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Abst rac t .  One of the tasks of the Bayesian consulting statistician is to elicit 
prior information from his client who may be unfamiliar with parametric sta- 
tistical models. In some cases it may be more illuminating to base a prior 
distribution for parameter 0 on the transformed version F(vlO), where F is the 
data distribution function and v is a designated reference value, rather than 
on 8 directly. This approach is outlined and explored in various directions to 
assess its implications. Some applications are given, including general linear 
regression and transformed linear models. 
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1. Introduction 

Suppose that a Bayesian statistician is involved with an experimental scientist 
in planning a study and must construct a prior distribution p(8) for parameter 0. 
It is not useful for the statistician to ask the client for his views on 8 directly if the 
latter has not made it his business to become familiar with the detailed workings 
of parametric statistical models. In this case questions concerning 0 itself are not 
likely to produce a useful exchange of information unless 0 happens to have a 
meaningful interpretation in the context. However, the client will often have fairly 
well defined beliefs about the sort of data he expects to obtain. He may have had 
to construct a well reasoned argument in support of such expectations in order to 
gain financial backing for the work. It is natural then to try to use this aspect 
of the client's knowledge to construct p(8) from his assessed probabilities for his 
future data. In other words, the discussion is about  observable data  rather than 
statistical parameters. 

There is now a vast literature on the complex problem of eliciting prior dis- 
tributions and many approaches have been discussed (e.g. Winkler (1967), Savage 
(1971), Wversky (1974), Hogarth (1975), Bernardo (1979), Dickey (1980), Kadane 
(1980), Kadane et el. (1980)). There has been much emphasis also on construct- 
ing non-informative priors (e.g. Hartigan (1964), Noviek (1969)) but the present 
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concern is to characterize "prior knowledge rather than prior ignorance" (Dawid 
et al. (1973)). 

This paper is concerned with generating p(0) from prior information quantified 
in terms of the particular transformation u = F(v I ~) of 0, where F is the 
distribution function for the observations and v is some designated reference value. 
(Actually, everything here could equally be done in terms of the survivor function 
F(v I O) = P(y > v I 0), and in some cases, particularly for certain multivariate 
distributions, this may be much tidier.) The intention here is to explore this 
suggestion to see where it might provide a useful aid to a Bayesian analysis. 

2. Basic outline 

Let F(y I O) be the distribution function of y (univariate or multivariate, 
continuous or discrete) depending on a continuous parameter 0 which is assumed 
to be scalar for now. A prior p(0) will induce a distribution p(u) on (0, 1) for 
u = F(v I 0), where v is any fixed reference value. Conversely, provided that 
the relation u = F(v I O) can be inverted to give ~ in terms of u and v, v and 
p(u) will together determine p(0). Thus, one way of implementing the approach 
described above is to ask the client to designate a value v for which he can assign 
probabilities or odds to u. 

Example 1. Suppose that y is the finishing position of a particular horse in 
a particular race. The reference value v = 3 corresponds to the horse's being 
"placed". Many statistical laymen axe much practised in the potentially profitable 
art of assessing their prior estimate for u = P(y < 3) in that context. What  we 
are asking for is an extension of this from an estimate of u to a prior distribution 
for U. 

Example 2. Reliability Testing. On the basis of experience with standard 
components suppose that it is possible to predict the chance of failure of a modified 
version before v = 20 hours as about 50%, and fairly surely not less than 10% and 
not more than 75%. The prior distribution for u = F(v ] ~) should then peak 
around 0.5 and tail off suitably at 0.1 and 0.75. 

The specification so far is rather broad but can be narrowed via the following 
informal considerations. For given ~, F(y I 0) has the standard uniform distribu- 
tion U(0, 1) when y is a continuous variate. An assumption p(u) = 1 on (0, 1) for 
u ~- F(v I O) would then roughly correspond to a belief that the reference value v 
had been generated from the y-distribution, i.e. that v is a typical y-value. Again, 
if v were one of a sample of m independent y's, say the r-th in order, it would 
have probability density 

(2.1) prm(v) = r l ~ ) u r - l ( 1 -  u)m-rF~(v l O), 

where F' = OF/Oy, and then u would have a beta distribution Be(r, m - r + 1). 
The larger m, with r/rn roughly constant, the greater is the precision attributed 
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to the selection of v; the uniform distribution for u corresponds to m = r = 1. 
Thus, in the absence other considerations, the client might be asked to nominate 
a value of v and then to select, with the help of the statistician, a member of the 
beta  family for p(u) based on the above properties. 

There is an echo here of the fiducial argument. If v is a randomly generated 
y-value, and 8 is fixed, then u = F(v I 8) has distribution U(0, 1). According 
to that argument, when v becomes fixed (as data) and 8 becomes random, the 
uniform is retained in form as the fiducial distribution of u. 

For location parameter families of the form F(y I 8) = G ( y -  ~), IcgF(y I 
~)/0~1 = IOF(y I ~)/OYl. Then, if u = F(v I 8) has distribution Be(r, m - r ~- 1), 

has density 

p(O) = r ( mr ) ur- l ( l  - u)m-~,OF(v , O)/O0, 

which is equal to p~,~ iv) in (2.1). In this special case the density p(8) is numerically 
equal to the likelihood of a single observation v known to be the r-th in order from 
a sample of m y's. For the uniform distribution (r = m = 1) the suggested prior 
amounts to adding a single reference value to the future sample, i.e. asking for a 
guess of a typical future y-value on the basis of prior knowledge. 

3. Single parameter case 

Before getting down to the implementation of the method in particular situa- 
tions, we first dispose of a few general questions and consequences in this section 
for the single parameter case. To reiterate, the proposal here is aimed at situa- 
tions where prior information is more easily appreciated in terms of probabilities 
u = F(v  I 8) than in the metric of the parameter. 8. 

Since p(8) --- p(u)lOu/O~ I and u = F(v I /~), P(~) will depend on the form of 
F in general. It has been argued (e.g. Lindley (1972), Section 12.4) that depen- 
dence of p(0) on the sampling rule is not sensible. Other priors which fall foul of 
this criticism are Jeffreys' invariant rule, based on the expected information, and 
natural conjugate priors. However, the dependence here of p(8) on the sampling 
model is just a consequence of focussing on u rather than t~, i.e. on potential data 
rather than on parameters. It is p(u) here rather than p(~) which is independent 
of the form of F.  

When u = F(v I O) is assigned a particular type of distribution then that of 
u' = F(v' I 8) for v' ~ v will be determined but will not be of the same type in 
general. However, there is invariance on a transformed scale of u. Suppose that 
F(v [ 8) is a monotone function of ~ for each v; if this is not so the sampling model 
may have identifiability problems. Then u = F(v I 8) can be solved for 8, say as 

= h(u, v), and for each v the transformation h(u, v) of u has the same density, 
namely p(~). For example, in a location parameter model, with F(y I 8) = G(y-~)  
for some distribution function G, h(u,v) = v -  G-l(u).  Then v -  G - l ( u )  and 
v' - G- l (u  ') have the same distribution for all v and v'. Likewise, for a scale 
parameter model F(y l O ) = G(y/O) and h(u, v) = v/G-l(u) .  

In general one cannot arbitrarily assign u-distributions for more than one ref- 
erence value v since they will be inconsistent. In some cases what seems to be a 
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reasonable choice of distribution for u = F(v I 9) may impose an unreasonable 
distribution on u t = F(v' I 8). One way of avoiding this problem would be to 
assign distributions say for u l , . . . ,  ur as initially thought fit, and then to com- 
promise between the resulting priors Pl (9 ) , . . . , p r  (8). A general discussion of the 
reconciliation of prior assessments is given by Lindley et al. (1979). 

Suppose in particular that u is to be assigned a beta distribution Be(a, j3) : 
p(u) = B(a, ~3)-1ua-1(1 - u )  ~-1, where B(a,j3) is the beta function. Values for 
the prior parameters (a, ~) must be found to fit the client's prior information. 

Example 2 (continued). Let us take "fairly surely" to mean 90% certain. 
Then, for v = 20 hours, P(u >_ 0.1) = 0.9 and P(u < 0.75) = 0.9. Hence 
I0.1 (a,/~) = 0.1 and Io.75(a, ~) = 0.9, where Iz(a, ~) is the incomplete beta function 
ratio, leading to values for a and ~3. If the predicted peak near 0.5 of p(u) is to 
be accommodated also then a suitable compromise must be made towards values 
satisfying (a - 1)(a + f~ - 2) -1 = 1/2. 

For the purpose of illustration here a naive, direct route has been taken to 
assign a beta distribution for u. A more sophisticated approach to such assignation 
is described by Chaloner and Duncan (1983). There the client is asked to consider 
his predictions for the modal and adjacent numbers of successes in Bernoulli trials 
with probability u. 

A referee has called for clarification of the relationship between the prior de- 
rived by the present approach and the prior predictive distribution. For a future 
observation Y the latter is given by 

P(r < y) -- / F(y t e)p(8)d8 -- / F(y I 

the prior mean of F(y I 9uv), where 9uv is the expression of 9 in terms of u and 
v obtained by inverting the relationship u = F(v [ 9). In particular, P ( Y  < v) 
equals the prior mean of u itself. The referee has also drawn attention to Good's 
(1950) "device of imaginary results". There, one assigns a posterior distribution 
which is felt to be in accordance with invented data (the "imaginary results"), and 
then derives the corresponding prior. That  approach is quite different from the 
one here, but could possibly be used to appraise the resulting posteriors. 

4. Mult iparameter i.i.d, case 

The treatment is now applied for a q x 1 parameter vector 9 by assigning a joint 
distribution for u -= (ul , . . .  ,Uq) T where uj -- F(vj [ 9) is based on designated 
reference value vj. The informal considerations which led to beta distributions 
in the single parameter case may be developed in various ways. Note that the 
distribution Be(r, m - r + 1) given in (2.1) would arise from regarding u there 
as the r- th order statistic in a random sample of size m from U(0, 1). A natural 
extension then is to take the uj 's  here as order statistics, uj having rank rj,  from 
a single U(0, 1) sample of size m > q. The rj's m u s t  have the same ordering as 
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the vj's and we may take Vl <: 732 < " ' "  < V q  without loss of generality. Also, let 
ro = O, rq+l = m + 1, u0 = 0 and Uq+l = 1. The resulting prior is 

(4.1) p(O) oc (uj+l - uj) ~j+~-I I det J[r(u), 
( j=o 

where aj+l = rj-bl - -  rj, and r(u) = 1 for Ul < u2 < ""  < Uq and 0 otherwise; 
J(q × q) = Ou/OO is the Jacobian matrix of the transformation, assumed to be 
1 - 1 for identifiability. For a more general class of priors the restriction of the 
a j ' s  to integer values in (4.1) may be relaxed. 

If wj = uj /uj+l  (j = 1 , . . . ,  q) then the wj's are independent Be(rj, rj+l - rj) 
variates. It may be easier to base prior assessment on the wj's than on the uj's 
directly, thus leading to choice of the rj's or aj's in (4.1). 

Example 2 (continued). Suppose that  the parameter 0 is two-dimensional 
and that  the previous considerations are retained for v2 = 20 hours. Thus, a beta 
distribution Be(a1 + a2, a3) is assigned to w2 = F(v2 I 0) as described above; this 
fixes values for a l  + a2 and  a3. Now, say with Vl = 15 hours, a beta distribution 
Be(hi ,a2)  for the ratio wl = F(vl  I O)/F(v2 ] O) is to be assigned in similar 
fashion. Explicity, wl measures how much less likely is failure by 15 hours than by 
20 hours, and it is this ratio for which prior probabilities need to be elicited. For 
instance, the engineer might guess this ratio to be about 1/3. Equating the mode 
(al  - 1) / (a l  + a2 - 1) to 1/3, and using the previously fixed value of a l  + as, now 
yields a l  and hence a2. 

Example 3. Location-scale family: F(y I0) = G { ( y - / 3 ) / ¢ } .  Here q = 2, 
= = (/3, ¢) with ¢ > 0, and det g ¢-3(v2 - vl)u~u~ where uj 

For instance, with the uniform assignment c~j+l = 1 for each j ,  (4.1) yields p(O) o( 
¢-lL1L2r(v)  where Lj -1 , = ¢ uj a n d v  = (vl,v2). Thenp(0)  has the form of a 
posterior based on two ordered "observations", Vl < v2, together with the improper 
prior p(¢) o¢ ¢-1 for ¢. Since ¢ = ( v 2 - v l ) / { G - l ( u 2 ) - G - l ( u l ) } ,  the requirement 
r(u) -- r(v) ensures that ¢ > 0 with probability 1 in the prior. 

The example illustrates the property that /3 and ¢ are not generally prior- 
independent under this method. This is sometimes held to be a failing in the 
location-scale case; it occurs with the (unmodified) Jeffreys' rule and with the 
conjugate prior family for N(/3, ¢2) data. In connection with the present method 
it means that the smaller ¢, the smaller is the variation in/3 required to make uj = 
G{(v j - /3) /¢}  cover any sub-interval of (0, 1). However: (a) If prior information has 
been carefully quantified by the statistician and client in terms of u then any purely 
mathematical consequence, such as prior non-independence of/3 and ¢, should not 
be allowed to override it; (b) If F(y I O) = G{(y - / 3 ) / ¢ }  and H(z) = G(z + a), 
then H is a distribution function and F(y I O) = H{(y  - / 3  - a¢) /¢} .  A blanket 
prior-independence rule for location and scale parameters would decree that/3 and 
¢ be independent in the G-version, and that (/3 + he)  and ¢ be independent in 
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the H-version. This seems contradictory. The construction in (b) just shows that  
the location parameter is not well defined in this setting. 

5. Multiparameter i.n.i.d, case: regression model 

Suppose now that the observations yi are independent and non-identically dis- 
tributed with distribution functions Fi (y I f3) of form G ( y - x T  /3); /3 = (/31,...,/3q)T 
comprises the regression coefficients and xi(q × 1) the explanatory variables. To 
proceed as before one might think of fixing on a reference distribution of the 
class, say Fo(y 1 /3) = G(y - aT~3) for some designated ao(q x 1), and taking 
uj = Fo(vj I /3) for j = 1 , . . . ,q .  However, this does not work because the re- 
sulting transformation /3 ~ u = (u l , . . . , uq )  is not invertible, only aTf) being 
identifiable in this case. The problem can be resolved by taking a full set of 
reference distributions and values as follows. 

Take uj = G(vj - a t e )  (j = 1 , . . . ,  q) for designated v = (v l , . . . ,  Vq) T a n d  

q × 1 vectors hi, .  •., %. Let A(q × q) have j - th  row a T and g = (g l , . . . ,  gq)T where 
gj = G- l (u j ) .  Then we have g = v - A/3 which is invertible as/3 = A - l ( v  - g) 
provided that the aj are linearly independent. The Jacobian matrix J = Ou/Ofl 
of the transformation has determinant 

q 

d e t J =  (-1)q(det  A) 1-I G'(vj --aT~3). 
j----1 

Once a joint distribution for the uj's is assigned the prior p(/3) follows by trans- 
formation. 

A particular, special situation is as follows. Suppose that  a l , . . . , a q  can be 
identified so that hiT/3,..., aqT/3 are prior-independent. For instance, in a treat- 
ment/yield experiment, in which xi records the levels of treatments applied, one 
might take aj = (0 , . . . ,  1 , . . . ,  0) T (with a 1 in the j - th  position) if prior beliefs 
about the q different treatments are unrelated. Thus, after designating reference 
values v l , . . . ,  vq, distributions on (0, 1) may be assigned independently to the uj. 
Notice that prior-independence of the aT/3 implies nonsingularity of A; if A were 

singular there would exist a non-zero q x 1 vector c such that  c T A / 3  = 0 for all/3, 
implying the linear relation ~ cj(aT/3) = 0 connecting the a T/3. In the following 
examples this special situation is not assumed. 

Example 2 (continued). Suppose that the failure time distribution of the 
components is taken to be exponential, Fi(y I/3) -- 1 - exp(-)~iy), with loglinear 
model log/X~ -- --xT/3. Then Fi(y I/3) = G ( I ° g y - z T / 3 )  with G(y) -- 1 - e x p ( - e y ) ,  
a linear regression model for the log-data. To be specific, suppose that q = 2 and 
xi = (1, x~) T where x~ is a measure of production quality higher values of which 
are known to enhance the component lifetime. Thus, in xT/3 = /~1 +/32x~, there 
is the additional complication of a constraint/32 > 0 to cope with. Take vl -- 20 
hours, as before, and al = (1, 1) T. A distribution p(ul)  on (0, 1) can be assigned 
on the basis previously described for this example. Next take v2 = 20 hours and 
a2 = (1, 2) T, and suppose that the prior expectation of the engineer is that the 
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probability of failure by 20 hours should be roughly halved when x' increases from 
1 to 2. Now u2 < ul,  since ~2 > 0, sop(u2 I ul) can be taken as a (beta) 
distribution on (0, ul) with peak around Ul/2, and spread in accordance with the 
supposed accuracy of the engineer's expectation. Having thus assigned p(ul) and 
p(u2 [Ul), the prior for/3 follows as p(/3) = p(ul)p(u2 [Ul)[ det JI. 

The treatment will be extended now to encompass a scale parameter ¢. Thus 
Fi(y ] 8) has form G{(y - xT/3)/¢} and the parameter set ~ = (/~, ¢) has q + 1 
elements. To v and A, designated as before, an extra pair must be added, say 
Vq+l (scalar) and aq+l (q × 1 vector), and a corresponding extra distribution 
p(uq+l I U l , . . . ,  Uq) must be assigned. The transformation becomes g = ( v - A ~ ) / ¢  
and gq+l = (Vq+l - aT+lfl)/¢, where gq+l = G -1 (Uq+l), from which A/~ = v - Cg 
and T aq+13 = Vq+l -- Cgq+l. Hence aT+l (v -- Cg) ---- Vq+l -- Cgq+l sO 

(5.1) (~---- (Vq+ 1 __ a T q + l A - l v ) / ( g q + l  _ aq+l  A T  - l g )  

and the expression of/3 as a function of (u, Uq+l )  follows. The Jacobian matrix 
g = O(u, uq+l)/O(fl, ¢) has determinant 

(5.2) 
q+l  

det J = ( -1 )  q+l(/)-(q+2)(vq+ 1 -- aT+lA-lv)(det A) H Gt{(vj -- aT/~)/¢}. 
j = l  

It is true that, as before, one now just needs to assign a joint distribu- 
tion p(u, Uq+l) and then transform to p(O). However, there is at least one con- 
straint, this being required to ensure that P (¢  > 0) = 1 in (5.1). Thus, if 

T --1 T --1 Vq+l > aq+lA v then gq+l > aq+lA g must hold with probability 1, so once 
a joint distribution p(u) has been assigned the further conditional distribution 

T - 1  p(uq+l ] u) must have support {G(aT+IA-lg), 1}. Similarly, if Vq+l < aq+lA v 
then p(uq+l I u) must be restricted to the interval {0, G(aT+IA-lg)}, and (5.1) 
rules out Vq+l ---- aTq+lA-lv. 

A referee has pointed out that the joint distribution p(u, Uq+l) can be consid- 
ered symmetrically in u l , . . . ,  Uq+l. It is just a consequence of the development 
here that uq+l is separated from Ul , . . . ,  Uq. Symmetrically expressed, the trans- 
formation is g+ = (v+-A+/~) /¢ ,  where g+ is (q+ l )  × 1 with j - th  element G-l(uj) ,  
v+ = (v l , . . . ,  Vq+~) T and A+ is (q + 1) × q with j - th  row a T. For invertibility/3 
must be identifiable which means that there must be q linearly independent vectors 
among the aj's, i.e. A+ must have full rank q. Assuming, without loss of gener- 
ality, that a l , . . . ,  aq are linearly independent, A+ may be written as (A T, aq+l) T 
where A(q × q) is nonsingular. Expressions for the inverse transformation and the 
Jacobian now follow as before. 

Example 2 (continued). The failure time distribution is now generalized to 
the Weibull family: Fi(y]O) = G { ( l o g y -  xT/~)/¢} with G(y) = 1 -  exp(-eY). 
First p(u) is assigned in steps, p(ul) then p(u2 ] ul), as described above in this 
section. Now take v3 = 15 hours and a3 = (1, 1) v, and suppose that the engineer 
expects the probability of failure by 15 hours with x' = 1 to be about 1/3 of that 
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by 20 hours, i.e. a prior expectation that u3 ~ ul/3. Note also that u3 < ua with 
probability 1 since 15 < 20. Thus p(u3 [ u) is to have support (0, ul), peak around 
ul/3, and have spread to conform with the degree of prior certainty. There are 
other implied relationships between the u's in the joint distribution p(u, u3) so 
constructed, and these must be checked for conformity with prior knowledge and 
modifications made if necessary• An illustration of this process is given below. 
The resulting prior for 0 is p(O) = p(u, u3)[ det J[ with det J given by (5.2)• 

To give a very simple specific example consider an assignment in which all 
three distributions, p(ul), p(u2 [ Ul) and p(u3 [Ul, U2), are uniform. This yields 

; ( 0 )  - / 3 ,  - - Z ,  

• G'{(v 2 - - - - / 3 2 ) / ¢ }  

with G'(y) = exp(y - eU), v~ = logvl = 3.00 and v~ = logv3 = 2.71; the support 
region {u2 < ul, u3 < ul} correctly transforms back to {/32 > 0, ¢ > 0}. Just one 
conformity check will now be illustrated. Note that p(ul, u2) = u{ 1 on 0 _< u2 < 
ul _< 1, so p(u2) = - l o g u 2  on (0, 1) and p(ul [u2) = -1/(ua logu2) on (u2, 1). 
Also, p(u3 [ ul ,u2) = u] -1 on 0 < u3 _< Ul _< 1, so 

on (0, 1). Hence, p(u3 [ u2) is constant on (0, u2) and then swings down to 0 on 
(u2, 1). This function must be critically assessed to judge its reasonableness in the 
light of the engineer's prior knowledge. For instance, it implies that P(u3 < 1/2 [ 
u2 = 1/2) = 1/(21og2) = 0.72. Thus, reducing the equality from 2 to 1 and the 
lifetime assessment from 20 to 15 hours makes the failure probability change from 
1/2 to something more likely than not to be less than 1/2. Roughly speaking, the 
lifetime reduction has had more effect than the quality reduction in this case. If 
this is not reasonable some revisions to p(u, u3) are called for. 

6. Application: transformed linear model 

Box and Cox (1964) analysed a model in which y(A), a transformation of y 
involving parameter A, has distribution N(xT/3, ¢2). One of the difficulties for a 
Bayesian analysis is to generate a prior for 0 = (/3, ¢, A) which sensibly reflects 
the variation in the y(A) scale as A varies, i.e. a change in A should cause an 
appropriate shift in the probability mass distribution of p(/3, ¢ I A). Box and Cox 
gave an approximate solution resulting in a slightly data-dependent ignorance 
prior. In the method proposed here convariation of the parameters in the prior is 
constrained by inhibiting the variation of certain probabilities, i.e. the uj's. The 
prior obtained is proper, and does not involve any posterior element, but requires 
some input of information. 

Consider the general set up in which the observations Yi are taken to be inde- 
pendent with distribution functions G[{y(A)-  xT/3}/¢]; y(A) is some transforma- 
tion of y, of a specified class indexed by A, and G(.) is some specified distribution 
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function. Take 0 = (fl, ¢, ~), where ~ is q x 1, and uj = G[{vj(£) --aT/3}/¢] for ref- 

erence values {vj, aj : j = 1 , . . . ,  q + 2}, with A(q x q) = ( a l , . . . ,  aq) T nonsingular. 
The Jacobian matrix J ,  with elements Ouj/OOk, is found to have determinant 

q+2 

d e t J =  (-1)q+l d)-lWx(det A) I I  Lj 
j----1 

where Lj = ¢-IG'[{vj(A) - aT/~}/¢] and 

aq+lA v~ Vq+l()~)_ T -1 , W x = d e t ( V q + l ( A ) _  T -1 aq+lA v ~  
~Vq+2(A) T -1 aq+2A v a )  aq+2A v;~ Vq+2()~ ) T - 1 !  

with v~(q x 1) = {Vl()~),...,Vq(A)}T; W~ is the Wronskian of the functions 
{Vq+j(A) - aq+jAT - lvx  : j = 1,2} (Apostol (1957), Exercise 5-9) and so gov- 
erns linear dependencies between them. The transformation 0 --+ (Ul , . . . ,  Uq+2) is 
thus invertible in the neighbourhood of any point where W~ ¢ 0. 

As for (5.1) it is found that /3  = A- l (v~  - Cg) and then 

(6.1) ¢ r r = -- -- aq+jA g} aq+jA v~}/{gq+j 

for j = 1 and 2, the g's being defined as in Section 5; (6.1) yields ¢ and ~ in 
terms of (u l , . . .  ,Uq+2). Now, the prior p ( u l , . . .  ,Uq+2) must be constructed to 
observe the constraint ¢ > 0, so we require here that Vq+j(A) - aTq+jA-lv~ and 

gq+j --  aq+jT A - l g  should have the same sign for j = 1 and 2. However, it is possible 
that  V q + j ( ~ )  T - 1  

- aq+jA vx may change sign as (ul , . . . ,Uq+2),  and hence ~, varies. 
The particular transformation treated in Box and Cox (1964) is just such a case. 
However, provided y(A) is monotone in y for each A this potential problem can be 
avoided by suitable choice of vq+j and aq+j for j = 1, 2. For example, suppose 
that the choice aq+l = aq+2 = ar is made for some r E {1 , . . . ,q} .  Note that  

T -1 T where er (0 , . . . ,  1 , . . . , 0 )  T with a 1 in the r-th a r  = A T e r ,  so  a q + j A  = e r  , = 

position and O's elsewhere. Then 

and 

T - 1  aq+jA v ~ = V q + j ( A ) - v r ( ~ )  

T - 1  g q + j - a q + j A  g = g q + j - g r .  

These two quantities will have the same sign, as required, if Vq+j :> V r since then ei- 
ther (a) Vq+j(A) > vr(A) and gq+j > gr (for a monotone increasing transformation) 
or (b) Vq+j(A) <: vr(~) and gq+j < g~ (for a monotone decreasing transformation). 

For brevity, let us give the simplest possible concrete demonstration of the 
method. Suppose that it is possible to designate al, • • •, aq so that Ul,. • •, Uq are 
prior-independent as discussed in Section 5. Take Ul , . . .  , u~- l ,u~+l , . . . ,Uq  as 
independent U(0, 1), and, independently, ur < uq+l < Uq+2 as order statistics 
from a sample of size three from U(0, 1). Hence p ( u l , . . . ,  Uq+2) ~ 1 and p(O) 
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1-i-q+2 ¢-11W~[ ~tj=i Lj based on d e t J  as given above. Then, for this simple case, one 
can obtain the marginal prior p(¢, A) c( ¢-3[W~1/~¢ where 

I~0 = / G'(s)G'(s + dl),/o)er'(8 q- d2x/¢)ds 

and dj;~ = Vq+j(A) - v~(A); p(A) follows by integration over 0, and finally the 
function of interest p(/3, ¢ [ A) as p(O)/p(A). 

For the normal case G = (I), the standard Gaussian distribution function, and 
then, for the case considered in the previous paragraph, 

p(O) o(¢-(q+3) Iw l exp{-T~x(/3)/2¢2}, 

where Tv~(/3) = x--'q+2" z_~j=l~Vj(A) - a ~ }  2. Also Ix¢ = ( 2 ~ v ~ ) - l e x p ( - d ~ / 2 ¢  2) with 

3dx={Vr(A) --VqWl(~)}2"-l-{Vr(~) --Vq+2(~)}2~-{~q+l(~) --~q+2(~)} 2. 

Hence p(A) ~ d;llW~l, p(¢ I A) c< ¢ - 3 e x p ( - d ~ / ¢ 2 )  and p(/3 I ¢,A) 
exp{-Tvx(/3)/2¢2}, i.e. d~/¢ 2 [ A has a X~ distribution and /3 I ¢,A is normal 
with covariance matrix proportional to ¢2  The covariation of/3, ¢ and A is con- 
strained in this way at the reference values by the form of p(/3, ¢ [ A): given A, 
higher prior probabilities are given to (/3, ¢)-values which ensure better matching, 
according to the sampling model, of the vj (A)'s and corresponding aT/3's. 

The likelihood function for observations y = (Yl, . . .  ,Y,~), corresponding 
to vectors x l , . . . , x ~  of explanatory variables, is proportional to ¢-~y~;~ • 
exp{-Ty~(/3)/2¢2}, where Tu~(/3) = ~--]~n__l{y~(A ) - xT)3} 2 and ~) = (1-Lnl yi) 1/'~. 
In consequence, the posterior distribution of A is given by 

p(J, I u) + 

where/~x -- (DTD)-IDTz)~, DT is q × ( n + q + 2 )  with columns ( x l , . . . ,  Xn, a l , . . . ,  
ha+2), and z T -- {yl (A) , . . . ,  yn(A), v l (A) , . . . ,  Vq+2(A)}. The other posterior distri- 
butions of main interest are 

p(¢ [ A, y) ~ ¢ - (n+3)exp[ -{Tvx(~)  + Ty~(~x)}/2¢ 2] 
and 

p(/3 ] ¢, A,y) o(exp[-{Tv~(/3) + Tyx(/3)}/2¢2]; 

thus ¢-2{Tv~(~x)+Tyx(~x)} [ A,y is 2 X~+2 and/3 [ ¢, A, y is normal with mean ~x. 
The preceding development will now be illustrated using some data  of Box 

and Cox (1964) who analysed some survival times in a complete 3 x 4 factorial 
design with four replicates. Sweeting (1984) used these data  to compare his own 
method of generating an ignorance prior with that  of Box and Cox, and with that  
of Pericchi (1981). Figure 1 shows the A-posteriors resulting from Box and Cox's 
approach, Sweeting's approach, and the one here. The former two curves are close 
and Pericchi's version, graphed by Sweeting, is also close to them and is omit ted 
here for clarity. The curve to the right of them was produced as follows. Suppose 
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Fig. 1. Posterior densities of A: left to right, the curves result from the Box-Cox, 
Sweeting, and present approaches. 

that  the investigator expects to see survival times of a few hours, say around five. 
He might then take reference values v l , . . .  ,vq each as 5, with q = 6 here for a 
main effects model, and the associated a l , . . . ,  aq as the x-vectors corresponding 
to the factorial effects. For Vq+l and Vq+2 the values 6 and 7 will simply satisfy 
the monotonicity constraint with r = 1, say. These choices are then used in the 
p(A I Y) from given above and the curve of Fig. 1 results. Evidently, the prior 
information has shifted the likely A-values to the right a little with mode near 
-1//2. One can concoct values for the v's and a's to shift the curve back towards 
the others but, of course, that  is not the purpose here. 
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