars [9][13] 
comprising 300 frontal view images of 25 different car types  
such as Honda civic, Toyota corolla, Audi, Fiat etc. Each car type 
(class) has eleven to fourteen different images.  Several of the car 
types exhibit some hard classes such as same make but different 
model e.g. Vauxhall Astra and Vauxhall Vectra, Fiat Punto and 
Fiat Punto new, where the only difference lies in the shape of the 
front grill.  Frontal area of the cars are cropped from the images 
using the method described in [9], the area is segmented based on 
the number plate coordinates such that it includes the important 
components of the frontal views of cars such as lights, grill, logo, 
bumper area, etc. Images are then resized to 128x128 pixels. 
Figure 3 depicts some of the cropped frontal views of the cars 
from the database. 

We use four images from each class (a total of 100 images) as 
offline training set for training of the prior models as described in 
section 3.1. One image from each class (a total of 25 images 
corresponding to 25 classes) is taken as registered database (for 
recognition). Whereas remaining are used as test images.  Note 
that all the three sets are disjoint.  

After extracting features, as described in section 2, we proceed to 
compute the posterior of a test image (equation 9) by calculating 



Figure 3. Example segmented images of three different 
car types from the database 

Figure 4. Confusion matrix, white diagonal indicates 
perfect recognition 

Figure 5. Rank wise score depicting accuracy for top N 
matches 

its similarity (using equation 8) with each of the registered 
database car image feature vectors. The database car type, for 
which this posterior is maximum, is assigned to the test image. 
Our average recognition accuracy on all of the test images is 94% 
(rank-1).  Figure 4 plots the performance across each class 
(vehicle type) as a confusion matrix.  

The confusion matrix depicts performance for all the test images 
in each class (vehicle type). A white in the diagonal indicates 
perfect classification i.e. all the test image in that class are 
correctly classified. As can be seen the recognition results are 
100% for most of the classes, while only three to four classes 
shows some degradation in performance e.g. some of the test 
images in class 15 (Fiat Punto) are assigned to class 20 (Fiat 
Punto new) ,see figure 4. The confusion in these classes is well 
expected since only subtle differences exist as being the same 
make. A closer look at the corresponding posterior probabilities 

reveals that the difference in computed probabilities is very small, 
in most cases less that 0.05 (5%). Because of the fact that we use 

the maximum probability to assign the class label, differences 
even this small may result in the wrong classification. We, 
therefore, note that in a probabilistic framework it is more 
meaningful to look at the notion of top probabilities or top 
matches. Figure 5 plots the rank curve for this purpose. As can be 
seen even considering the first 2 matches (rank-2), according to 
the assigned probabilities, the overall recognition accuracy 
improves from 94% to 97.4% and up to 100% for first 3 matches 
(rank-3). 

5. Discussion and Conclusion 
Our results indicate the effectiveness of the proposed method on a 
standard vehicle dataset. We can compare our method with some 
of the contemporary approaches in vehicle MMR on same or 
similar databases.  Petrovic and Cootes [9] reports a 87.3% 
accuracy on the similar access control car database by using 
different gradient features from images. Dlagnekov [2] using 
SIFT features reported an accuracy of 89%.  Kazemi et.al in [3] 
investigated the use of Fast Fourier Transforms, Discrete Wavelet 
Transforms and Discrete Curvelet Transforms based image 
features in vehicle MMR, using a relatively small car database 
comprising only five different vehicle types, they reported a 
accuracy of above 92%. Rahati et.al in [10] proposed Contourlet 
transforms for vehicle MMR, the performance of their method on 
the same database, as reported in [13], is 52%. Zafar et al.[13] 
extended the work of Rahati et.al by restricting the contourlet 
features in different subbands and reported a peak performance of 
94%, on the same database. The accuracy figure of 94%, 
however, is achieved when using ten images in each class for 
training and only one to two images per class for testing, as 
demonstrated by their results the accuracy drops to 85% when 
using four images per class for training (similar to our offline 
training set size). Clady et.al in [1], using oriented-contour point 
based voting algorithm reports a maximum performance of 93.1% 
by using fusion of different classifiers. 

The preceding comparison shows that our method is able to 
achieve better results by using a relatively simple but effective 
recognition strategy. Most of the previous approaches use 
gradient based features which in general are very much 
susceptible to outdoor realistic image conditions, such as 
illumination, casting shadows, surface reflections etc.  We on the 
other hand proposed to use a feature description that is based on 



the multi-resolution and multi-scale analysis of the underlying 
frequency content. The proposed feature description attempts to 
encode the pure shape information such as contours, corners etc 
and is invariant to such appearance variations. Our method 
requires just one reference image of the respective vehicles in the 
database as opposed to the requirement of multiple example 
images per vehicle type in most of the existing approaches.  

On concluding remarks, we have presented a novel approach to 
automatic vehicle make and model recognition. We have 
proposed to employ a new feature description LESH in vehicle 
MMR. The features are then modeled in a similarity feature space 
by using a probabilistic Bayesian framework. Our method 
provides the posterior over possible matches. The assigned 
probabilities for possible vehicle type are more useful in a typical 
vehicle MMR application, such as traffic management system, 
access control or security video archive search for a specific 
vehicle type. 
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