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Summary: In this paper we propose a semiparametric quantile regression model for censored survival data. Quantile

regression permits covariates to affect survival differently at different stages in the follow-up period, thus providing

a comprehensive study of the survival distribution. We take a semiparametric approach, representing the quantile

process as a linear combination of basis functions. The basis functions are chosen so that the prior for the quantile

process is centered on a simple location-scale model, but flexible enough to accommodate a wide range of quantile

processes. We show in a simulation study that this approach is competitive with existing methods. The method

is illustrated using data from a drug treatment study, where we find that the Bayesian model often gives smaller

measures of uncertainty than its competitors, and thus identifies more significant effects.
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1. Introduction

Survival data analysis typically relies on a parametric assumption about the relationship

between the covariates and the survival distribution, e.g., the proportional hazards, propor-

tional odds, or accelerated failure time models. While these methods have attractive features

and rich histories, in this paper we pursue quantile regression. The linear quantile regression

model assumes that each quantile of the survival (or log survival) distribution is a linear

combination of the covariates. The covariates are allowed to have different effects on each

quantile level, and thus varying effects at different stages of the follow-up period.

For example, we consider a drug treatment study where time until relapse is modeled

in terms of treatment and other factors including compliance, IV drug use, age, and race.

Quantile regression provides a comprehensive analysis, as we can study treatment effects

early and late in the follow-up period. This could be used to identify subjects and times

after treatment that would be aided by further intervention. Also, flexible model-based

methods such as those proposed here provide straight-forward predictions of the relapse time

of individual subjects, which could be used to identify the optimal treatment for individuals.

There are several frequentist approaches to quantile regression for censored data (e.g.,

Powell, 1984; Lindgren, 1997; Portnoy, 2003; Peng and Huang, 2008; Koenker, 2008). These

model-free methods are geared towards estimating covariate effects at a single quantile level

(e.g., the median). The algorithm is then applied in separate analyses to determine the

effects at different quantile levels. There are also many Bayesian approaches to estimate

effects at a single quantile level (Yu and Moyeed, 2001; Kottas and Gelfand, 2001; Hanson

and Johnson, 2002; Kottas and Krnjajić, 2009; Reich et al., 2010). Focusing on survival data,

Lin et al. (2012) develop a semi-parametric Bayesian median regression model. In particular,

this approach models only the median survival time as a linear function of the covariates,

and thus would not permit inference on differential covariate effects early versus late in
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follow-up period. For non-censored data it has been shown that modeling quantile levels

simultaneously provides better estimates and more power for identifying significant effects

than separate analyses (Bondell et al., 2010; Reich et al., 2011). In this paper, we propose a

Bayesian quantile regression model for censored data that jointly analyzes all quantile levels.

In a Bayesian setting, modeling quantiles simultaneously amounts to specifying a survival

distribution with the desired quantiles. Quantile regression models have been proposed for

non-censored data that allow for different covariate effects at different quantile levels (Dunson

and Taylor, 2005; Hjort and Walker, 2009; Reich et al., 2011; Todkar and Kadane, 2011;

Reich, 2012). The most similar to our approach is Reich (2012), who use a piecewise quantile

model with prior centered on the normal distribution. They allow the quantile function to

vary over space and time but without covariates. In this paper we generalize this to censored

data with arbitrary centering distribution, and to include covariates.

The proposed model has several nice properties. Unlike Reich et al. (2011) and Todkar and

Kadane (2011), the model permits a simple closed-form for the likelihood, which facilitates

straight-forward MCMC sampling to explore the posterior. Given this likelihood, it is possible

to handle any type of censoring, i.e., left-censoring, right-censoring, or interval-censoring.

Despite this computational simplicity, we show that the model is flexible enough to fit any

valid quantile process at any finite set of quantile levels. As with many semi-parametric

Bayesian models, we allow for a wide class of models while centering the quantile process on

a parametric model, e.g., the accelerated failure time model. We show via simulation that

incorporating valid prior information can substantially improve estimation over model-free

methods. Also, to deal with high-dimensional problems we incorporate Bayesian variable

selection techniques to eliminate unneeded covariates from the model.
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2. Semiparametric quantile regression model

Denote Ti and Ci as the survival and censoring times, respectively, for subject i = 1, ..., n.

We observe the follow-up time Yi = min{Ti, Ci}, censoring indicator δi = I(Ti 6 Ci), and

covariates Xi = (Xi0, Xi1, ..., Xip), where xi0 = 1 for the intercept. Our objective is to model

the quantile function of Ti or Zi = log(Ti) as a function of the covariate Xi. We first describe

the quantile function for Zi in Section 2.1, and then discuss Ti in Section 2.2.

2.1 Model formulation

The quantile function, denoted q(τ |Xi), is defined as the function satisfying Prob [Zi < q(τ |Xi)] =

τ ∈ [0, 1]. For example, with τ = 0.5, q(0.5|Xi) is the median log survival time of a

subject with covariate vector Xi. Linear quantile regression assumes that the τ th quantile is

a linear combination of the covariates, q(τ |Xi) =
∑p

j=0 Xijβj(τ). In this model, the vector of

regression coefficients β(τ) = [β0(τ), ..., βp(τ)]
T is different for each quantile level τ , allowing

for different covariate effects on different aspects of the survival distribution, e.g., β(0.1)

measures the effects early in the follow-up while β(0.5) determines median log survival.

We center our Bayesian model on the heteroskedastic accelerated failure time model Zi =

Xiα0 + (Xiα1)εi, where α0 = (α00, ..., α0p)
T and α1 = (α10, ..., α1p)

T control the location

and scale (with Xiα1 restricted to be positive), respectively, and εi are independent errors

with quantile function q0(τ). This model has quantile function

q(τ |Xi) = Xiα0 + (Xiα1)q0(τ) =
p∑

j=0

Xij [α0j + α1jq0(τ)] =
p∑

j=0

Xijβj(τ), (1)

and thus the quantile function for covariate j, βj(τ) = α0j+α1jq0(τ), varies with τ if α1j ̸= 0.

We extend this to allow for a richer span of models for the quantile function. Models must

satisfy the restriction that q(τ |Xi) is continuous and monotonically increasing in τ for all

Xi. Generalizing (1), we model the derivative piece-wise over L > 1 intervals separated by

breakpoints 0 = κ0 < κ1 < ... < κL−1 < κL = 1,
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dq(τ |Xi)

dτ
=

L∑
l=1

I (κl−1 < τ 6 κl) (Xiαl)
dq0(τ)

dτ
. (2)

The effect of the covariates on the derivative of the quantile function for τ ∈ [κl−1, κl] is

determined by αl = (αl0, ..., αlp)
T . For the quantile function to be increasing, the derivative

must be positive for all τ which is true if and only if Xiαl > 0 for all l and for all Xi.

The continuous quantile function corresponding to (2) is ci +
∑L

l=1(Xiαl)Bl(τ), where ci

is a constant and Bl are known functions of q0 (Figure 1),

B1(τ) =


q0(τ), τ 6 κ1

q0(κ1), τ > κ1

and Bl(τ) =



0, τ 6 κl−1

q0(τ)− q0(κl−1), κl−1 < τ 6 κl

q0(κl)− q0(κl−1), τ > κl

(3)

for l > 1. To retain the connection with (1), we take the constant to be ci = Xiα0, giving

q(τ |Xi) = Xiα0 +
L∑
l=1

(Xiαl)Bl(τ) =
p∑

j=0

Xij

[
α0j +

L∑
l=1

Bl(τ)αlj

]
=

p∑
j=0

Xijβj(τ). (4)

With this choice of ci, this model reduces to the parametric location-scale model (1) if L = 1.

The quantile function for covariate j is βj(τ) = α0j +
∑L

l=1Bl(τ)αlj, which is a linear

combination of fixed basis functions Bl with coefficients αlj. In Figure 1, β1(τ) is positive

for τ ∈ (0.25, 0.75) and negative for τ > 0.75. The corresponding survival curves have

changepoints at probabilities {0.25, 0.50, 0.75}, with the subject with X = 1 having higher

survival probabilities for times (30, 60) and lower survival probability for times over 60.

Therefore, this flexible model can accommodate, among other things, crossing survival curves.

[Figure 1 about here.]

The derivative of the quantile process is positive if an only if Xiαl > 0 for all Xi and all

l = 1, ..., L. To ensure these constraints are satisfied, we use a latent variable approach similar

to Reich et al. (2011) and Reich (2012) for related models. We assume that the covariates are

scaled so that Xij ∈ [−1, 1], i.e., Xi ∈ S = {(X0, ..., Xp)|X0 = 1, X1, ..., Xp ∈ [−1, 1]}. In this

case, Xiαl is minimized by the Xi with Xij = −1 for covariates with αlj > 0 and Xij = 1 for
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covariates with αlj < 0. In this worst case (“WC”), Xiαl equals WC(α) = αl0 −
∑p

j=1 |αlj|.

To satisfy this criteria for allX ∈ S, we build the prior using latent unconstrained coefficients

α∗
j = (α∗

l0, ..., α
∗
lp), and set

αlj =


α∗
lj, WC(α∗

l ) > 0

ϵI(j = 0), WC(α∗
l ) < ϵ,

(5)

where ϵ > 0 is a small constant. Although these restrictions on αl may seems prohibitive,

this provide a very flexible model. To demonstrate the flexibility of this approach, we state

and prove (in Web Appendix A) the following theorem.

Theorem 1: Let β̃(τ) = [β̃0(τ), ..., β̃p(τ)] be any valid set of quantile functions so that

q̃(τ |X) = Xβ̃(τ) is monotonically increasing in τ for all X ∈ S, and let q0(τ) be any

monotonically-increasing base quantile function. Then there exist values of ϵ and {αlj}

satisfying WC(αl) > ϵ for all l = 1, ..., L so that β(τ) = β̃(τ) at the interior breakpoints

τ ∈ {κ1, ..., κL−1}.

Therefore, if interest is restricted to a finite set of quantile levels {κ1, ..., κL−1}, then this

semiparametric model with any choice of base quantile function q0 spans the entire class of

valid quantile functions at these quantile levels. Also, this result suggests that for large L

the semiparametric model can approximate a wide class of quantile functions.

2.2 Prior selection

As with many semi-parametric methods that make use of a basis expansion, a crucial step in

applying this method is to select the form of the basis functions (q0) as well as the number

of basis functions (L). By construction,
∑L

l=1Bl(τ) = q0(τ), and so if α1 = ... = αL, then

the quantile function reduces to the heteroskedastic model (1). Therefore, q0 determines the

shape of the residual distribution in this parametric special case, and if prior information from

parametric modeling exists this can be used to select q0. In the absence of prior information,
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exploratory analysis using classical estimates (for example, Portnoy, 2003; Peng and Huang,

2008) computed separately for several quantile levels and plotted against quantile level may

suggest some reasonable choices for q0. In general, we recommend fitting a few combinations

of q0 and L and comparing fits using goodness-of-fit criteria, as illustrated in Section 4.

For identification purposes, q0 should have location fixed at zero and scale fixed at one.

Examples of symmetric quantile functions include the standard normal q0(τ) = Φ−1(τ),

the standard logistic q0(τ) = log[τ/(1 − τ)], and the standard t quantile function with

ϕ > 0 degrees of freedom. For asymmetry, we also consider the asymmetric Laplace quantile

function (Kotz et al., 2001) with shape parameter ϕ ∈ (0, 1). These final two quantile

functions have a shape parameter, ϕ, which we treat as an unknown parameter to estimated.

To complete the Bayesian formulation, we must specify the priors for the coefficients that

define the likelihood, {α∗
lj}. The basis coefficients (excluding the location effect α0j) for

covariate j, α∗
j = (α∗

1j, ..., α
∗
Lj)

T , have multivariate normal priors with E(α∗
lj) = µj and

autoregressive covariance Cov(α∗
lj, α

∗
kj) = σ2

jρ
|k−l|
j . Therefore, if the prior variances σ2

j are

near zero, the model reduces to (1) with scale Xiµ, where µ = (µ0, ..., µp)
T . The prior for

the remaining parameters in the model for log survival are taken to be α0j, µj
iid∼ N(0, c2),

σ−2
j

iid∼ Gamma(a, b), ϕ ∼ f(ϕ), and ρj ∼ Unif(0,1).

Within this semiparametric framework, it is also straight-forward to model survival rather

than log survival. To model survival directly, we must select a prior so that q(0|Xi) = 0.

If we simply fix α0 = 0 and select q0 to be the quantile function of a density with lower

bound zero. Then q0(0) = 0, Bl(0) = 0 for all l, and q(0|Xi) = 0 for all Xi. A consequence

of this is that βj(0) = 0 for all j, which is reasonable because the lower bound of survival

for all subjects is assumed to be zero regardless of Xi. Possible base quantile functions q0

for survival are the gamma quantile function with shape ϕ and scale one, and the Weibull

quantile function with shape ϕ and scale one.
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We also note that in this framework it is not necessary to allow all covariates to affect

all quantile levels. For example, it may be of interest to intensively study the effect of one

covariate (e.g., treatment) over quantile levels, while simply accounting for the effects of

other covariates in the location component of the model. This is accomplished by setting

α1j = ... = αLj = 0 for location-only covariates.

A final consideration when specifying the prior for this model for the quantile function of

each covariate in terms of the base quantile function q0, is that if the base quantile function

is chosen to have no upper bound, i.e., q0(1) = ∞, then |βj(1)| = ∞ with probability one. If

this is a concern, a remedy is to fix the final coefficient α∗
Lj = 0, so that βj(τ) = βj(κL−1) for

all τ > κL−1. In our analysis we do not fix the final term to zero because our focus is not on

the extreme tail and we wish to maximize flexibility for estimating the quantiles of interest.

2.3 Censored likelihood and computing details

The density of Zi corresponding to (4) has the relatively simple form

f(z|Xi,α) =
L∑
l=1

I [q(κl−1|Xi) < z < q(κl|Xi)]

Xiαl

f0

[
z −Xiα0 − I(l > 1)Xiαlq0(κl)

Xiαl

]
, (6)

where f0 is the density corresponding to q0 and α = {αlj}. Therefore, while the quantile

functions βj(τ) are continuous functions of τ , the density function (6) has discontinuities at

the interior breakpoints q(κl|Xi). Discontinuous densities are common in Bayesian nonpara-

metrics (e.g., Ferguson, 1973, 1974; Lavine, 1992, 1994). In this case, the breakpoints are

random functions of the unknown regression coefficients α, and thus the posterior mean of

the density averaging over uncertainty in these coefficients is almost surely continuous.

Similarly, the distribution function is

F (z|Xi,α) =


Fo

[
z−Xα0

Xiα1

]
, z < q(κ1|Xi)

Fo

[
z−q(κl−1|Xi)+(Xiαl)q0(κl)

Xiαl

]
, z ∈ [q(κl−1|Xi), q(κl|Xi)] for l > 1

(7)

where F0 is the distribution function corresponding to q0. Combining these results, the

censored likelihood for right-censored data [log(Y1), δ1], ..., [log(Yn), δn] is
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n∏
i=1

f [log(Yi)|Xi,α]δi {1− F [log(Yi)|Xi,α]}1−δi . (8)

Other types of censoring (interval censoring) are also easily accommodated within this

likelihood-based approach. With this closed-form expression of the likelihood, MCMC sam-

pling proceeds using the standard Metropolis within Gibbs algorithm (Chib and Greenberg,

1995) as described in Web Appendix B. We draw 25,000 samples and discard the first 5,000

as burn-in. Convergence is monitored using trace plots of several representative parameters.

2.4 Variable selection

We use Bayesian variable selection methods to determine the subset of covariates to be

included in the model. We assume that the number of predictors is not so large that it is

infeasible to include all p parameters in the location component of the model, Xiα0. Even

in this moderate case, including a large number of covariates in shape/scale component∑L
l=1Xiαlq0(τ) is problematic because there are pL parameters, which is cumbersome for

large L, and the constraint on WC(αl) becomes more restrictive when there are many

parameters. Therefore, we focus our attention on determining the subset of variables to

include in this component of the model.

We introduce binary indicators θj to index the model for covariate j, so that if θj = 1

then covariate j affects the shape and scale of the survival distribution, and if θj = 0 then

covariate j is only a location-shift parameter. In Bayesian variable selection (e.g. O’Hara and

Sillanpaa, 2009), we seek the posterior of θ = (θ0, ..., θp). If all the shape/scale parameters

for variable j are zero, i.e., α1j = ... = αLj = 0, then βj(τ) = α0j for all τ , and thus variable

j only affects the survival distribution via a location shift. This suggests a way to compute

the posterior distribution of θ by treating it as unknown parameter in the Bayesian model

and analyzing its posterior samples from the MCMC algorithm. The model becomes,
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αlj =


θjα

∗
lj, WC(θα∗

l ) > 0

ϵI(j = 0), WC(θα∗
l ) < ϵ,

(9)

where θα∗
l denotes (θ0α

∗
l0, ..., θpα

∗
lp) and all other aspect of the model remain the unchanged.

In this formulation, when θj = 0 then αlj is forced to be zero for all l. Therefore, we report the

posterior mean of the parameters θj as the posterior probability that covariate j is included

in shape and scale, and thuse has a non-constant effect across quantile levels. We fix θ0 = 1

to include the intercept, and use priors θj ∼ Bernoulli(0.5) for j = 1, ..., p to reflect the prior

information that all subsets of the covariates are equally likely.

3. Simulation study

We compare the proposed method with the frequentist procedures of Portnoy (2003) and

Peng and Huang (2008) implemented in quantreg package (Koenker, 2010) in R (R De-

velopment Core Team, 2010), as well as the parametric heterodskedastic logistic model (1)

with L = 1 and q0(τ) = log[τ/(1 − τ)]. We fit three versions of the semiparametric model

by varying the base quantile function and the number of basis function: logistic q0 with

L = 4 and L = 8, and the asymmetric Laplace q0 with L = 4. For priors we select c = 10,

a = b = 0.1, and ρj
iid∼ Unif(0, 1) for all models, ϕ ∼ Unif(0, 1) for the asymmetric Laplace,

and because there is only a single covariate we fix θ1 = 1 so it is included with probability

1. We consider three simulation designs:

(1) β0(τ) = log[τ/(1− τ)]; β1(τ) = 2

(2) β0(τ) = sign(0.5− τ) log(1− 2|0.5− τ |); β1(τ) = 2τ

(3) β0(τ) = Φ−1(τ); β1(τ) = 2min{τ − 0.5, 0}

where β0 for the second simulation is the double exponential quantile function. Data are

generated by sampling X1i
iid∼ Unif(-1,1), Ui

iid∼ Unif(0,1), and setting Zi = β0(Ui)+X1iβ1(Ui).

Censoring times are generated as Ci ∼ Unif(-2,7) for all designs, giving 20-30% censoring for
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three scenarios. Sample datasets from each design are plotted in Figure 2. For each design

we generated S = 200 data sets with n = 250. Models are compared in terms of estimating

the covariate’s β1(τ) using root mean squared error RMSE(τ) =
√

1
S

∑S
s=1[β1(τ)− β̂

(s)
1 (τ)]2,

where β̂
(s)
1 (τ) is the estimate (posterior mean for Bayesian methods) of β1(τ) for dataset s.

We also compute the coverage of 95% intervals.

[Figure 2 about here.]

[Figure 3 about here.]

In the first design, the effect of the covariate is constant across quantile levels, and the

model-based Bayesian methods are far more effective than the frequentist approaches (Figure

3) because they share information across quantile levels. For the Bayesian methods, the

results are not very sensitive to the base quantile function or the number of knots. For

these methods, the true quantile curve is obtained by setting α01 = 2 in the location and

α11 = ... = αL1 = 0 in the shape/scale component of the model. Therefore, one might expect

the L = 1 model to be optimal because there are fewer unnecessary parameters. However,

we find this model actually performs the worst in the tails, perhaps because of inflexibility

in the shape of the quantile function.

For designs two and three, the true quantile curves cannot be fit exactly with a finite

number of basis functions for the Bayesian methods. However, the semiparametric approach

remains competitive with the non-parametric frequentist methods in these cases. For the

second design with smooth (linear) β1(τ) the model with logistic base quantile function and

L = 4 terms has smaller RMSE than the frequentist methods for all quantile levels, with

the largest difference in the tails. The true quantile function for the third design has a point

of non-differentiability at τ = 0.5, and the Bayesian methods have a peak in RMSE at this

value. However, even in this difficult setting, the Bayesian methods with L > 1 have the

appropriate coverage and the smallest RMSE for most quantile levels.
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In addition, we consider a five-predictor design with β0(τ) = 2Φ−1(τ), β1(τ) = 2min{τ −

0.5, 0}, β2(τ) = 2τ , β3(τ) = 2, β4(τ) = 1, and β5(τ) = 0. The covariates are drawn Xji
iid∼

Unif(-1,1); all other settings, models, and priors the same as above. For the Portnoy method

(Peng & Huang is similar), the RMSE averaged over quantile levels (plots of RMSE and

coverage by quatile level can be found in Web Appendix C) are 0.313 (β1), 0.330 (β2), and

0.331 (average of β3−β5). For the Bayesian model with Logistic q0, the corresponding RMSEs

are 0.290, 0.296, and 0.264 for L = 1, 0.282, 0.306, and 0.239 for L = 4, and 0.286, 0.327,

and 0.238 for L = 10. For the asymmetric Laplace model with L = 4, the corresponding

RMSEs are 0.295, 0.316, and 0.248. Therefore, as in the single predictor settings, the Bayesian

models are competitive with other approaches for complex quantile functions (β1 and β2),

and provide substantial improvements for simple quantile functions (β3 − β5).

4. Analysis of the UIS data

To illustrate the Bayesian model and compare with previous approaches, we use the UIS drug

treatment study data available in the quantreg package in R, from Hosmer and Lemeshow

(1998) and analyzed using quantile regression in Portnoy (2003) and Koenker (2008). The

response is time until relapse, and there are n = 575 observations with complete data. We

use p = 8 predictors: number of previous drug treatments (NDT), IV drug use (IV; “Yes”

= 1, “No” = -1), treatment (TRT; “long” = 1, “short” = -1), compliance fraction (FRAC),

race (RACE; “white” = 1, “Non-white” = -1), age (AGE), site (SITE; “A” = 1, “B”=-1),

and the interaction between age and site. All variables are scaled to lie in [-1,1] via the

transformation 2[X −min(X)]/[max(X)−min(X)]− 1.

We first select the base quantile function, q0, and the number of basis functions, L, using

test set validation. The data are split into m1 = 0.8n training observations, y1, and m2 =

0.2n testing observations, y2. Since the usual summaries such as mean squared error are

inappropriate for censored survival data, we compare models using the log pseudo maximum
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likelihood (LPML) statistic (Ibrahim et al., 2001). The LPML statistic is the log density of

y2 given y1, i.e., log f(y2|y1) =
∫
log f(y2|y1,α)f(α|y1)dα =

∫
log f(y2|α)f(α|y1)dα. This

is approximated using MCMC output as

LPML ≈ 1

S

S∑
s=1

m2∑
i=1

δ∗i log{f [log(Y ∗
i )|X∗

i ,α
(s)]}+ (1− δ∗i ) log

{
1− F [log(Y ∗

i )|X∗
i ,α

(s)]
}
,

where S is the number of MCMC samples, α(s) is the draw of α for sample s, (Y ∗
1 ,X

∗
1, δ

∗
1),

..., (Y ∗
m2

,X∗
m2

, δ∗m2
) are the test set data, and f and F are defined in (6) and (7), respectively.

An advantage of this criterion is that it evaluates the entire response density, i.e., all quantile

levels. Models with larger LPML are preferred.

We fit the model using logistic, asymmetric Laplace and t quantile functions for the base

distribution q0. For each base distribution, we fit the model with L = 1, 4, 8, and 12 using

same uninformative priors as in Section 3 except that θj ∼ Bernoulli(0.5) for j = 1, ..., p

to perform variable selection. Models with L = 1 refer to the parametric location-scale

model in (1) with residual distribution determined by q0. For each base quantile function

L = 8 maximized LPML, therefore for each base distribution a semiparametric fit with

L > 1 is preferred to the parametric model with L = 1. For all L, the asymmetric Laplace

base quantile function maximized LPML. Therefore, we present the results assuming the

asymmetric Laplace base distribution and L = 8.

Figures 4 and 5 plot the results for the Portnoy (2003) and Bayesian methods, respectively.

Using either method, long treatment, high compliance fraction, and white race have positive

associations with survival, while the number of previous drug treatments and site A have

negative associations. The most striking difference between the fits is that the Bayesian

estimates are far smoother across quantile levels. This borrowing of information across

quantile levels leads to narrower intervals than the frequentist approach. As a result, the

intervals for the number of previous drug treatments, treatment, and interaction between

age and site exclude zero for the Bayesian model for all quantile levels.
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[Figure 4 about here.]

[Figure 5 about here.]

With high probability, most of the covariates are included in the location but not in

the shape/scale (Figure 5, upper left corner of each plot). Three variables have posterior

probability (i.e., the posterior mean of θj) of at least 0.5 of a non-constant quantile function:

IV drug use, compliance fraction, and site. IV drug use has little effect early in the follow-up,

but a negative effect on upper quantiles. Compliance fraction has a stronger positive effect

early in the follow-up, while the quantile function for site is concave, with stronger negative

effects in both tails than in the center of the distribution.

[Figure 6 about here.]

To illustrate the predictive model, Figure 6 plots the fitted survival curves and density for

three values of compliance fraction. For each level of compliance the density is right skewed,

resembling the asymmetric Laplace base quantile function (the posterior 95% interval of

the shape parameter ϕ is (0.20,0.40), giving right-skewness). The most prominent effect of

compliance fraction is the shift the density; the median log survival time is 3.5, 5.2, and

7.1 for the three increasing values of compliance fraction in the top right panel of Figure 6.

However, compliance fraction also affects the shape of the survival distribution.

We conduct five-fold cross-validation to compare the predictive performance of the Bayesian

model with the classical approach. Evaluating predictions is challenging because standard

approaches such as the prediction mean squared error cannot be used do to censoring, and

other measures cannot be used because the classical quantile method produces only linear

quantile estimates and not a full predictive distribution. Therefore, we use the recently-

proposed criteria of Saha-Chaudhuri and Heagerty (2013), described in Web Appendix D.

The results in Web Appendix D show that the Bayesian method gives an improvement

compared to the classical method at low quantile levels, and both methods give similar results
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for the median. The Bayesian model also provides more stable estimates. For example, denote

Ri = SE[qP (τ |Xi)]/SE[qB(τ |Xi)] as the ratio of standard errors for the Portnoy (standard

errors based on 1000 bootstrap samples) and Bayesian (posterior standard deviation) esti-

mates of the τ quantile for subject i. The mean (90% interval) of Ri across subject is 1.55

(1.11, 2.24) for τ = 0.05 and 1.32 (1.10, 1.57) for τ = 0.50.

Figure 6 compares the predictive model for two subjects using the Bayesian and classical

approaches. The bottom right panel plots the estimated (from the training set) quantiles

q̂(τ |Xi) =
∑p

j=0Xijβ̂j(τ) for several τ . For the first subject, the quantiles are increasing in

τ for both methods, and both methods produce similar estimates. For the second subject,

the classical estimates are decreasing for 9 of the 19 quantile levels (the worst case in this

dataset). In fact, the estimated median is larger than the estimated 0.75 quantile. These

decreasing quantiles clearly prohibit predictive densities and survival probabilities as given

in Figure 6 for the Bayesian model. Therefore, proposed approach not only provides an

arbitrarily flexible model for the quantile function, it also provides more precise estimates of

the quantile function and permits straight-forward predictions for individual subjects.

5. Discussion

In this paper, we propose a model for quantile regression for censored data. Unlike parametric

models such as the accelerated failure time model, the proposed semi-parametric model is

flexible enough to accommodate any valid quantile process at a finite number of quantile

levels providing robustness to model misspecification. The simulation study shows that when

data are generated from the location-scale model on which the prior is centered, the new

method provides a large improvement over nonparametric frequentist methods. In other

cases, it remains competitive with previous approaches. In the real data example, we find

that the Bayesian method identifies similar broad scale features as the frequentist approach,

but often has smaller uncertainty estimates and thus identifies more significant effects.
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A drawback of the proposed method is computation time. The analysis of the UIS data

took around 3.5 hours compared to a few seconds for the method of Portnoy (2003). Also,

while there are clearly advantages to modeling all quantile levels simultaneously, it is also

possible that this may over-smooth in some situations. A possible remedy to over-smoothing

is to replace the autoregressive priors for the basis coefficients with independent priors.
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