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A Bayesian Probabilistic Approach to 
Structural Health Monitoring 

M. W. Vanik1 and J. L. Beck2 

1 MTS, Structural Technology Group 

The Aerospace Corporation 

El Segundo, CA 90245 

ABSTRACT 

Some general issues associated with on-line structural health 

monitoring are discussed. In order to address the problem of 

determining the existence and location of damage in the pres­

ence of uncertainties, a global model-based structural health 

monitoring method which utilizes Bayesian probabilistic in­

ference is developed. The results of tests using simulated data 

are described. 
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Overall and modal measures of fit 

ith probabilistic damage measure 
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tmon Monitoring cycle 

k Monitoring cycle window 

R Real numbers 

1. INTRODUCTION 

Structural health monitoring, or SHM for short, is the process 

of establishing some knowledge of the current condition of a 

structure. The ultimate goal is to determine the existence, lo­

cation, and degree of damage in a structure if damage occurs. 

A great deal of research in the past thirty years has been aimed 

at establishing effective local and global methods for health 

monitoring in civil, mechanical, and aerospace structures. An 

extensive survey of global methods which use vibration char­

acteristics to perform SHM is presented in Doebling et al. [ 1]. 

One typical global approach involves comparing structural 

models identified using sets of modal data (i.e. frequencies 

and modeshapes) from a structure before and after damage 

has occurred. This model-based SHM approach relies on 

structural model updating methodologies to solve the inverse 

problem of determining the parameters of a structural model 

given some modal data. The critical assumption is made 

that changes in the parameters of the structural model imply 

changes in the parts of the real structure associated with the 

model parameters. 

There are some inherent features of structural model updating 

which lead to difficulties in the model-based SHM approach. 

The process of identifying the model parameters from the 

modal data is generally ill--conditioned. Thus, small changes 

in the modal data lead to proportionally larger changes in the 

model parameters. Model error and variations in the modal 
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data due to noise, when combined with the ill-conditioning, 

can lead to large variations in the identified model parame­

ters which are not due to true changes in the structure. Thus, 

there is uncertainty in whether changes in identified model 

parameters reflect damage in the structure. 

Many of the available papers in the SHM literature do not 

consider this uncertainty. When the structure under consid­

eration is well-characterized by the analytical model, many 

controlled measurements can be taken, and the measurements 

have very low noise levels, no significant uncertainty may be 

present, and ignoring it may not lead to any problems. How­

ever, in many cases, such as with civil structures, these as­

sumptions do not apply. The analytical models rarely cap­

ture the full behavior of the structure. For instance, the model 

may not account for effects such as thermally-induced diurnal 

variations and excitation amplitude dependence of the modal 

parameters. Further, the available measured information is 

restricted by limits on the amount of instrumentation and the 

fact that only a few of the lower modes of a civil structure can 

generally be determined with confidence. Finally, measured 

modal data tends to show significant variation from one mea­

surement to the next. Any SHM method applied in the case 

of civil structures should therefore account for the substan­

tial uncertainty which arises in the identified structural model 

parameters. 

In addition to neglecting the uncertainties, most methods tend 

to look for damage using only one set of data from the undam­

aged structure and another from the structure in a potentially 

damaged state. Such approaches may attempt an ad hoc treat­

ment of the uncertainty by using average modal data sets over 

a series of modal measurements in the undamaged and po­

tentially damaged states. In situations where the structure is 

only measured during infrequent periodic inspections or fol­

lowing a severe loading event for which structural damage 

is suspected, such methods are potentially useful. However, 

treating the problem in this fashion ignores the long-range 

"monitoring" goal of SHM. This goal is to continually moni­

tor a structure so that gradual deterioration, as well as damage 

from severe events such as earthquakes, can be detected. Few, 

if any, methods explicitly consider this "monitoring" aspect 

ofSHM. 

There are a number of advantages to treating SHM as a con­

tinual process. First, the effects of noise in the data can 

potentially be mitigated by using multiple modal measure­

ments. Also, by observing the structure continually, sys­

tematic changes may be separated from random fluctuations. 

Those systematic variations which are not due to damage, 

such as diurnal effects, can be included in the model to de­

crease model error. In this manner, effects of gradual damage, 

such as that due to fatigue and corrosion, are more likely to 

be detected. 

2. BAYESIAN PROBABILISTIC SUM 

This paper introduces a continual on-line Bayesian proba­

bilistic SHM technique which addresses the ill-conditioning 

inherent in the inverse problem. The approach requires a lin­

ear structural model whose stiffness matrix is parameterized 

to develop a class of possible models. The parameterization 

involves grouping the elements of the structural model into 

substructures. Modal data (i.e. frequencies and incomplete 

modeshapes) measured from a structure are used to identify 

the model substructure "stiffness" parameters. In a determin­

istic SHM scheme, differences in the "best" parameters iden­

tified from different modal data sets would be used as indi­

cators of damage. However, rather than consider only sin­

gle "best" models for each modal data set, the probabilistic 

method takes uncertainties in the identified model into ac­

count by treating the problem within a framework of plausible 

inference. Bayes' theorem is invoked to develop a probabil­

ity density function (PDF) for the model stiffness parameters 

conditional on measured modal data and the class of possi­

ble models. Using conditional PDFs derived from sets of 

modal data determined at different times, a probabilistic dam­

age measure is developed. The probabilistic damage mea­

sure arises in answer to the question: Based on the available 

modal data and acknowledging the uncertainty, what is the 

probability that the current model stiffness parameters are 

less than the corresponding undamaged stiffness parameters 7 

A simple graphical representation of the damage measure and 

the interpretation of this measure for use in SHM will be dis­

cussed. Before presenting the SHM method, a few terms are 

first defined. 

2.1 Modal Data and Structural Model Class 

The identified modal parameters consist of Nm frequencies, 

W,., and Nm generally incomplete modeshapes, ~ E RNo, 

where N 0 represents the number of observed degrees of free­

dom and r E 1, ... , Nm. These modal parameters can be 

identified from measured time-domain data using any reli­

able modal parameter identification method. The values id~n­

tified from the nth time-domain data set are referred to by Tn. 

A grouping of modal parameter data sets taken at different 

times is called modal data, D. 

A set of Nd degree-of-freedom (DOF) deterministic mod­

els, MNd' which have dynamic behavior characterized by 

the equation of motion, Mx + C(O)x + K(O)x = f(t), with 

j, x E RNd, and M, C, K E RNd xNd is used as the model 

class. The mass matrix is assumed known with sufficient ac­

curacy from structural drawings, and the damping matrix is 

assumed to be of a form so that the models possess classical 

normal modes. The models in MNd are parameterized by the 

structural parameters, (} E RN6
, which define K ( 0) in terms 
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of a linear combination of substructure stiffness matrices, K i: 

N• 

K(8) = K 0 + L 8;K;. (1) 

i=l 

The substructure stiffness matrices model the contributions 

of a portion of the structure to the overall stiffness matrix. 

The nominal model, which corresponds to simply summing 

the K;, is given by 8F = [1, ... , 1jY. Expressing the depen­

dence of the stiffness matrix on the structural parameters in 

the form given by (I) is convenient for mathematical analysis. 

However, the method which is developed does not preclude 

using a more general parameterization. For the purpose of 

health monitoring, the linear parameterization given is suffi­

cient to enable determination of the existence and location of 

damage. 

2.2 Probabilistic Framework 

In the absence of noise and model error, a single model in the 

model class could be used to match the modal data. Differ­

ences in models identified from undamaged and potentially 

damaged data would then indicate changes in the structure. 

However, due to the aforementioned uncertainties, such a di­

rect approach to SHM is not possible. The problem is there­

fore treated in a probabilistic context. 

The method presented in this paper extends work done by 

Beck [2],[3] in probabilistic system identification. Beck used 

a system of plausible inference based on work by Cox [4] 

and Jaynes [5]. In this framework, conditional probabilities 

are used as measures of the plausibility of certain statements 

given other statements. Bayes' theorem is used to express the 

conditional probabilities of the model parameters given the 

data: 

Here, cis a normalizing constant. The distribution p(8!MN.J 

is the initial PDF for the model parameters based on en­

gineering and modeling judgment. The data distribution, 

p(D!8, MN.J, is the PDF for the modal parameters given the 

model parameters. Unless required to maintain a conditional 

form for a PDF, the explicit dependence of distributions on 

the model class, MNd, is dropped in future expressions in 

order to simplify the notation. 

Suppose that D comprises N 8 data sets such that D = DN = 

{Y1 , ... , YN.}. Using the axioms of probability, p(D!8) ~an 
be written as 

N, 

= II p(Yn!Dn-1, 8), 
(3) 

n=l 

where p(Y1 !D0 , 8) = p(Y1 !8). The assumption is made that 

p(Yn!Dn-!, 8) is independent of Dn-I· This assumption re­

flects that the user's uncertainty in the nth modal parameters, 

when a structural model is given, is not influenced by the pre­

vious modal data. Thus, (2) becomes 

N, 

p(8!'DN.) = cp(8!MNJ II p(Yn!B). (4) 

n=l 

This result shows that within the Bayesian framework, new 

data can be incorporated into the PDF for the model param­

eters in a systematic and consistent fashion by simply ex­

tending the product by one term. The details of forming 

p(Yn!8, /vtNd) and p(B!MN.J appear in Yanik [6]. Once the 

necessary choices are made, the final form of the PDF for () 

conditional on V is given as: 

p(B!V) = kexp [-~J(B)] (5) 

where the overall measure of.fit (MOF), is 

N~ 

J(B) = (B- BF )T s-! (8- BF) + L lr(8), (6) 

r==l 

and the modal measure of fit (MMOF) for mode r is 

N. ["(K- 4(n)M)Jt(IJ)I1~-l 
.lr(8) = L , + 

n=l O"~;l!<f-l.(8)1!ii 

Jt(B)TfT (! -1/Jr~n)·tf/{(n)) rJt(8)l· 
E~r l!f¢.(8)1! 2 

(7) 

The matrix S is a diagonal matrix of variances which reflect 

the initial level of uncertainty in the analytical model based 

on engineering and modeling judgment. The parameter o-e,)2 

is the experimentally determined standard deviation for th~ 
rth measured frequency. The parameter E~" is an experimen­

tally determined measure of the variation in the rth mode­

shape. The vectors Jt(8) E RNd are optimally expanded 

mode shapes, which minimize the MOF with respect to ¢r for 

a fixed B. The matrix r picks the observed degrees of freedom 

from Jt. Although the PDF in (5) gives a non-zero probabil­

ity for non-physical negative stiffness values, the amount of 

probability volume less than zero is generally negligible, so 

truncation of the PDF for negative values followed by a re­

normalization is not necessary. 

The PDF (5) on B is integrated over all No parameters but 

one to get the marginal distribution for a single parameter. 

For each parameter, 8;, i E 1, ... , No, this gives 

(8) 

where ()i = [Bl' ... , ()i-1' Bi+!' .. . 'B N.]T and ei is the set 

where Bi varies across its full possible range. This integration 
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cannot be performed analytically. Therefore, the integral is 

evaluated using an asymptotic expansion technique based on 

Laplace's method [7]. The final result gives 

(9) 

where r.p is the Gaussian PDF with zero mean and unit vari­

ance, iJ maximizesp(BID), L(iJ) is the Hessian matrix of J(B) 

evaluated at iJ, and ei is a vector with the ith component equal 

to one, and all other components zero. Using the marginal 

distributions, the question which was posed at the beginning 

of this section can now be answered. 

2.3 Probabilistic Damage Measure 

The data from a structure in a known undamaged state is un­

damaged data, Dud• while data from the same structure in 

an unknown state is called potentially damaged data, Dpd· 

The marginal PDF for the ith model parameters derived us­

ing only the undamaged data, Dud. and potentially damaged 

data, Dpd. are pud(BidiDud) and pPd(BfdiDpd) respectively. 

The probability that the ith potentially damaged parameter is 

less than the ith undamaged parameter is 

The quantity Plam is called the probabilistic damage mea­

sure, or simply the damage measure, since it is a probabilistic 

measure of the variation of Bfd below Bid. Using the marginal 

distributions, P;dam can be shown to be 

where cud ( ·) is the cumulative distribution for Bid. The dam­

age measure is calculated and monitored for each model pa­

rameter in order to perform SHM. Changes in Plam, rather 

than changes in the B;, are studied to detect structural dam­

age. cud and pPd are evaluated using (9) with D = Dud and 

DDpd respectively. 

2.4 Using The Plam For SHM 

In a continual on-line monitoring scenario, many modal data 

measurements will be available. As noted, these modal data 

are grouped into Dud and Dpd· A question arises as to which 

data from Dpd should be used to form the potentially dam­

aged marginal PDFs and calculate Plam. If only the most 

recently measured modal parameter set is used, then dam­

age could be detected as soon as it occurs. However, the 

damage measure would be sensitive to noise in the modal 

parameters and could therefore give rise to misleading con­

clusions. If many sets of data are used, the effects of noise 

will be mitigated. Thus, smaller levels of damage will be de­

tectable. Unfortunately, if damage occurs, the marginal PDF, 

and thus Plam, will be strongly biased by the undamaged 

data already in Dpd· so many additional measurements must 

be made before the damaged data can overcome the bias to 

indicate the existence of damage. In between these extremes 

are choices which trade off between sensitivity, noise mitiga­

tion, and bias. 

Rather than consider only one such choice, Plam is calcu­

lated for a range of modal parameter sets from Dpd· Thus, 

Plam is calculated for the most recently measured data set, 

the two most recently measured data sets, and so forth until 

a limiting number of previous data sets, Nwin· Each time a 

modal measurement is performed, Plam is recalculated for 

all of the different subgroupings of modal parameter sets. 

The number of modal measurements performed is the cur­

rent monitoring cycle, tmon· The monitoring cycle window 

or simply window, k, indicates how many previous data sets 

from Dpd, starting at tmon• are used to calculate P;dam. Thus, 

Plam is a function of tmon and k. Calculating Plam in this 

fashion, as both tmon and k vary, leads to the novel concept of 

monitoring the fluctuation of the damage measure as a func­

tion of time and the amount of data used. In testing with 

simulated data, this approach has shown promise as a means 

of detecting and locating a wide range of levels of damage. 

The measure of the likely variation in P;dam for a given k due 

to noise in the modal parameters when no damage is present 

is characterized using Ptlarm(k), where 

(12) 

The model iJyd maximizes pud(BIDud). The term af10d(k) 

is the sample standard deviation for iJyd determined using 

a bootstrap technique. In the bootstrap procedure multiple 

iJud(k), k E 1, ... , N;:d, are determined from modal values 

simulated assuming Gaussian PDFs. The mean and standard 

deviation for the Gaussian PDFs on the modal parameters are 

the sample means and standard deviations based on the ob­

served data. N;:d is the number of undamaged data sets. The 

term tq; is the proper scaling to reflect the increased un­

certainty in the identified fjud as fewer than N;:d data sets are 

used to calculate Plam. The parameter 1 determines the rela­

tive frequency of indicating damage when there is none (i.e. a 

false alarm) and missing damage when it exists (i.e. a missed 

alarm). For each window, k, the resulting Gaussian PDF, r.p[·], 
reflects the expected variation in pPd ( ·) as new undamaged 

data is taken. 

For a given monitoring cycle, if Plam ( tmon, k) exceeds 

Ptlarm(k) for any k, an alarm is sounded that the substruc-
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ture for which the excessive variation occurred may be "dam­

aged": 

p.dam(t k) > palarm(k) for any k::::} "Alarm" 
1 mon, _ t 

< pialarm(k) for all k::::} "No Alarm." 

(13) 

Thus, smaller values of 1 increase the chance of false alarms 

while larger values increase missed alarms. 

Since Ptlarm is a soft level rather that a hard level, addi­

tional decisions should be made when the damage alarm is set 

in order to determine whether the level was exceeded due to 

damage, or an extreme data set. In addition to the alarm cri­

terion in (13), therefore, other criteria should be considered 

in order to determine the difference between false and true 

alarms. In practice with simulated data, Plam(tmon, k) is 

found to have characteristic behaviors depending on whether 

the structure is undamaged or damaged. Therefore, the be­

havior of Plam(tmon, k) can be studied by a human or an ex­

pert system as a function of tmon and k in order to determine 

the state of damage. During the description of the simulation 

testing in the next section, the behaviors of Plam(tmon, k) 

for a simple structure are discussed, and some guidelines for 

use in determining a true state of damage from a false one are 

gJVen. 

2.5 Applying the SHM Approach 

In practice, the proposed method could be applied as an on­

line automated structural health monitoring system through 

the following procedure. This procedure assumes that the 

structure under consideration has already been instrumented, 

and the model class and form of the PDFs for the application 

have already been determined. 

• During an initialization phase, take many measure­

ments from the structure in the undamaged state and 

establish a stable reference undamaged PDF 

• Start the monitoring phase wherein the structure is 

measured periodically and Plam(tmon, k) is calcu­

lated after each measurement. 

• If Plam(tmon, k) < Ptlarm(k) Vi, k , wait for the 

next set of data. 

• If Plam(k) ~ Ptlarm(k) for any i, k, consult an ex­

pert system (human or computer encoded logic) about 

how to proceed. The expert system decides whether the 

alarm appears false, true, or uncertain based on criteria 

establish through previous investigations. 

3. ILLUSTRATIVE EXAMPLES 

This section reports on the results of testing the method. Dur­

ing the testing, 2-DOF and 1 0-DOF shear structure models 

are used to explore the various features, strengths, and limita­

tions of the probabilistic SHM approach. The lumped masses 

are m 1 = 2 x 104 kg and m 2 = 1 x 104 kg. The substructure 

stiffness matrices for the 2-DOF case are 

K = [k1 OJ 1 
0 0 

(14) 

where the "undamaged" model has k1 = 1200 kN/m and 

k2 = 1000 kN/m. The model parameters, fh and 82 , therefore 

scale the "undamaged" interstory stiffnesses, so that K ( 8) = 
81 K 1 + 82 K2. The 10-DOF shear structure model is of the 

same form with m 1 , m 2 , m 3 = 3 x 104 kg, m 4 , ... , m 9 = 
2 X 104 kg, mw = 1 X 104 kg, k1 , k2 , k3 = 4.8 X 104 kN/m, 

k4, ... , k8 = 4.4 x 104 kN/m, and k9 , k10 = 4.0 x 104 kN/m. 

The K; in ( 1) have zero elements except for 2 x 2 submatricies 

of the form of (14). 

Noisy "measured" modal parameters are generated by adding 

random values chosen from zero-mean Gaussian distribu­

tions to the modal parameters of a model from the model 

class. A coefficient of variation of 0.02 is used for the fre­

quencies and the modeshapes. In practice, the noise levels 

generally vary from mode to mode, and worsen for higher 

modes. Also, for a given application, the relationship be­

tween the frequency and modeshape noise levels may not be 

the same used in this testing. Adding these levels of complex­

ity is not considered necessary in this exploratory study. 

The monitoring procedure suggested at the end of the previ­

ous section is implemented using the synthetically generated 

modal data. Figures 1(a) to 1(d) show results from the 2-DOF 

example where the modal data comprises two modes with full 

modeshapes. The figures show P1dam(tmon, k) as the moni­

toring cycle and window vary for different levels of damage 

in the first substructure. Recall, an increase in the monitoring 

cycle, tmon• indicates that another modal parameter set has 

been measured, and an increase in the window parameter, k, 

indicates that more of the previous potentially damaged data 

is being used to calculate P1dam. Figure 1 (a) shows the re­

sults with no damage. Figures l(b) to l(d) show the results 

with 2%, 5%, and 10% reduction in stiffness k1 while holding 

k2 fixed. Damage is present during the first depicted moni­

toring cycle in each of Figures 1(b) to l(d). When damage 

is present, there is a marked increase in Pfam over succes­

sive monitoring cycles. The damage measure for the undam­

aged substructure, Pfam, behaves similarly to the undamaged 

measure in Figure 1(a). For these examples, therefore, there 

is no "smearing" of the damage into adjacent substructures. 

Figures 2(a) and 2(b) show Pfam and Plam for the 10-DOF 

example with a 15% reduction in stiffness in the fifth story. 

The modal data consists of only two modes with full mode­

shapes in each mode. The time sequence of plots for the fifth 

substructure damage measure clearly indicate change in that 

substructure, while those for the fourth substructure damage 
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measure indicate no change in that substructure. Other cases 

were run with only partial modeshape information and more 

modes, and damage could still be detected in most cases. In 

a few cases, however, potential damage was indicated in un­

damaged substructures. This "smearing" effect in SHM has 

also been observed by other researchers [8]. Investigation is 

continuing into how to handle the smearing. Research is also 

underway in determining how many modal parameters per 

measurement are needed in order to successfully apply the 

proposed SHM approach. 

Many more analyses were performed than can be presented 

in this paper. These few are depicted in order to illustrate 

the behavior and the use of the probabilistic SHM method. 

The manner in which the alarm function is exceeded provides 

some way to distinguish types of damage. For large levels 

of damage in the ith substructure, the Plam will quickly be 

driven to 1 for all k, so such damage is quickly detected. For 

moderate levels of damage, Plam will not shift to 1 imme­

diately, as in the large damage case, but will still tend to­

ward I for most of the k. Low levels of damage will not 

cause Plam to exceed the alarm level for small values of k 

with few monitoring cycles. However, as more damaged data 

is acquired, the probability of variation should begin to rise 

above the alarm level for large values of k since the effects of 

random noise are being reduced. Therefore, small levels of 

damage may be eventually detected by monitoring the struc­

ture over longer times and tracking the behavior of the P;dam. 

Alarms when there is no damage do not show the behaviors 

described for the damaged cases. Thus, recognition of these 

features can be programmed into an expert system to assist in 

the verification of an alarm when one is set. 

Note that considering the data over long periods of time will 

not mitigate regularly persistent variations such as those due 

to diurnal changes. Suppose, however, that such effects can 

be observed while the structure is in its undamaged state, and 

different sets of "undamaged" data can be associated with dif­

ferent environmental conditions. Then, different undamaged 

PDFs formed from these data sets can be used as the refer­

ence PDF depending on the measured conditions. This is one 

way in which this type of model error can be accounted for in 

the proposed SHM framework. 

4. CONCLUSIONS AND FUTURE WORK 

This work has discussed the issues associated with uncer­

tainty in applying SHM to real structures, and presented a 

method for continual on-line implementation which takes 

those factors into consideration. A novel approach to moni­

toring which involves studying the variation in time of a prob-

abilistic damage measure was introduced. This approach may 

enable small levels of damage to be detected through moni­

toring of the structure over long times. Some preliminary re­

sults of testing on simulated data were shown, but additional 

work is required in a number of areas. The method must be 

tested on more complex simulated structures, and with data 

from real structures. Also, the variation of Plam with and 

without damage must be further characterized so that a set of 

rules for use by an expert system or end-user can be estab­

lished. Finally, implementation in an automated fashion must 

be developed to provide real-time monitoring. 
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(a) No Damage (b) 2% Damage 

(c) 5% Damage (d) 10% Damage 

Figure 1 2-DOF Case, 2 modes, full modeshapes, Pfam over fifteen ((a) 

and (b)) or eight ((c) and (d)) monitoring cycles, (a) undamaged, (b) 2%, 

(c) 5%, and (d) 10% damage in first story, dashed line is the alarm func­

tion for 1 = 1. 7. 

Figure 2 10-DOF Case, 2 modes, full modeshapes, Pfam and Ptam over 

eight monitoring cycles, 15% damage in fifth story, 1 = 3. 
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