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ABSTRACT
This paper addresses the sparse representation (SR) problem within
a general Bayesian framework. We show that the Lagrangian for-
mulation of the standard SR problem, i.e., x? = argminx{‖y−
Dx‖2

2 +λ‖x‖0}, can be regarded as a limit case of a general max-
imum a posteriori (MAP) problem involving Bernoulli-Gaussian
variables. We then propose different tractable implementations of
this MAP problem and explain several well-known pursuit algo-
rithms (e.g., MP, OMP, StOMP, CoSaMP, SP) as particular cases of
the proposed Bayesian formulation.

1. INTRODUCTION

Sparse representations (SR) aim at describing a signal as the com-
bination of a small number of atoms chosen from an overcomplete
dictionary. More precisely, let y ∈ RN be an observed signal and
D ∈ RN×M a rank-N matrix whose columns are normalized to 1.
Then, one standard formulation of the sparse representation prob-
lem writes

x? = argmin
x
‖x‖0 subject to ‖y−Dx‖2

2 ≤ ε, (1)

or, in its Lagrangian version,

x? = argmin
x
‖y−Dx‖2

2 +λ‖x‖0, (2)

where ‖ ·‖p denotes the lp-norm1 and ε,λ > 0 are parameters spec-
ifying the trade-off between sparsity and distortion.

Finding the exact solution of (1)-(2) is usually an intractable
problem. Instead, suboptimal algorithms have been devised in the
literature. We can roughly divide the existing algorithms into 3 main
families: i) the pursuit algorithms, like matching pursuit (MP) [1],
orthogonal matching pursuit (OMP) [2], stagewise OMP (StOMP)
[3], subspace pursuit (SP) [4] or compressive sampling matching
pursuit (CoSaMP) [5] build up the sparse vector x by making a
succession of greedy decisions; ii) the algorithms based on a prob-
lem relaxation, like basis pursuit (BP) [6], FOCUSS [7] or SL0 [8],
approximate (1)-(2) by relaxed problems which can be solved effi-
ciently by standard optimization procedures; iii) the Bayesian al-
gorithms express the SR problem as the solution of Bayesian infer-
ence problem and apply statistical tools to solve it. Examples of
such algorithms include the relevant vector machine (RVM) algo-
rithms [9], the sum-product and the expectation-maximization SR
algorithms proposed in [10] and [11] respectively.

Whereas the connection between the pursuit/relaxation-based
algorithms and the standard problem (1)-(2) is usually clear, it is
not the case for the Bayesian algorithms available in the literature.
In this paper we show that, under some conditions, the standard
sparse representation problem (2) can be considered as a limit case
of a maximum a posteriori (MAP) problem involving Bernoulli-
Gaussian (BG) variables. This interpretation gives new insights into
several existing pursuit algorithms and paves the way for the design
of new ones.

1‖x‖0 denotes the number of non-zero elements in x.

Thus, we exploit the equivalence between the standard and the
BG MAP problems to derive novel Bayesian pursuit algorithms.
The proposed algorithms generalize standard pursuit procedures in
several aspects: i) they can exploit prior information about the atom
occurrence and/or the amplitude of active coefficients; ii) unlike
most of the existing pursuit procedures, they naturally implement
the process of atom deselection; iii) the estimation of model param-
eters (noise variance, etc) can be nicely included within the consid-
ered Bayesian framework.

The rest of the paper is organized as follows. In section 2, we
present a BG probabilistic framework modeling sparse processes
and establish a connection between the standard problem and a
maximum a posteriori (MAP) problem involving this model. In
section 3 , we briefly review some well-known standard pursuit pro-
cedures. Section 4 is devoted to the derivation of Bayesian pursuit
algorithms. Simulation results showing the good performance of
the proposed approach are exposed in section 5.

2. A BAYESIAN FORMULATION OF THE STANDARD SR
PROBLEM

Let s ∈ {0,1}M be a vector defining the support of the sparse rep-
resentation, i.e., the subset of columns of D used to generate y.
Without loss of generality, we will adopt the following convention:
if si = 1 (resp. si = 0), the ith column of D is (resp. is not) used to
form y. Denoting by di the ith column of D, we then consider the
following observation model:

y =
M

∑
i=1

si xi di +w, (3)

where w is a zero-mean white Gaussian noise with variance σ2
w.

Therefore,

p(y|x,s) = N (Dsxs,σ
2
wIN), (4)

where IN is the N×N-identity matrix and Ds (resp. xs) is a matrix
(resp. vector) made up of the di’s (resp. xi’s) such that si = 1. We
suppose that x and s obey the following probabilistic model:

p(x) =
M

∏
i=1

p(xi), p(s) =
M

∏
i=1

p(si), (5)

where

p(xi) = N (0,σ2
x ), (6)

p(si) = Ber(pi), (7)

and Ber(pi) denotes a Bernoulli distribution with parameter pi.
It is important to note that (4)-(7) only define a model on y and

may not correspond to its actual distribution. Despite this fact, it is
worth noticing that the BG model (4)-(7) is well-suited to modeling
situations where y stems from a sparse process. Indeed, if pi � 1
∀ i, only a small number of si’s will typically2 be non-zero, i.e., the

2In an information-theoretic sense, i.e., according to model (4)-(7), a re-
alization of s with a few non-zero components will be observed with proba-
bility almost 1.



observation vector y will be generated with high probability from a
small subset of the columns of D. In particular, if pi = p ∀ i, typical
realizations of y will involve a combination of pM columns of D.

Model (4)-(7) (or variants thereof) has already been used in
many Bayesian algorithms available in the literature, see e.g.,
[10, 11, 12, 13]. However, to the best of our knowledge, no con-
nection with the standard problem (2) has been made to date. The
following result gives a Bayesian interpretation of standard problem
(2) as a limit case of a MAP estimation problem involving the BG
model defined in (4)-(7):

Theorem 1: Consider the following MAP estimation problem:

(x̂, ŝ) = argmax
(x,s)

log p(y,x,s), (8)

where p(y,x,s) = p(y|x,s) p(x) p(s) is defined by the Bernoulli-
Gaussian model (4)-(7).

If,

i) ‖D†
sy‖0 = ‖s‖0 with probability 1, ∀s ∈ {0,1}M , where D†

s(n)

denotes the Moore-Penrose pseudo inverse of Ds(n) .
ii) σ2

x → ∞, pi = p ∀ i and λ = 2σ2
w log( 1−p

p ),

then, with probability 1,

x? = x̂, (9)

i.e., the solution of the BG MAP problem (8) is equal to the solution
of standard SR problem (2). �

A proof of this result can be found in the appendix. Condition i)
is only technical and ensures to discard some “pathological” cases.
It is satisfied in most practical settings encountered in practice. In
particular, this condition is verified as soon as y is a continuous
random variable on RN .

The result established in Theorem 1 recasts the standard sparse
representation problem (2) into a more general Bayesian frame-
work. In particular, it reveals the statistical assumptions which are
implicitly made when considering problem (2). It is interesting to
note that the Bayesian formulation allows for more degrees of free-
dom than (2). For example, any prior information about the atom
occurrence (pi’s) or the amplitude of the non-zero coefficients (σ2

x )
can explicitly be taken into account. The particular case σ2

x = ∞

corresponds to a non-informative prior p(x).
Not surprisingly, the BG MAP formulation (8) does not offer

any advantage in terms of complexity with respect to (2), i.e., it
is NP-hard. The practical computation of solutions of (8) requires
therefore to resort to approximated (but practical) algorithms. In
the rest of this paper, we will propose several greedy algorithms
dealing with this task. Due to the equivalence (9), the proposed
greedy procedures will share some similarities with standard pursuit
algorithms.

3. STANDARD PURSUIT ALGORITHMS

In this section, we briefly recall the process of standard pursuit al-
gorithms. In particular, we dwell upon four of the most popular,
namely MP, OMP, StOMP and CoSaMP/SP3.

Standard pursuit algorithms iterate between 2 main steps:

Support update: the algorithm updates the support of the
sparse representation, i.e., makes a guess about the columns
(or atoms) of the dictionary which have been used to generate y.

Coefficient update: the estimate of x is refined by taking into
account the latest decision about the support.

3CoSaMP and SP are two slightly different versions of the same algo-
rithm (see [4] and [5]).

MP, OMP, StOMP and CoSaMP/SP basically differ in the way they
implement these two steps.

The MP algorithm performs iteratively the following steps:

ŝ(n)
j =

 1 if j = argmax
i
〈r(n),di〉2,

ŝ(n−1)
j otherwise,

(10)

x̂(n)
j =

 x̂(n−1)
j + 〈r(n),d j〉 if j = argmax

i
〈r(n),di〉2,

x̂(n−1)
j otherwise,

(11)

where 〈u,v〉 , uT v denotes vector inner product and r(n) is the
current residual:

r(n) , y−∑
j

x̂(n−1)
j d j. (12)

At each iteration, MP adds at most one single atom to the support
based on the amplitude of its projection with the residual. It can be
seen that this support update strategy maximizes the decrease of the
residual norm at each iteration.

OMP performs the same support update as MP but computes
the coefficient estimate in a different way. Let ŝ(n) define the sup-
port estimate at iteration n. Then, OMP computes an estimate of the
non-zero coefficients as follows:

x̂ŝ(n) = D†
ŝ(n)y =

(
DT

ŝ(n)Dŝ(n)

)−1
Dŝ(n)y, (13)

where D†
ŝ(n) represents the Moore-Penrose pseudo inverse of Dŝ(n) .

StOMP is a modified version of OMP which allows for the se-
lection of several new atoms at each iteration. The choice of the
atoms added to the support estimate ŝ(n) is made by a threshold
decision on 〈r(n),d j〉2:

ŝ(n)
j =

{
1 if 〈r(n),d j〉2 > T (n),

ŝ(n−1)
j otherwise,

(14)

where T (n) is a threshold depending on the iteration number. In [3],
the authors proposed two different approaches to tune the value of
the threshold T (n) according to some criterion.

Common to MP, OMP and StOMP is the fact that atom des-
election is not possible: once a column of D has been added to
the support, it can never (explicitly) be removed. CoSaMP and SP
provide a solution to this problem. These procedures rely on the
following support-update rule:

ŝ(n) = argmax
s

{
∑

j
s j |x̃

(n)
j |

}
subject to ‖s‖0 = K, (15)

where K denotes the number of atoms used to generate y and x̃(n)

is a trial coefficient estimate computed from (13) and using the fol-
lowing trial support estimate

s̃(n) = argmax
s

{
∑

j
s j〈r(n),d j〉2

}
subject to ‖s‖0 = P (16)

and si = 1 ∀i ∈I ,

with I = {i ∈ {1, . . . ,M}|ŝ(n−1)
i = 1} and P > K. Clearly, updates

(15)-(16) allow for the deselection of atoms throughout the iterative
process. Note however, that CoSaMP and SP require the knowledge
of the number of non-zero coefficients K.



4. BAYESIAN PURSUIT ALGORITHMS

In this section, we derive pursuit algorithms from the Bayesian
framework described in section 2.

As previously mentioned, we will see that these algorithms turn
out to be extensions of standard pursuit algorithms (see section 3).
They offer in particular highest flexibility and precision in the com-
putation of the support and coefficient estimates:
• The prior information about the occurrence of each atom in the

sparse decomposition, i.e., pi’s, can explicitly be taken into ac-
count into the estimation process.

• The problem of column deselection is naturally solved.
• The Bayesian framework allows for model parameter estima-

tion. In particular, we will see that the estimation of the noise
variance throughout the iterations plays a crucial role in the al-
gorithm performance.
The proposed algorithms are tractable procedures search-

ing for the solution of (8) by iterative greedy maximization of
log p(y,x,s). We describe hereafter four different greedy imple-
mentation of (8).

4.1 Bayesian Matching Pursuit (BMP)
As mentioned in section 3, MP updates at each iteration the coef-
ficient leading to the maximum decrease of the residual norm. A
similar approach can be followed within the Bayesian framework
considered here: the BMP algorithm can be defined so that the cou-
ple (s j,x j) updated at each iteration locally maximizes the increase
of log p(y,x,s).

In order to properly describe this procedure, let us first define

ρ
(n)(s j, x̂

(n−1)),max
x j

log
p(y, x̂

(n−1)
j , ŝ

(n−1)
j )

p(y, x̂(n−1), ŝ(n−1))

 , (17)

where x̂
(n)
j (resp. ŝ

(n)
j ) is a vector equal to x̂(n) (resp. ŝ(n)) but for

the jth component which is free to vary. Therefore, ρ(n)(s j, x̂
(n−1))

represents the variation of the goal function when optimized over x j
while all other variables are kept fixed. Note that this variation is a
function of the value assigned to s j ∈ {0,1}.

We define the Bayesian MP (BMP) algorithm by the following
recursions:
• BMP support update:

ŝ(n)
j =

 s̃(n)
j if j = argmax

i
ρ

(n)(s̃(n)
i , x̂(n−1)),

ŝ(n−1)
j otherwise.

(18)

where

s̃(n)
j , argmax

s j∈{0,1}
ρ

(n)(s j, x̂
(n−1)),

=

{
1 if 〈r(n) + x̂(n−1)

j d j,d j〉2 > Tj,
0 otherwise.

(19)

with

Tj , 2σ
2
w

σ2
x +σ2

w
σ2

x
log
(

1− p j

p j

)
. (20)

• BMP coefficient update:

x̂(n)
j =

 x̃(n)
j if j = argmax

i
ρ

(n)(s̃(n)
i , x̂(n−1)),

x̂(n−1)
j otherwise.

(21)

where

x̃(n)
j = argmax

x j

log p(y, x̂
(n−1)
j , ŝ(n)),

= ŝ(n)
j

(
x̂(n−1)

j + 〈r(n),d j〉
)

σ2
x

σ2
x +σ2

w
. (22)

We can make the following comments about these recursions:
- Since the procedure described in (18)-(22) corresponds to

a sequential maximization of the upper-bounded function
log p(y,x,s), the convergence to a fixed point, say (x̂(∞), ŝ(∞)),
is ensured. Moreover, the fixed points must be “local” maxima4

of log p(y,x,s).
- The algorithm complexity is similar to MP: the most expensive

operation is the maximization in (18) which scales as O(M) (we
omit the details here due to space limitation).

- s̃(n)
j is the locally-optimal decision about s j, i.e., the decision

maximizing the increase of the goal function given the current
estimate. The value of s̃(n)

j is based on the comparison of a sig-
nal energy in the direction of d j to a threshold Tj (see (19)).
This threshold depends on the probability of occurrence of each
atoms, p j : the larger p j the smaller Tj and the more likely is
the column to be selected in the sparse representation. Note that
if s̃(n)

j = 0 whereas ŝ(n−1)
j = 1, the locally-optimal decision con-

sists in removing column d j from the support. As mentioned
earlier, the BMP algorithm therefore naturally implements the
process of deselecting some of the columns of the current sup-
port.

- The update of the coefficient amplitude (see (22)) is made by
taking into account some prior information about the distribu-
tion of x, i.e., σ2

x . Note that if ŝ(n)
j = 1 and σ2

x → ∞, (22) be-
comes

x̃(n)
j = x̂(n−1)

j + 〈r(n),d j〉. (23)

i.e., we recover the MP coefficient update (11).

In section 2, we emphasized that the joint BG MAP problem
(8) and the standard SR problem (2) are equivalent when σ2

x → ∞

and pi = p ∀ i. These conditions are not sufficient to ensure the
equivalence between BMP and MP algorithms5 because of the atom
deselection, allowed by BMP but impossible in the MP procedure.
Withdrawing this opportunity (by forcing s̃(n)

j = 1 ∀ j), i.e., only
considering the addition (but never the removal) of new atoms in the
support, one recovers standard MP implementation. The standard
MP algorithm can therefore be regarded as a particular case of the
Bayesian pursuit algorithm presented in this section.

4.2 Bayesian Orthogonal Matching Pursuit (BOMP)
We now consider the implementation of the Bayesian orthogonal
matching pursuit by modifying the coefficient-update step of the
BMP algorithm. In particular, BOMP computes the estimate of x
as follows:

x̂(n) = argmax
x

log p(y,x, ŝ(n)). (24)

Solving this problem, we obtain that the x̂(n)
j ’s such that ŝ(n)

j = 1 are
given by

x̂
(n)
ŝ(n) =

(
DT

ŝ(n)Dŝ(n) +
σ2

w
σ2

x
I‖ŝ(n)‖0

)−1

DT
ŝ(n)y, (25)

4Concerning s which takes on values in a finite set, the local optimal-
ity has to be understood as follows: there is no modification of one single
component of ŝ(∞) that leads to an increase of the goal function.

5This can readily be shown by using σ2
x →∞ and pi = p ∀ i in recursions

(18)-(22). We omit however the details here due to space limitation.



and x̂(n)
j = 0 otherwise. Observe that, like BMP, BOMP updates

non-zero coefficients by taking into account the prior information
about the coefficient amplitude, σ2

x .
The update of the support remains unchanged with respect to

BMP. Hence, like BMP, BOMP also implements atom deselection.
For this reason, similar to the one mentioned for the BMP/MP
equivalence, BOMP does not reduce to OMP when σ2

x → ∞ and
pi = p ∀ i. Finally, from the same reasoning as for BMP, it can be
seen that BOMP converges to local maxima of log p(y,x,s).

4.3 Bayesian Stagewise Orthogonal Matching Pursuit
(BStOMP)
BStOMP is a modified version of BOMP where several entries of
the support vector s can be changed at each iteration. We propose
the following approach:

ŝ(n)
j =

{
1 if 〈r(n) + x̂(n−1)

j d j,d j〉2 > Tj,
0 otherwise.

(26)

where Tj is defined in (20). Note that if the jth atom was not se-

lected at iteration n−1, i.e., (x̂(n−1)
j , ŝ(n−1)

j ) = (0,0), (26) becomes

ŝ(n)
j =

{
1 if 〈r(n),d j〉2 > Tj,

ŝ(n−1)
j otherwise.

(27)

In such a case, the support update rules of StOMP and BStOMP
are therefore similar. However, in the general case (26), BStOMP
allows for the deselection of atoms.

Another crucial difference between StOMP and BStOMP is the
definition of the threshold Tj. Indeed, the Bayesian framework con-
sidered in this paper naturally leads to a definition of the threshold
as a function of the model parameters. Unlike the approach fol-
lowed in [3], it requires therefore no additional hypothesis and/or
design criterion.

Finally, let us mention that the performance of BStOMP can
be greatly improved by including the estimation of the noise vari-
ance σ2

w in the iterative process. As mentioned earlier, the esti-
mation of model parameters is naturally included in the Bayesian
framework considered in this paper. In particular, the maximum-
likelihood (ML) estimate of σ2

w writes

ˆ(σ2
w)

(n)
= argmax

σ 2
w

log p(y, x̂(n−1), ŝ(n−1)),

= N−1‖y−Dx̂(n−1)‖2
2 = N−1‖r(n)‖2

2. (28)

Plugging this expression into (20), we obtain:

T (n)
j , 2

‖r(n)‖2
2

N
σ2

x +N−1‖r(n)‖2
2

σ2
x

log
(

1− p j

p j

)
. (29)

The threshold therefore becomes a function of the iteration number.
Note that, when σ2

x → ∞, T (n)
j has the following expression:

T (n)
j

σ 2
x→∞
= 2

‖r(n)‖2
2

N
log
(

1− p j

p j

)
. (30)

T (n)
j is then proportional to the residual energy; the factor of pro-

portionality depends on the probability of occurrence of each atom.

4.4 Bayesian Subspace Pursuit (BSP)
We finally propose a Bayesian pursuit algorithm having some flavor
of CoSaMP/SP. We will refer to this algorithm as Bayesian subspace
pursuit (BSP) algorithm.
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Figure 1: Frequency of exact reconstruction versus number of non-
zero coefficients; N = 128, M = 256, σ2

w = 10−5, σ2
x = 10.

We define the support update performed by BSP as follows:

ŝ(n) = argmax
s

{
∑

j
ρ

(n)(s j, x̃
(n))

}
subject to ‖s‖0 = K, (31)

where x̃(n) is a trial coefficient estimate computed from (24) by
using s̃(n) as support estimate:

s̃(n) = argmax
s

{
∑

j
ρ

(n)(s j, x̂
(n−1))

}
. (32)

A new coefficient estimate x̂(n) is finally computed from (24).
It is interesting to note that, unlike CoSaMP/SP, BSP imposes

no constraint on the number of non-zero elements in s̃(n). In par-
ticular, ‖s̃(n)‖0 can be larger or lower than K. In fact, s̃(n) is com-
puted by making the best local decision for each atom of the dictio-
nary. This is equivalent to the support update rule implemented by
StOMP in (26). The support estimate ŝ(n) is then computed by only
keeping in the support the K columns having the largest components
x̃(n)

j .

5. SIMULATION RESULTS

In this section, we study the performance of the proposed SR al-
gorithms by extensive computer simulations. We follow the same
methodology as in [4] to assess the performance of the SR algo-
rithms: we calculate the empirical frequency of correct reconstruc-
tion versus the number of non-zero coefficients in x, say K. We
assume that a vector has been correctly reconstructed when the am-
plitude of the error reconstruction on each non-zero coefficient is
lower than 10−4.

Fig. 1 illustrates the performance achieved by BMP, BOMP,
BStOMP, BSP and MP, OMP, StOMP, SP. We use the following
parameters for the generation of these curves: N = 128, M = 256,
σ2

w = 10−5. For the sake of fair comparison with standard pursuit
algorithms, we consider the case where all the atoms have the same
probability of occurrence, i.e., p j = K/M ∀ j. The data is therefore
generated as follows. The positions of the non-zero coefficients are
first drawn uniformly at random. Then, the amplitude of the non-
zero coefficients is generated from a zero-mean Gaussian with vari-
ance σ2

x = 10. The elements of the dictionary are i.i.d realizations
of a zero-mean Gaussian distribution with variance N−1. For each



point of simulation, we run 400 trials. In order not to favor our
methods with any additional prior information, we use σ2

x = 1000
in the proposed Bayesian algorithms.

MP and OMP are run until the l2-norm of the resid-
ual drops below

√
Nσ2

w. The Bayesian pursuit algorithms
iterate as long as log p(y, x̂(n), ŝ(n)) > log p(y, x̂(n−1), ŝ(n−1)).
We use the SparseLab implementation of StOMP available at
http://sparselab.stanford.edu/ and SP implementation available at
http://igorcarron.googlepages.com/cscodes. StOMP is used with
the (so-called) CFDR threshold criterion. BStOMP and BSP con-
sider thresholding based on noise variance estimates (29).

We observe that the proposed Bayesian algorithms improve
the performance upon their standard version. The gain in perfor-
mance depends on the algorithms. On the one hand BMP leads to
a small improvement whereas the performance of OMP and BOMP
overlaps. We observe however that BOMP decreases the compu-
tational time by a factor between 5 and 10 with respect to OMP.
This is a consequence of the atom deselection process which ef-
ficiently reduces the size of the support when required. On the
other hand BStOMP and BSP exhibit a clear superiority with re-
spect to StOMP and SP. Note that BSP achieves the same perfor-
mance as BOMP/OMP but with a computational time similar to SP,
i.e., roughly 50 times smaller than OMP.

6. CONCLUSION

In this paper, we addressed the sparse representation (SR) prob-
lem within a general Bayesian framework. We first showed the
equivalence between the standard SR formulation and a maximum a
posteriori (MAP) problem involving Bernoulli-Gaussian variables.
We exploited this result to give a Bayesian generalization of well-
known standard pursuit algorithms. We emphasized theoretical ad-
vantages of the proposed algorithms, like atom deselection and pa-
rameter estimation, and confirmed them by some practical experi-
ments.

7. APPENDIX: PROOF OF THEOREM 1

Let f (x), ‖y−Dx‖2
2 +λ‖x‖0 and x?(s) be the solution of

x?(s) = argmin
x

f (x) s.t. xi = 0 if si = 0. (33)

x?(s) is therefore the optimal solution of the standard problem if
the position of the non-zero coefficients is specified. Note that
the notation x?(s) is somehow misleading since the solution of the
“argmin”-problem in (33) is non-unique if Ds is not full-rank. For
the sake of conciseness we will restrict the demonstration hereafter
to the case where ‖s‖0 ≤ N and every subset of L ≤ N columns of
D are linearly independent. This implies that Ds is full-rank ∀s.
The general case is similar although slightly more involved.

Clearly, the solution of (2) can thus be reformulated as

x? = x?(s?) with s? = argmin
s∈{0,1}M

f (x?(s)). (34)

Similarly, let g(x) , − log p(y,x,s) and x̂(s) be the solution of
x̂(s) = argmaxx log p(y,x,s). Problem (8) can then be reformu-
lated as:

x̂ = x̂(ŝ) with ŝ = argmin
s∈{0,1}M

g(x̂(s)). (35)

Theorem 1 can therefore be proved by showing that x̂(s) = x?(s)
and g(x̂(s)) = f (x?(s)) ∀s under the considered hypotheses.

Without loss of generality, we assume that the first k compo-
nents of s are non-zero. If Ds denotes the matrix made up of the
first k columns of D and D†

s its Moore-Penrose pseudo-inverse, we
then have

x?
i (s) =

{ (
D†

sy
)

i
i ∈ {1, . . . ,k},

0 otherwise.

On the other hand, the solution of (35) writes

x̂i(s) =


((

DT
s Ds + σ 2

w
σ 2

x
Ik

)−1
DT

s y

)
i

i ∈ {1, . . . ,k},

0 otherwise.

Clearly, limσ 2
x→∞ x̂(s) = x?(s). Using this result and taking (4)-(7)

into account, we have

lim
σ 2

x→∞

g(x̂(s)) =
‖y−Dx?(s)‖2

2
2σ2

w
+ log p(s)+ lim

σ 2
x→∞

∑
k
i=1(x

?
i (s))

2

2σ2
x

.

Note that the last term tends to zero when σ2
x → ∞. Moreover,

p(s) ∝ exp{‖s‖0 log( 1−p
p )} if pi = p ∀i. Now, we have by hypoth-

esis that ‖x?(s)‖0 , ‖D†
sy‖0 = ‖s‖0 with probability one. There-

fore, since λ = 2σ2
w log( 1−p

p ), we have g(x̂(s)) = f (x?(s)) with
probability one.
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