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C. Coué, C. Pradalier, C. Laugier
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Abstract— A prerequisite to the design of future Advanced
Driver Assistance Systems for cars is a sensing system
providing all the information required for high-level driv-
ing assistance tasks. In particular, target tracking is still
challenging in urban traffic situations, because of the large
number of rapidly maneuvering targets. The goal of this
paper is to present an original way to perform target position
and velocity, based on the occupancy grid framework. The
main interest of this method is to avoid the decision prob-
lem of classical multi-target tracking algorithms. Obtained
occupancy grids are combined with danger estimation to
perform an elementary task of obstacle avoidance with an
electric car.

I. INTRODUCTION

Unlike regular cruise control systems, Adaptive Cruise
Control (ACC) systems use a range sensor to regulate the
speed of the car while ensuring collision avoidance with
the vehicle in front. ACC systems were introduced on
the automotive market in 1999. Since then, surveys and
experimental assessments have demonstrated the interest
for this kind of systems. They are the first step towards
the design of future Advanced Driver Assistance Sys-
tems (ADAS) that should help the driver in increasingly
complex driving tasks. The use of today’s commercially
available ACC systems is pretty much limited to motor-
ways or urban expressways without crossings. The traffic
situations encountered are rather simple and attention can
be focused on a few, well defined detected objects (cars
and trucks). Nonetheless, even in these relatively simple
situations, these systems show a number of limitations:
they are not very good at handling fixed obstacles and
may generate false alarms; moreover, in some ’cut-in’
situations, i.e. when the insertion of an other vehicle in
the detection beam is too close to the vehicle, they may
be taken by surprise.

A wider use of such systems requires to extend their
range of operation to some more complex situations in
dense traffic environments, around or inside urban areas.
In such areas, traffic is characterized by lower speeds,
tight curves, traffic signs, crossings and “fragile” traffic
participants such as motorbikes, bicycles or pedestrians.
A prerequisite to a reliable ADAS in such complex traffic
situations is an estimation of dynamic characteristics of

the traffic participants, such as position and velocity. This
problem is basically a Multi-Target Tracking problem.

Our goal in this paper is to present an original method
of multi-target tracking, based on occupancy grids frame-
work [1], [2]. This method avoid the major drawbacks
of classical approaches, in situations where the number
of targets is not a crucial information. To validate the
method, an application to the longitudinal control of a
robotic golf car named ”Cycab” is presented. This vehicle
is equipped with a Sick laser range finder, allowing the
system to estimate position and speed of the targets
relatively to the Cycab.

To deal with uncertain or incomplete knowledge, the
Bayesian Programming (BP) [3], [4] method is applied
in the framework of Bayesian theory as depicted in [5].

The paper is organized as follows:
�
II presents

the Bayesian Programming concept. The next section
overviews multi-target tracking algorithms. Then the

�
IV

presents our estimation algorithm, and the
�
V the longi-

tudinal control of the cycab.

II. BAYESIAN PROGRAMMING

Any model of a real phenomenon is inherently incom-
plete. There are always some hidden variables, not taken
into account in the model that influence the phenomenon.
Furthermore, perception and control are inherently uncer-
tain, i.e.including perception and control errors. Rational
reasoning with incomplete and uncertain information is
quite a challenge. Bayesian Programming addresses this
challenge relying upon a well established formal theory:
the probability theory [5].

In this framework, a Bayesian Program is made up of
two parts: a description and a question.

The description can be viewed as a knowledge base
containing the a priori information available on the prob-
lem at hand. It is essentially a joint probability distribu-
tion.

Given a distribution, it is possible to ask questions.
Questions are obtained first by partitioning the set of vari-
ables into three sets: (1) Searched: the searched variables,
(2) Known: the known variables, and (3) Free: the free
variables. A question is then defined as the distribution�������	��
���������������	�����

.



Given the description, it is always possible to answer
a question, i.e. to compute the probability distribution�������	��
��������� �!���	�����

. An inference engine has been
implemented to automate Bayesian inference [3]. As
general Bayesian inference problem has been shown to
be NP-Hard [6], much work is dedicated to applicability
and complexity reduction of the inference.

III. MULTIPLE TARGET TRACKING

As mentionned earlier, the problem addressed in this
paper is basically a Multi-Target Tracking problem. The
objective is to collect observations, i.e. data from the sen-
sor, on one or more potential objects in the environment
of the vehicle, and then to estimate the objects’ position
and velocity. Classical approach is to track the different
objects independently, by maintening a list of tracks, i.e.
a list of currently known objects.

The main difficulty of multi-target tracking is known
as the Data Association problem. It includes observation-
to-track association and track maintenance problems.
The goal of observation-to-track association is to decide
whether a new sensor observation corresponds to an
existing track or not. Then the goal of track maintenance is
to decide the confirmation or the deletion of each existing
track, and the initiation of new tracks. Numerous methods
exist to perform this data association problem [7], [8], [9].
A complete review of the tracking methods with one or
more sensors can be found in [10].

Urban traffic scenarios are still a challenge in multi-
target tracking area. The data association problem is
intractable in situations involving numerous appearance,
disappearance and occlusions of a large number of rapidly
manoeuvering targets.

To avoid the data association problem, we do not
maintain a list of tracks. We prefere to estimate the
occupied and free space of the environment of our vehicle.
We were inspired by occupancy grids [1], [2], which
is extensively used for mapping and localization [11].
According to us, this kind of environment representation
provides enough information to perform vital behaviors.
This will be illustrated in the

�
V.

The next section presents our method to estimate a 4-
dimensional occupancy grid of the cycab environment.

IV. ESTIMATION OF THE OCCUPANCY GRID

A. Bayesian Program

The main idea of occupancy grids is to tessellate the
environment of a robot into cells, and then to estimate
from sensor data the probability that each cell is full
or empty. To avoid a combinatorial explosion of grid
configuration, the cell states are estimated as independent
random variables.

Occupancy grids framework was extensively used for
mapping and localization. Of course, for an automotive

application, it is impossible and useless to model the
whole environment of the vehicle with a grid. Thus
we will model only the near-front environment of our
vehicle. As we want to estimate the relative position and
the relative velocity of objects, each cell of our grid
correspond to a position and a speed relatively to the
Cycab. Thus our grid is 4-D.
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Fig. 1: Estimation Step at time z
Fig 1 presents the Bayesian Program for the estimation

of the occupancy probability of a cell. To simplify nota-
tions, a particular cell of the grid is denoted by a single
variable { , despite the grid is 4-D. The number of sensor
observations at time z is named |~} . One sensor data at
time z is denoted by the variable ��}�h�Z�3�����7��� | } . The
set of all sensor observation at time z is noted ��} . The
set of all sensor observations until time z is referred by
the notation �Z�*� } .

A variable called the “matching” variable and noted� } is added. Its goal its to specify which observation
of the sensor is currently used to estimate the state of the
cell. The result of the inference for the estimation is given
by:���]� }� � { } � ��� } � � ���� m�� m�� �

VW ���]� }� � {~}�� ��� }�� � �� mb� � � ��� � }� ��� � } �I��� � }� { } � ij �
where � is a normalization constant.

During the inference, the sum on this variable allows
to take into account all sensor observations to update the
state of one cell.
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One has to remark here that the estimation step is
performed without explicit association between tracks and
observations.
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Fig. 2: Prediction Step at time z
To improve the estimation of the grid, we add a

prediction step. The goal of the prediction is to provide
an a priori knowledge for the estimation. It is based
on a dynamical model of the object, which include the
vehicle movements, denoted by the variable ¤ }	� � . Such
prediction step is classical in target tracking, in sequential
estimation techniques such as the Kalman filter [12]. The
corresponding Bayesian program is presented by fig 2.

The result of the inference for the prediction is given
by: ����� }� � { } � ��� }�� � ¤ }�� � � ��¥ ¦§ m�¨�©ª § m;¨�©

VW ��� {~}�� � �.����� }�� �� � {~}�� � � �*� }�� � ���� {~} � {~}	� � ¤N}	� � ������ }� �k� }�� �� {~} {~}�� � � ij � (1)

where � is a normalization constant.
In general, this expression cannot be determined analyt-

ically, and cannot even be computed in real time. Thus an
approximate solution of the integral has to be computed.

Our approximation algorithm is based on the basic
idea that only few points can be used to approximate the
integral. Thus, for each cell of the grid at time zE« � , we
compute the probability distribution

��� {¬} � {~}�� � ¤N}�� � � .

A cell  } is drawn according to this probability distri-
bution. Then the cell {¬}�� � is used to update only the
predicted state of the cell h} . The complexity of this
algorithm increases linearly with the number of cells in
our grid, and ensures that the most informative points are
used to compute the integral appearing in (1).

Thus the estimation of the occupancy grid at time z is
done in two steps. The prediction step uses the estimation
step at time z®« � and a dynamical model to compute an
a priori estimate of the grid. Then the estimation step
uses this prediction and the sensor observations at time z
to compute the grid.

B. Experimental results

To test the estimation of occupancy grids presented in
the previous section, both a simulator and the real Cycab
vehicle were used.
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Fig. 3: First example of grid estimation, for a static scene.

Fig 3 shows first results of estimation and prediction
steps, for a static scene. The upper left scheme depicts
the situation : two static objects are present in front of
the cycab. These two objects are fixed. The cycab is
static too. Thus only 2-dimensional grids are depicted,
corresponding to object’s position at a null speed. Fig 3b
represents the occupancy grid, knowing only the first sen-
sor observations. The color corresponds to the probability
that a cell is occupied. In this case, the two objects are
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detected by the sensor. Consequently, two areas with high
occupancy probabilities are visible (orange areas). These
probability values depends on probability of detection,
probability of false alarm, and on sensor precision. All
these characteristics of the sensor are taken into account in
the sensor model. The cells hidden by a sensor observation
have not been observed. Thus we can not conclude about
their occupancy. That explains the two areas of probability
values near to µ �P¶ (red areas). Finally, for cells located far
from any sensor observation, the occupancy probability is
low (purple areas).

Fig 3c represents the occupancy grid, after the predic-
tion step. Because all the scene is static, the result of the
prediction step is quite similar to the result of the first
estimation step.

Fig 3d represents the occupancy grid after the second
sensor observations. Of course, this figure is quite similar
to the fig 3b, but two remarks have to be noted:· for cells corresponding to an objects, the occupancy

probability is higher than in the first estimation. This
is due to the a priori knowledge, which was uniform
for the first estimation, and given by the prediction
step for the second estimation;· for cells corresponding to free areas, the occupancy
probability is lower than in the first estimation. This
is also due to the prediction step.

Fig 4 shows an extract of a short sequence of successive
prediction and estimation results. Its goal is to demon-
strate the robustness of our approach to objects occlusions,
without any special logic. The first row describes the
situation : the cycab is immobile, a static object is located
5 meters in front of it. A second object is moving from
right to left. In the situation depicted by the figs 4b.1
and 4c.1, the moving object is hidden by the static one,
and thus is not detected by the Sick laser range finder.

Second and third rows present respectively results of
the prediction step and of the estimation step. We choose
to represent only the cells of the grids corresponding
to relative speed equals to ¸ � µ � µ � ¸¹ �º�9� µ�»!¼ � � � ,
which is close to the speed of the moving object. The
color represents the occupancy probability of the cells.
Be careful that the color code is different for each sub-
figure.

An area of high occupancy probability is well defined
in figs 4a.2 and 4a.3. This area corresponds to the moving
object. We remark an area of occupancy probability values
equals to µ � ¶ , which corresponds to the cells hidden by
the static object. The fig 4b.2 presents the result of the
prediction step, based on the grid presented in fig 4a.3,
and on a dynamic model. This prediction shows that an
object should be located in the area hidden by the static
object. Consequently, even if this object is not detected
by the laser, an area of high occupancy probability is
found in the fig 4b.3. In the same way, the fig 4c.2

predicts that a moving object should be located behind
the static object. Thus we still found in fig 4c.3 an
area of occupancy probability values greater than 0.5. Of
course, the certainty in object presence, i.e.the values of
the occupancy probability in the grid, decreases when the
object is not observed by the sensor.

In figs 4d.3 and 4e.3, the moving object is no longer
hidden by the static object. Thus it is detected by the laser,
and the occupancy probability values increase.

Occupancy grids such ones presented in figs 3 and
4 don’t provide precise informations about the vehicle
environment. In particular, the number of objects is not
estimated. Thus one can think that they are useless in the
automotive context.

The next section shows that occupancy grids provide
enough information about the environment to perform
basic and vital behaviors. The goal is to control the
cycab in order to avoid “hazardous” obstacles of the
environment.

V. LONGITUDINAL CONTROL OF THE CYCAB

As mentioned in [2], the cell state can be used to
encode a number of properties of the robot environment.
Properties of interest for robot programming could include
occupancy, observability, reachability, etc. In the previous
section, it was used to encode the occupancy of the cell. In
this section, we show how it could be used to encode the
danger of the cell. By this way, the cycab is longitudinally
controlled by combining the occupancy and the danger of
all cells.

A. Estimation of danger

For each cell of the grid, the probability that this cell is
hazardous is estimated. This estimation is done without
considering the occupancy probability of the cell. Thus
we estimate the probability distribution

���]½ }� � {�} � � for
each cell { of the cycab environment.

½ }� is a boolean
variable that indicates whether the cell { is hazardous or
not.

As a cell { of our grid represents a position and
a velocity, the TCPA (Time to the Closest Point of
Approach) and the DCPA (Distance to the Closest Point
of Approach) can be estimated for each cell. Thanks to
TCPA and DCPA, the estimation of the danger is more
intuitive than if we had considered directly the relative
speed encoded in the grid : the lower the DCPA and the
shorter the TCPA, the more hazardous the cell.

Fig 5 shows the cells for which danger probability is
greater than µ �0¾ . Each cell is modeled with an arrow: the
beginning of the arrow indicates the position, the length
and the direction indicates the speed. First, we can see
that any cell located close to the cycab is considered
as hazardous, whatever the speed is. For other locations,
the more hazardous cells are those which speed is in the
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Fig. 4: A short sequence of a dynamic scene. The first row describes the situation : a moving object is temporary hidden
by a static object. The second row shows the predicted occupancy grids, and the third row the result of the estimation
step. The grids are 2-dimensional, and shows the probability

���k� � }� �³�n� �  ¹ � ¸ � µ � � ¸¹ �³�¿� µ � � .
direction of the cycab. As we consider relative speed in
the danger grid, this grid does not depend of the actual
cycab velocity.

B. Control of the cycab

Our goal here is to control the longitudinal speed of
the cycab, in order to avoid moving objects. The behavior
we want the cycab to adopt is very simplistic : brake or
accelerate whether it feels itself in danger or not.

To program this behavior, we consider simultaneously
for each cell { of the environment its danger probability
(given by the distribution

���]½ }� � {~} explained in the�
V-A) and its occupancy probability (given by the distri-

bution
���]� }� � � �*� } {~} � explained in the

�
IV). We look

for the most hazardous cell that is considered as occupied,
that is:À�ÁÂ� mÄÃ ���]½ }� � { } � � � �wÅ �~���]� }� � { } �IÆ µ � ¶OÇ9�

Then the longitudinal acceleration of the cycab is decided
according to this level of danger and to its actual velocity.
The four possible commands are : emergency brake,
brake, accelerate or keep the same velocity.

Fig 6 illustrates this basic control of the cycab. In
this example, a pedestrian appears suddendly. The cycab
brakes to avoid him. This basic control allows the cycab to
adopt secure behaviors, such as keeping a safety distance
from a car preceding itself. Stop and go is also en-
sured with this control. Videos illustrating these behaviors
should be available at http://www.inrialpes.fr/
sharp/people/coue/.

What it is to be noted here is that no decision is taken
before the choice of the command applied to the cycab.
In particular, we do not know the exact number of object
located in the cycab environment. Furthermore, exact
positions and velocity of these objects are not estimated.
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Fig. 6: Example of the cycab control.
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Fig. 5: Cells of high danger probabilities. For each posi-
tion, arrows model the speed.

VI. CONCLUSION

This paper addressed the problem of 4-D occupancy
grid estimation in an automotive context. According to
us, this grid can be an alternative to complex multi-
target tracking algorithms for applications which does not
require information such as the number of objects. To
improve the estimation, a prediction step has been added.
Thanks to this prediction, the estimation of the grid is
robust to temporary occlusions between moving objects.
To validate the approach, an application involving the Cy-
cab vehicle has been shown. The Cycab is longitudinally
controlled in order to avoid obstacles. This basic behavior
is obtained by combining the occupancy probability and
the danger probability of each cell of the grid.

Future developments will include: a) improvements of
the approximation algorithm for the prediction step. These
improvements should allow to estimate a bigger grid,
which is required to control a car in urban areas. b) fu-
sion of the occupancy grid with higher-level information,
such as GPS maps, to better estimate the danger of the
situation.
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