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Quantile regression is often used when a comprehensive relationship between a response variable and one
or more explanatory variables is desired. The traditional frequentists’ approach to quantile regression has
been well developed around asymptotic theories and efficient algorithms. However, not much work has
been published under the Bayesian framework. One challenging problem for Bayesian quantile regression
is that the full likelihood has no parametric forms. In this paper, we propose a Bayesian quantile regression
method, the linearly interpolated density (LID) method, which uses a linear interpolation of the quantiles
to approximate the likelihood. Unlike most of the existing methods that aim at tackling one quantile at a
time, our proposed method estimates the joint posterior distribution of multiple quantiles, leading to higher
global efficiency for all quantiles of interest. Markov chain Monte Carlo algorithms are developed to carry
out the proposed method. We provide convergence results that justify both the algorithmic convergence
and statistical approximations to an integrated-likelihood-based posterior. From the simulation results, we
verify that LID has a clear advantage over other existing methods in estimating quantities that relate to two
or more quantiles.
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1. Introduction

Quantile regression, as a supplement to the mean regression, is often used when a comprehensive
relationship between the response variable y and the explanatory variables x is desired. Consider
the following linear model:

yi = xT
i β + εi, i = 1,2, . . . , n, (1.1)

where yi is the response variable, xi is a p × 1 vector consisting of p explanatory variables, β is
a p × 1 vector of coefficients for the explanatory variables, and εi is the error term. The quantile
regression analysis models the τ th conditional quantile of y given x as:

Qyi
(τ |xi) = xT

i β(τ ), i = 1,2, . . . , n, (1.2)
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which is equivalent to (1.1) with Qεi
(τ |xi) = 0. The τ -specific coefficient vector β(τ) can be

estimated by minimizing the loss function:

min
β(τ)

n∑
i=1

ρτ

(
yi − xT

i β(τ )
)
, (1.3)

where ρτ (u) = uτ if u ≥ 0, and ρτ (u) = u(τ − 1) if u < 0; see Koenker [6].
To make inference on the quantile regression, one could use the asymptotic normal distribution

of the estimates or use the bootstrap method. Aside from the regular bootstrap such as the residual
bootstrap and the (x, y) bootstrap, one could also use Parzen, Wei and Ying [10]’s method or the
Markov chain marginal bootstrap method (He and Hu [5]).

In contrast to the rich literature on quantile regression with the frequentist view, not much work
has been done under the Bayesian framework. The most challenging problem for Bayesian quan-
tile regression is that the likelihood is usually not available unless the conditional distribution for
the error is assumed.

Yu and Moyeed [17] proposed an idea of employing a likelihood function based on the asym-
metric Laplace distribution. In their work, Yu and Moyeed assumed that the error term follows
an independent asymmetric Laplace distribution

fτ (u) = τ(1 − τ)e−ρτ (u), u ∈ R, (1.4)

where ρτ (u) is the loss function of quantile regression. The asymmetric Laplace distribution is
very closely related to quantile regression since the mode of fτ (u) is the solution to (1.3). Reich,
Bondell and Wang [11] developed a Bayesian approach for quantile regression assuming that
the error term follows an infinite mixture of Gaussian densities and their prior for the residual
density is stochastically centered on the asymmetric Laplace distribution. Kottas and Gelfand
[7] implemented a Bayesian median regression by introducing two families of distributions with
median zero and the Dirichlet process prior. Dunson and Taylor [4] used a substitution likelihood
proposed by Lavine [9] to make inferences based on the posterior distribution. One property of
Dunson and Taylor’s method is that it allows regression on multiple quantiles simultaneously.
Tokdar and Kadane [15] proposed a semiparametric Bayesian approach for simultaneous anal-
ysis of quantile regression models based on the observation that when there is only a univariate
covariate, the monotonicity constraint can be satisfied by interpolating two monotone curves,
and the Bayesian inference can be carried out by specifying a prior on the two monotone curves.
Taddy and Kottas [14] developed a fully nonparametric model-based quantile regression based
on Dirichlet process mixing. Kottas and Krnjajić [8] extended this idea to the case where the
error distribution changes nonparametrically with the covariates. Recently, Yang and He [16]
proposed a Bayesian empirical likelihood method which targets on estimating multiple quantiles
simultaneously, and justified the validity of the posterior based inference.

In this paper, we propose a Bayesian method, which aims at estimating the joint posterior
distribution of multiple quantiles and achieving “global” efficiency for quantiles of interest.
We consider a Bayesian approach to estimating multiple quantiles as follows. Let τ1, . . . , τm

be m quantiles in model (1.2) and Bm = (β(τ1), . . . , β(τm)). Let X = (x1, . . . , xn)
′ and Y =

(y1, . . . , yn) be the observations of size n. For each pair of observation (xi, yi), the likelihood
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L(Bm|xi, yi) = p(yi |xi,Bm) is not available. However if we include fi , the probability density
function (pdf) of the conditional distribution y|xi , as the nuisance parameter, then the likelihood
L(Bm,fi |xi, yi) = p(yi |xi,Bm,fi) = fi(yi). This is to treat Bayesian quantile regression as a
semi-parametric problem: the parameter of interest is finite dimensional and the nuisance pa-
rameter is nonparametric. To eliminate the nuisance parameter, we use the integrated likelihood
methods recommended by Berger, Liseo and Wolpert [1]. More specifically, let θfi

be all the
quantiles of fi , and θm,i = xiBm be the m quantiles of interest. We can define p(yi |xi,Bm) as

p(yi |xi,Bm) =
∫

fi∈Fθm,i

p(yi |θfi
)d�θm,i

(fi), (1.5)

where Fθm,i
denotes the subset of well-behaved pdfs (will be defined precisely in Section 3.2)

with those m quantiles equal to θm,i , �θm,i
(·) denotes the prior on fi |θm,i ∈ Fθm,i

(will be spec-
ified in Section 3.2), and p(yi |θfi

) = fi(yi) because fi(y|xi) is determined by the conditional
quantile functions. Here, p(yi |xi,Bm) can be viewed as an integral of a function or an expec-
tation with the densities as the random variable. The posterior distribution of Bm|X,Y can be
written as

p(Bm|X,Y) ∝ πm(Bm|X)L(Y |X,Bm), (1.6)

where πm(Bm|X) is the prior on Bm and L(Y |X,Bm) = ∏n
i=1 p(yi |xi,Bm).

One practical difficulty with the above approach is that the integration step to remove the nui-
sance parameter is computationally infeasible except for the case of m = 1 (Doss [3]). To circum-
vent this issue, we consider a different approximation to the likelihood. Note that xiBm gives the
m quantiles of the conditional distribution y|xi based on model (1.2). These m quantiles can be
used to construct an approximate conditional distribution y|xi through linear interpolation. With
this approximate likelihood, an approximate posterior distribution becomes available. We show
that the total variation distance between the approximate posterior distribution and p(Bm|X,Y)

(the posterior based on the integrated likelihood) goes to 0 as τ1, . . . , τm becomes dense in (0,1)

as m → ∞. A Markov chain Monte Carlo (MCMC) algorithm can then be developed to sample
from the approximate posterior distribution. The recent work of Reich, Fuentes and Dunson [12]
used large-sample approximations to the likelihood to do Bayesian quantile regression. Their
approach also aims to achieve global efficiency over multiple quantiles, and can adapt to account
for spatial correlation. In contrast, our work uses approximations at a fixed sample size n and
provides a Bayesian interpretation of the posterior quantities.

The rest of the paper is organized as follows. Section 2 introduces the proposed method. Sec-
tion 3 provides the convergence property of the algorithm as well as the approximate posterior
distribution. Section 4 compares the proposed method with some existing methods through sim-
ulation studies and applies the proposed method to real data. Section 5 provides concluding
remarks.

2. Methodology

In this section, we describe the linearly interpolated density to be used in approximating the
likelihood, and then give the layout of our MCMC algorithm for posterior inference. We list
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again the basic setting introduced in Section 1. Let X = (x1, . . . , xn)
′ and Y = (y1, . . . , yn) be

the observations. Let τ1, . . . , τm be m quantiles in model (1.2) and Bm = (β(τ1), . . . , β(τm)). We
are interested in the posterior distribution Bm|X,Y .

2.1. Linearly interpolated density

The likelihood is generally not assumed under the quantile regression model, but xiBm gives the
m quantiles of the conditional distribution y|xi . With the linearly interpolated density based on
the m quantiles, we can approximate the true likelihood from a sequence of specified quantile
functions.

Here is how the linear interpolation idea works in a simple setting. Suppose Z ∼ F(z), where
F(z) is the cumulative distribution function (cdf) of Z. Let f (z) be the pdf of Z. Let τz = F(z),
and τ1, τ2 be two constants such that 0 ≤ τ1 < τz < τ2 ≤ 1. Then F−1(τ1) < z < F−1(τ2) if f (z)

is continuous and non-zero on the support of Z. We can approximate f (z) by

τ2 − τ1

F−1(τ2) − F−1(τ1)
, (2.1)

because

τ2 − τ1

F−1(τ2) − F−1(τ1)
= τ2 − τ1

d
dτ

F−1(τ ∗)(τ2 − τ1)
= f

(
z∗), (2.2)

where τ1 < τ ∗ < τ2 and z∗ = F−1(τ ∗) ∈ (F−1(τ1),F
−1(τ2)).

Now we extend the interpolation idea to model (1.2). Given Bm = (β(τ1), β(τ2), . . . , β(τm)),
we could calculate the linearly interpolated density f̂i (yi |xi,Bm), i = 1,2, . . . , n, by

f̂i (yi |xi,Bm) =
[

m−1∑
j=1

I{yi∈(xiβ(τj ),xiβ(τj+1))}
τj+1 − τj

xiβ(τj+1) − xiβ(τj )

]

(2.3)
+ I{yi∈(−∞,xiβ(τ1))}τ1f1(yi) + I{yi∈(xiβ(τm),∞)}(1 − τm)f2(yi),

where f1 is distributed as the left half of N(xiβ(τ1), σ
2), f2 is distributed as the right half of

N(xiβ(τm), σ 2), and σ 2 is some pre-specified parameter.
Let p̂m(Y |X,Bm) = ∏n

i=1 f̂i (yi |xi,Bm) denote the approximate likelihood. One possible
prior πm(Bm|X) on Bm is a truncated normal N(μ,
) satisfying

xiβ(τ1) < xiβ(τ2) < · · · < xiβ(τm), i = 1,2, . . . , n. (2.4)

Since we include the intercept in model (1.2), the first element of xi is 1, and at least the parallel
quantile regression lines satisfy (2.4). The corresponding posterior is

p̂m(Bm|X,Y) = πm(Bm|X)p̂m(Y |X,Bm)

p̂m(Y |X)
, (2.5)
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where p̂m(Y |X) = ∫
πm(Bm|X)p̂m(Y |X,Bm)dBm. In the next section, we give a MCMC algo-

rithm to sample Bm from this posterior. We show later that the total variation distance between
this posterior distribution and the target posterior p(Bm|X,Y) goes to 0 as m goes to infinity.

2.2. Algorithm of the linearly interpolated density (LID) method

We incorporate the linearly interpolated density into the following modified Metropolis–Hastings
algorithm to draw samples from p̂m(Bm|X,Y).

1. Choose an initial value B0
m for Bm. One good choice is to use the parallel quantile estimates,

that is, all the slopes for the quantiles are the same and the intercepts are different. We could
use the quantreg (a function in R) estimates of the slopes for the median as the initial slopes,
and use the quantreg estimates of the intercepts for each quantile as the initial intercepts.
In case a lower quantile has a larger intercept than an upper quantile, we could order the
intercepts such that the intercepts increase with respect to τ . If there are ties, we could
add an increasing sequence with respect to τ to the intercepts to distinguish them. Another
possible choice for the initial value is to use Bondell, Reich and Wang [2]’s estimate which
guarantees the non-crossing of the quantiles.

2. Approximate the densities. With the initial values of the parameters, we can calculate the
linearly interpolated density f̂ 0

i (yi |xi,B
0
m), i = 1,2, . . . , n, by plugging B0

m into equation

(2.3). Let L0 = ∏n
i=1 f̂ 0

i (yi |xi,B
0
m).

3. Propose a move. Suppose we are at the kth iteration. Randomly pick a number τj from
τ1, τ2, . . . , τm and then randomly pick a component βk−1

l (τj ) of βk−1(τj ) to update. To
make sure that the proposed point β∗

l (τj ) satisfies constraint (2.4), we can calculate a
lower bound lj,l and an upper bound uj,l for β∗

l (τj ) and generate a value for β∗
l (τj ) from

Uniform(lj,l , uj,l). In case lj,l = −∞ or uj,l = ∞, we will use a truncated normal as the
proposal distribution. The details on how to find the bounds are in Appendix A.1. Denote
β∗(τj ) as the updated βk−1(τj ) by replacing its lth component βk−1

l (τj ) by the proposed
value β∗

l (τj ).
4. Set B∗

m = (βk−1(τ1), . . . , β
k−1(τj−1), β

∗(τj ), β
k−1(τj+1), . . . , β

k−1(τm)). We can calcu-
late the linearly interpolated density f̂ ∗

i (yi |xi,B
∗
m), i = 1,2, . . . , n, by plugging B∗

m into
equation (2.3). Let L∗ = ∏n

i=1 f̂ ∗
i (yi |xi,B

∗
m).

5. Calculate the acceptance probability

r = min

(
1,

πm(B∗
m|X)L∗q(B∗

m → Bk−1
m )

πm(Bk−1
m |X)Lk−1q(Bk−1

m → B∗
m)

)
, (2.6)

where q(Bk−1
m → B∗

m) denotes the transition probability from Bk−1
m to B∗

m. Notice that
these two transition probabilities cancel out if we choose symmetric proposals. Let Bk

m =
B∗

m with probability r , and Bk
m = Bk−1

m with probability 1 − r . If Bk
m = B∗

m, then Lk = L∗;
otherwise Lk = Lk−1.

6. Repeat steps 3–5 until the desired number of iterations is reached.
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3. Theoretical properties

In this section, we give the stationary distribution of the Markov chain in Section 2.2 for fixed
m, and study the limiting behavior of the stationary distribution as m → ∞.

3.1. Stationary distribution

Since we replace the true probability density function by the linearly interpolated density in the
Metropolis–Hastings algorithm in Section 2.2, it is not obvious what the stationary distribution
of the Markov chain is. The following theorem, whose proof is in Appendix A.2, says that the
Markov chain converges to p̂m(Bm|X,Y) defined in (2.5).

Theorem 3.1. The stationary distribution of the Markov chain constructed in Section 2.2 is
p̂m(Bm|X,Y).

This theorem implies that we can use the algorithm in Section 2.2 to draw samples from
p̂m(Bm|X,Y).

3.2. Limiting distribution

In this section, we show that as m → ∞, the total variation distance between the stationary
distribution p̂m(Bm|X,Y) and the target distribution p(Bm|X,Y) (defined in (1.6)) goes to 0.
The proof requires the following assumption about fi , the probability density function of the
conditional distribution y|xi . All the results are stated for a given sample size n.

Assumption 3.1. Let qf,τ be the τ th quantile of f , and M1, M2 and c be constants. The densities
of y|xi are in the set F = {f | ∫ f dx = 1,0 ≤ f ≤ M1, |f ′| < M2,and f (x) < c/

√
m for x <

qf,1/m and for x > qf,(m−1)/m,m = 2,3, . . .}.

The assumption implies that F is a set of bounded probability density functions with bounded
first derivatives and controlled tails. The restrictions on the tails are not hard to satisfy. The
Cauchy distribution, for example, is in the set. For the Cauchy distribution, the 1

m
th quantile is

q1/m = tan(π( 1
m

− 1
2 )) = − ctan( π

m
), so f (q1/m) = 1

π
1

1+ctan2(π/m)
= 1

π
sin2( π

m
) = O( 1

m2 ) < c√
m

for some c. The set Fθm,i
appeared in (1.5) denotes the subset of F that contains all the pdfs

with those m quantiles equal to θm,i = xiBm.
We now specify the prior on fi(·|xi) ∈ F , denoted by �(fi), and the prior on fi |θm,i ∈ Fθm,i

,
denoted by �θm,i

(fi). We know from (1.2) that the τ th quantile of fi(·|xi), the conditional dis-
tribution of y given x = xi , is xT

i β(τ ). Let us consider β(τ) as a function of τ , where 0 ≤ τ ≤ 1.
Because xT

i β(τ ), 0 ≤ τ ≤ 1, determines all the quantiles of fi(·|xi) based on (1.2), and therefore
determines fi(·|xi) (Koenker [6]), the prior on fi(·|xi) can be induced from the prior on β(τ).
To satisfy Assumption 3.1, we use a Gaussian process prior on β ′′(τ ) so that β(τ) has the second
derivative, and then fi ’s have the first derivative. The prior �(fi) on fi(·|xi) is induced from the
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prior on β(τ). The prior �θm,i
(fi) on fi |θm,i is induced by �(fi). The prior on Bm can be ob-

tained from the prior on β(τ), because Bm is a vector of m points on β(τ). With the specification
of these priors, p(yi |xi,Bm) and p(Bm|X,Y) given in (1.5) and (1.6) are well-defined.

To study the limiting distribution as m → ∞, we assume the sequence of quantile levels satis-
fies the following condition:

�τ = max
0≤j≤m

(τj+1 − τj ) = O

(
1

m

)
, (3.1)

where τ0 = 0 and τm+1 = 1. This condition is not difficult to satisfy. For example, we can start
from m0 = M0 quantile levels: τ = 1

M0+1 , 2
M0+1 , . . . ,

M0
M0+1 , which include the quantiles of inter-

est. We add new τ ’s one by one so that the new τ divides one of the previous intervals in halves,
that is, τ = 1

2(M0+1)
, 3

2(M0+1)
, . . . ,

2M0+1
2(M0+1)

, 1
4(M0+1)

, 3
4(M0+1)

, . . . ,
4M0+3

4(M0+1)
and so on. For this

sequence of quantiles, we have �τ = max0≤j≤m(τj+1 − τj ) ≤ 2
m

= O( 1
m

).
To prove the convergence of distributions, we use the total variation norm, ‖μ1 − μ2‖TV =

supA |μ1(A)−μ2(A)| for two probability measures μ1 and μ2, where A denotes any measurable
set. It is more convenient to use the following equivalent definition (Robert and Casella [13],
page 253): ‖μ1 − μ2‖TV = 1

2 sup|h|≤1 | ∫ h(x)μ1(dx) − ∫
h(x)μ2(dx)|. The following theorem

gives the limiting distribution of the stationary distribution as m → ∞.

Theorem 3.2. ‖p̂m(Bm|X,Y)−p(Bm|X,Y)‖TV → 0 as m → ∞, assuming τj+1 − τj = O( 1
m

).

The proof is in Appendix A.3. As a consequence of Theorem 3.2, we have the following
corollary.

Corollary 3.1. Let η be the quantiles of interest, which is contained in Bm. We have
‖p̂m(η|X,Y) − p(η|X,Y)‖TV → 0 as m → ∞, assuming τj+1 − τj = O( 1

m
).

The above corollary says that by the linearly interpolated density approximation the posterior
distribution of the quantiles of interest converges to the target distribution. The theorem requires
that we need to increase m in the algorithm. Although m is fixed in applications, the convergence
result lends support to p̂m(Bm|X,Y) as an approximation.

4. Comparison of LID with other methods

In this section, we compare the proposed method with some existing methods through three
simulation studies. In the quantile regression model (1.2), if the conditional densities fi(y|xi)

are different for different observation i, one could apply weighted quantile regression to improve
the efficiency of estimates (Koenker [6], page 160). In this case, the loss function would be:

min
β(τ)

n∑
i=1

wiρτ

(
yi − xT

i β(τ )
)
, (4.1)
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where wi denotes the weight for the ith observation. The optimal weight is the conditional den-
sity fi(y|xi) at the τ th quantile. Because the density is not available generally, one could approx-
imate the density by a nonparametric density estimate. One simple way is to use

ŵi = 2�τ

xT
i (βrq(τ + �τ) − βrq(τ − �τ))

, i = 1,2, . . . , n, (4.2)

where βrq denotes the unweighted quantile regression estimate. When the weight is negative
due to crossing of quantile estimates, we just set the weight to be 0. This occurs with probability
tending to 0 as n increases. To make inference, one could use the asymptotic normal distribution
of the estimates or use the bootstrap method.

4.1. Example 1

The data were generated from the following model

yi = a + bxi + (1 + xi)εi, i = 1,2, . . . , n, (4.3)

where εi ’s are independent and identically distributed (i.i.d.) as N(0,1). We chose n = 100,
a = 5 and b = 1. The covariate xi was generated from lognormal(0,1). The corresponding quan-
tiles of interest are

Qyi
(τ |xi) = a(τ) + b(τ)xi, i = 1,2, . . . , n, τ = 1

m + 1
, . . . ,

m

m + 1
. (4.4)

Here we report the results on the 0.25, 0.5 and 0.75 quantiles and the difference between the
0.75 and 0.5 quantiles by comparing the mean squared error (MSE) for the slope estimates
from five different methods: the proposed linearly interpolated density method (LID), the regular
regression of quantiles (RQ), the weighted RQ with estimated weights (EWRQ) (Koenker [6]),
the pseudo-Bayesian method of Yu and Moyeed [17], and the approximate Bayesian method of
Reich, Fuentes and Dunson [12]. We generated 100 data sets for computing the MSE.

For LID and Yu and Moyeed’s method, we used the normal prior N(0,100) for each parameter
a(τ) and b(τ). For LID, we chose m = 49, equally spaced quantiles between 0 and 1 (which
include the quantiles of interest: 0.25, 0.5 and 0.75), and the length of the Markov chain is
1 000 000 (half of the samples were used as burn-in). We ran such a long chain because we
updated 98 parameters one at a time, which means we updated each parameter about 10 000
times on average. Every thousandth sample in the chain is taken for the posterior inference. For
Yu and Moyeed’s method, a Markov chain with length 5 000 (half of the samples were used as
burn-in) seems enough for the inference, partially because Yu and Moyeed’s method is dealing
with one quantile at a time and has only two parameters. For Reich et al.’s method, we simply
used their code and set the length of the chain to be 2 000 (half of the samples were used as
burn-in). Notice that for LID and Reich et al.’s method, only one run is needed to provide all
results in the table, and other methods have to run for each τ .

From the results in Table 1, we can see that LID did better than RQ and Yu and Moyeed’s
method. Comparing with weighted RQ and Reich et al.’s method, LID gave better estimates
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Table 1. n × MSE and its standard error (in parentheses) for Example 1

Methods b(0.25) b(0.5) b(0.75) b(0.75) − b(0.5)

RQ 23 (4) 19 (2) 19 (3) 15 (2)
EWRQ 16 (2) 13 (2) 15 (3) 11 (2)
LID 22 (4) 15 (2) 13 (1) 3 (0.6)
Yu and Moyeed 21 (4) 17 (2) 16 (3) 10 (1)
Reich et al. 16 (2) 15 (2) 23 (3) 11 (1)

for upper quantiles but poorer estimates for lower quantiles. For estimating the differences of
quantiles, LID is clearly the best among all the methods.

4.2. Example 2

The data were generated from the following model

yi = a + bx1,i + cx2,i + (1 + x1,i + x2,i )εi , i = 1,2, . . . , n, (4.5)

where εi ’s are i.i.d. from N(0,1). In the simulations, we chose n = 100, a = 5, b = 1, and
c = 1. The covariates x1,i was generated from lognormal(0,1) and x2,i was generated from
Bernoulli(0.5). The corresponding quantiles of interest are

Qyi
(τ |xi) = a(τ) + b(τ)x1,i + c(τ )x2,i , i = 1,2, . . . , n, τ = 1

m + 1
, . . . ,

m

m + 1
. (4.6)

We compared the five methods with the same performance criterion as Example 1. We gener-
ated 400 data sets for computing the MSE. The results are in Table 2. We see that for the quantile
estimates, LID (with m = 15) and EWRQ perform similarly, and LID outperforms RQ and Yu
and Moyeed’s method. For estimating the difference between quantiles, LID outperforms RQ,
EWRQ, and Yu and Moyeed’s method. Comparing with Reich et al.’s method, LID gave better
estimates for parameter b but poorer estimates for parameter c.

From the two simulation studies, we can see that most of the time the proposed LID method
works as well as the weighted RQ, and outperforms RQ and Yu and Moyeed’s method, for

Table 2. n × MSE and its standard error (in parenthesis) for Example 2

Methods b(0.5) b(0.75) b(0.75) − b(0.5) c(0.5) c(0.75) c(0.75) − c(0.5)

RQ 22 (3) 25 (3) 20 (3) 47 (9) 52 (7) 42 (6)
EWRQ 15 (2) 19 (3) 16 (2) 46 (8) 49 (8) 40 (6)
LID 17 (2) 18 (2) 2.9 (0.4) 36 (5) 42 (6) 18 (2)
Yu and Moyeed 20 (2) 21 (3) 13 (2) 42 (7) 45 (6) 28 (4)
Reich et al. 20 (3) 29 (5) 11 (1) 4.2 (0.6) 8.6 (1.1) 3.1 (0.3)
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estimating quantiles. LID performs better than Reich et al.’s method in some cases and is outper-
formed by Reich et al.’s method in others. LID has a significant advantage over other methods
in estimating the difference of quantiles. When several quantiles are of interest, including their
differences, there is a clear efficiency gain in using LID.

4.3. Empirical studies

In this section, we look at the June 1997 Detailed Natality Data published by the National Center
for Health Statistics. Following the analysis in Koenker ([6], page 20), we use 65 536 cases of
recorded singleton births. We consider the following quantile model for the birth weight data:

Qyi
(τ |xi) = a(τ) + b(τ)xi,1 + c(τ )xi,2 + d(τ)xi,3 + e(τ )xi,4, i = 1,2, . . . , n, (4.7)

where xi,1 is the indicator function that indicates whether the mother went to prenatal care for
at least two times, xi,2 is the indicator function that indicates whether the mother smoked or
not, xi,3 is mother’s weight gain in pounds during pregnancy, and xi,4 is the square of mother’s
weight gain. The mother’s weight gain enters the model as a quadratic following the discussion in
Koenker ([6], page 23). To make the results more comparable, we consider a slight modification
of model (4.7):

Qyi
(τ |xi) = a(τ) + b(τ)xi,1 + c(τ )xi,2 + d∗(τ )x∗

i,3 + e∗(τ )x∗
i,4, i = 1,2, . . . , n, (4.8)

where x∗
i,3 denotes the standardized mother’s weight gain during pregnancy and x∗

i,4 denotes the
standardized square of mother’s weight gain. We compared the results from RQ and LID (with
m = 39) for the full data set. Here we focus on the 0.1, 0.25, and 0.5 quantiles. The results are
in Table 3. From the results, we can see that the estimates from both methods are very close. The
standard error from LID seems to be smaller than that from RQ.

To see how good the estimates are, we compared the estimated conditional quantile with the
local quantile estimated nonparametrically. We considered two subsets of the full data. For the
first subset of the data, we selected xi,1 = 1, xi,2 = 1, and 24.5 < xi,3 < 25.5, within which
range there are 96 observations. For the second subset of the data, we selected xi,1 = 1, xi,2 = 0,
and 44.5 < xi,3 < 45.5, within which range there are 1318 observations. Then we calculated the
quantile of yi in each subset of the data as the local quantile, and compared it with the predicted
quantiles from RQ and LID. The results are presented in Table 4. From the results, we can see
that all the estimated quantiles are very close to the local quantile estimates.

Table 3. Estimates of the parameters and their standard errors (in parentheses) for the birth weight data

Methods b(0.1) c(0.1) d∗(0.1) e∗(0.1) b(0.25) c(0.25) d∗(0.25) e∗(0.25) b(0.5) c(0.5) d∗(0.5) e∗(0.5)

RQ −0.030 −0.22 0.37 −0.21 −0.049 −0.22 0.19 −0.075 −0.061 −0.22 0.127 −0.020
(0.009) (0.01) (0.02) (0.02) (0.008) (0.008) (0.011) (0.012) (0.006) (0.007) (0.008) (0.008)

LID −0.045 −0.22 0.36 −0.22 −0.052 −0.23 0.20 −0.081 −0.061 −0.23 0.131 −0.026
(0.007) (0.003) (0.002) (0.003) (0.001) (0.002) (0.008) (0.007) (0.003) (0.003) (0.002) (0.002)
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Table 4. Estimates of the local quantile

xi,1 = 1, xi,2 = 1, and xi,3 = 25 xi,1 = 1, xi,2 = 0, and xi,3 = 45

Quantile Local quantile RQ LID Local quantile RQ LID

0.1 2.54 2.44 2.43 2.89 2.90 2.88
0.25 2.81 2.76 2.75 3.18 3.17 3.17
0.5 3.02 3.07 3.07 3.54 3.47 3.46

Another way to check the model fitness is to build the model by leaving out a portion of the
data, and then evaluate the model performance on the out-of-bag portion of the data. Here we
compared the out-of-bag quantile coverage (the percentage of the testing data that fall below the
τ th quantile line) by randomly selecting 10% of the data as the out-of-bag testing data and using
the rest as the training data. The results based on a random splitting are summarized in Table 5.
We can see that both RQ and LID have coverages similar to the nominal values.

From this example we can see that the model parameter estimates, including the quantiles,
from both RQ and LID are very similar, but LID estimates are associated with lower standard
errors, which corroborates our findings in simulation studies.

5. Conclusion

In this paper we proposed a Bayesian method for quantile regression which estimates multiple
quantiles simultaneously. We proved the convergence of the proposed algorithm, i.e., the station-
ary distribution of the Markov chain constructed by LID would converge to the target distribution
as the number of quantiles m goes to infinity. In the simulation studies, we found that choosing
m = 15 already gave satisfactory results. In the comparison of the proposed LID method with
other methods, LID provides comparable results for quantile estimation, and gives much better
estimates of the difference of the quantiles than other methods (RQ, weighted RQ, and Yu and
Moyeed’s method).

The LID method is computationally intensive, and it requires longer time than other methods
to obtain the results. Therefore, it is of interest to optimize LID to reduce the computational cost.

The LID method uses m quantiles to construct an approximation to the likelihood through
linear interpolation. For large m, it would be useful to impose regularization to make inference
more efficient. We may assume that β(τ) can be characterized by a few parameters, so we have a

Table 5. Out-of-bag quantile coverage

Methods τ = 0.1 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.9

RQ 0.100 0.251 0.504 0.749 0.895
LID 0.093 0.249 0.506 0.748 0.909
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low-dimensional parameter space no matter what m is, and the computation of LID would sim-
plify. On the other hand, this approach involves additional assumption or approximation which
would require additional work for its theoretical justification.

Appendix: Technical details

A.1. Find the bounds for the proposal distribution

This is for step 3 of the algorithm in Section 2.2. For each observation (yi, xi), i = 1,2, . . . , n,
we can calculate a lower bound lj,l,i and an upper bound uj,l,i . Then lj,l = maxi (lj,l,i ) is taken
as the maximum of all these lower bounds and uj,l = mini (uj,l,i ) is taken as the minimum of all
these upper bounds. The formula to calculate lj,l,i and uj,l,i is given as follows.

If 1 < j < m and xi,l > 0, where xi,l denotes the lth element of xi , then

lj,l,i = xT
i βk−1(τj−1) − ∑

t =l xi,tβ
k−1
t (τj )

xi,l

and

uj,l,i = xT
i βk−1(τj+1) − ∑

t =l xi,tβ
k−1
t (τj )

xi,l

.

If 1 < j < m and xi,l < 0, then

lj,l,i = xT
i βk−1(τj+1) − ∑

t =l xi,tβ
k−1
t (τj )

xi,l

and

uj,l,i = xT
i βk−1(τj−1) − ∑

t =l xi,tβ
k−1
t (τj )

xi,l

.

If j = 1 and xi,l > 0, then

lj,l,i = −∞ and uj,l,i = xT
i βk−1(τj+1) − ∑

t =l xi,tβ
k−1
t (τj )

xi,l

.

If j = 1 and xi,l < 0, then

lj,l,i = xT
i βk−1(τj+1) − ∑

t =l xi,tβ
k−1
t (τj )

xi,l

and uj,l,i = ∞.

If j = m and xi,l > 0, then

lj,l,i = xT
i βk−1(τj−1) − ∑

t =l xi,tβ
k−1
t (τj )

xi,l

and uj,l,i = ∞.
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If j = m and xi,l < 0, then

lj,l,i = −∞ and uj,l,i = xT
i βk−1(τj−1) − ∑

t =l xi,tβ
k−1
t (τj )

xi,l

.

If xi,l = 0, then

lj,l,i = −∞ and uj,l,i = ∞.

A.2. Proof of Theorem 3.1

We will verify the detailed balance condition to show that the stationary distribution is
p̂m(Bm|X,Y). Denote the probability of moving from Bm to B ′

m by K(Bm → B ′
m) and the

proposal distribution by q(Bm → B ′
m). We have

p̂m(Bm|X,Y)K
(
Bm → B ′

m

)
= p̂m(Bm|X,Y)q

(
Bm → B ′

m

)
min

(
1,

πm(B ′
m|X)p̂m(Y |X,B ′

m)q(B ′
m → Bm)

πm(Bm|X)p̂m(Y |X,Bm)q(Bm → B ′
m)

)

= πm(Bm|X)p̂m(Y |X,Bm)

p̂m(Y |X)
q
(
Bm → B ′

m

)
min

(
1,

πm(B ′
m|X)p̂m(Y |X,B ′

m)q(B ′
m → Bm)

πm(Bm|X)p̂m(Y |X,Bm)q(Bm → B ′
m)

)

= πm(B ′
m|X)p̂m(Y |X,B ′

m)

p̂m(Y |X)
q
(
B ′

m → Bm

)
min

(
πm(Bm|X)p̂m(Y |X,Bm)q(Bm → B ′

m)

πm(B ′
m|X)p̂m(Y |X,B ′

m)q(B ′
m → Bm)

,1

)

= p̂m

(
B ′

m|X,Y
)
K

(
B ′

m → Bm

)
.

So the detailed balance condition is satisfied.

A.3. Proof of Theorem 3.2

To prove Theorem 3.2, we need three lemmas.

Lemma A.1. Let p̂m(yi |θm,i) = f̂i (yi |xi,Bm) given in (2.3). Assume τj+1 − τj = O( 1
m

). Then

(a) |p̂m(yi |θm,i)−p(yi |θfi
)| = O( 1√

m
) uniformly in the support of y as well as uniformly in i.

(b) |p̂m(Y |X,Bm) − p(Y |X,Bm)| = O( 1√
m

) uniformly in the support of Y .

Proof. (a) We will prove this proposition in two different cases.
Case 1: If yi is between two quantiles we are using, in which case we can find two consec-

utive quantiles qi,τj
and qi,τj+1 such that yi ∈ [qi,τj

, qi,τj+1), where 1 ≤ j ≤ m − 1, then by the



Bayesian quantile regression with approximate likelihood 845

mechanism of linear interpolation, we have the following equation

p̂m(yi |θm,i) = τj+1 − τj

qi,τj+1 − qi,τj

= τj+1 − τj

F−1
i (τj+1) − F−1

i (τj )

= τj+1 − τj

(F−1
i )′(τ ∗)(τj+1 − τj )

= τj+1 − τj

(1/fi(y
∗
i ))(τj+1 − τj )

= fi

(
y∗
i

)
,

where τ ∗ ∈ [τj , τj+1), y
∗
i ∈ [qi,τj

, qi,τj+1), Fi denotes the cdf of yi |θf , Fi(y
∗
i ) = τ ∗, and fi

denotes the pdf of yi |θf .
Now we want to show that∣∣fi

(
y∗
i

) − fi(yi)
∣∣ ≤ sup

y∈[qi,τj
,qi,τj+1 )

fi(y) − inf
y∈[qi,τj

,qi,τj+1 )
fi(y) ≤ M2δ, (A.1)

where δ = √
2(τj+1 − τj )/M2 and M2 is given in Assumption 3.1. If qi,τj+1 − qi,τj

≤ δ, then
|fi(y

∗
i ) − fi(yi)| = |f ′

i (y
†)(y∗

i − yi)| ≤ M2δ, where y† ∈ [qi,τj
, qi,τj+1). Now let us consider the

case that qi,τj+1 − qi,τj
> δ. We will show that∫ qi,τj+1

qi,τj

fi(y)dy > τj+1 − τj , (A.2)

if

sup
y∈[qi,τj

,qi,τj+1 )

fi(y) − inf
y∈[qi,τj

,qi,τj+1 )
fi(y) > M2δ. (A.3)

Letting yinf = arg infy∈[qi,τj
,qi,τj+1 ) fi(y), ysup = arg supy∈[qi,τj

,qi,τj+1 ) fi(y), without loss of gen-

erality, we can assume that yinf < ysup. It is obvious that ysup −yinf > δ, because if ysup −yinf ≤ δ,
then

sup
y∈[qi,τj

,qi,τj+1 )

fi(y) − inf
y∈[qi,τj

,qi,τj+1 )
fi(y) = fi(ysup) − fi(yinf)

(A.4)
= ∣∣f ′

i

(
y†)∣∣(ysup − yinf) ≤ M2δ.

We can find a line with slope M2 that goes through (ysup, fi(ysup)). This line would be below
the curve fi(y) in [yinf, ysup), since fi(y) − fi(ysup) = f ′

i (y
††)(y − ysup) ≥ M2(y − ysup) for

y < ysup, which leads to fi(y) ≥ fi(ysup) + M2(y − ysup).
Now we can check the area S formed by the line, y = yinf, y = ysup, and fi(y) = 0. Figure 1

shows two possible cases. The shaded region is S.
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Figure 1. Illustration of the two possible cases of the area S: trapezoid and triangle. The solid curve stands
for f (y). The dotted line stands for the line with slope M2. The shaded area is S.

If fi(ysup) − M2(ysup − yinf) ≥ 0, the area is equal to

[2fi(ysup) − M2(ysup − yinf)](ysup − yinf)

2
≥ fi(ysup)(ysup − yinf)

2
(A.5)

>
M2δ

2

2
= τj+1 − τj .

If fi(ysup) − M2(ysup − yinf) < 0, the area is equal to

fi(ysup)
2

2M2
>

(M2δ)
2

2M2
= τj+1 − τj . (A.6)

Therefore, in both cases, we have∫ qi,τj+1

qi,τj

fi(y)dy ≥
∫ ysup

yinf

fi(y)dy ≥ S > τt+1 − τj , (A.7)

which contradicts with the fact that
∫ qi,τj+1
qi,τj

fi(y)dy = τj+1 − τj . Hence

∣∣fi

(
y∗
i

) − fi(yi)
∣∣ ≤ sup

y∈[qi,τj
,qi,τj+1 )

fi(y) − inf
y∈[qi,τj

,qi,τj+1 )
fi(y)

≤ M2δ =
√

2M2(τj+1 − τj )

= O

(
1√
m

)
,

given that τj+1 − τj = O( 1
m

).
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Now let us consider the second case.
Case 2: If yi is a point in the tail, which means yi ≤ qi,τ1 or yi > qi,τm , then we have

p(yi |θfi
) = fi(yi) < c√

m
from Assumption 3.1. For the tail part, we can use a truncated normal

for the interpolation so that p̂m(yi |θm,i) < c√
m

. Therefore, we have |p̂m(yi |θm,i) − p(yi |θfi
)| <

2c√
m

= O( 1√
m

).

Thus for both Cases 1 and 2, we showed |p̂m(yi |θm,i) − p(yi |θfi
)| = O( 1√

m
).

(b) Let us first show |p̂m(yi |θm,i) − p(yi |xi,Bm)| = O( 1√
m

).

∣∣p̂m(yi |θm,i) − p(yi |xi,Bm)
∣∣

=
∣∣∣∣
∫

fi∈Fθm,i

p̂m(yi |θm,i)d�θm,i
(fi) −

∫
fi∈Fθm,i

p(yi |θfi
)d�θm,i

(fi)

∣∣∣∣
≤

∫
fi∈Fθm,i

∣∣p̂m(yi |θm,i) − p(yi |θfi
)
∣∣d�θm,i

(fi)

= O

(
1√
m

)
.

Because p̂m(Y |X,Bm) = ∏n
i=1 p̂m(yi |xi,Bm) and p(Y |X,Bm) = ∏n

i=1 p(yi |xi,Bm), we can
show |p̂m(Y |X,Bm) − p(Y |X,Bm)| = O( 1√

m
) simply by induction. We will show the case with

n = 2 here. ∣∣p̂m(Y |X,Bm) − p(Y |X,Bm)
∣∣

= ∣∣p̂m(y1|X,Bm)p̂m(y2|X,Bm) − p(y1|X,Bm)p(y2|X,Bm)
∣∣

= ∣∣p̂m(y1|X,Bm)p̂m(y2|X,Bm) − p̂m(y1|X,Bm)p(y2|X,Bm)

+ p̂m(y1|X,Bm)p(y2|X,Bm) − p(y1|X,Bm)p(y2|X,Bm)
∣∣

≤ ∣∣p̂m(y1|X,Bm)
[
p̂m(y2|X,Bm) − p(y2|X,Bm)

]∣∣
+ ∣∣[p̂m(y1|X,Bm) − p(y1|X,Bm)

]
p(y2|X,Bm)

∣∣
= M1O

(
1√
m

)
+ M1O

(
1√
m

)

= O

(
1√
m

)
,

where M1 is given in Assumption 3.1. The proof can be easily generalized to the case with
n > 2. �

Lemma A.2.

(a) Eπm(|p̂m(Y |X,Bm) − p(Y |X,Bm)|) = O( 1√
m

).

(b) Eπm(|p̂m(Y |X,Bm) − p̂m−1(Y |X,Bm−1)|) = O( 1√
m

).
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Proof. Part (a) of Lemma A.2 follows immediately from Lemma A.1(b). Part (b) of Lemma A.2
can be obtained by applying Lemma A.2(a) twice. �

Lemma A.3. |p̂m(Y |X) − p(Y |X)| = O( 1√
m

).

Proof. ∣∣p̂m(Y |X) − p(Y |X)
∣∣

=
∣∣∣∣
∫

πm(Bm|X)
[
p̂m(Y |X,Bm) − p(Y |X,Bm)

]
dBm

∣∣∣∣
≤

∫
πm(Bm|X)|p̂m(Y |X,Bm) − p(Y |X,Bm)|dBm

= Eπm

(∣∣p̂m(Y |X,Bm) − p(Y |X,Bm)
∣∣)

= O

(
1√
m

)
. �

Now we are ready to prove Theorem 3.2. We have∥∥p̂m(Bm|X,Y) − p(Bm|X,Y)
∥∥

TV

= 1

2
sup
|h|≤1

∣∣∣∣
∫

h(Bm)

(
πm(Bm|X)p̂m(Y |X,Bm)

p̂m(Y |X)
− πm(Bm|X)p(Y |X,Bm)

p(Y |X)

)
dBm

∣∣∣∣
≤ 1

2

∫
πm(Bm|X)

∣∣∣∣ p̂m(Y |X,Bm)

p̂m(Y |X)
− p(Y |X,Bm)

p(Y |X)

∣∣∣∣dBm

= 1

2

∫
πm(Bm|X)

∣∣∣∣ p̂m(Y |X,Bm)p(Y |X) − p̂m(Y |X)p(Y |X,Bm)

p̂m(Y |X)p(Y |X)

∣∣∣∣dBm

= 1

2

∫
πm(Bm|X)

×
∣∣∣∣ [p̂m(Y |X,Bm) − p(Y |X,Bm)]p(Y |X) + p(Y |X,Bm)[p(Y |X) − p̂m(Y |X)]

p̂m(Y |X)p(Y |X)

∣∣∣∣dBm

≤ 1

2

∫
πm(Bm|X)

× |p̂m(Y |X,Bm) − p(Y |X,Bm)|p(Y |X) + p(Y |X,Bm)|p(Y |X) − p̂m(Y |X)|
p̂m(Y |X)p(Y |X)

dBm

= 1

2

[
Eπm(|p̂m(Y |X,Bm) − p(Y |X,Bm)|)

p̂m(Y |X)
+ |p̂m(Y |X) − p(Y |X)|

p̂m(Y |X)

]
.

We already know from Lemma A.3 that p̂m(Y |X) → p(Y |X) as m → ∞, so for any e∗ ∈
(0,p(Y |X)), there exists an m∗ such that |p̂m(Y |X) − p(Y |X)| < e∗ for m ≥ m∗. We can see
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that

LB = min
(
p̂m0(Y |X), p̂m0+1(Y |X), . . . , p̂m∗−1(Y |X),p(Y |X) − e∗)

is a lower bound for p̂m(Y |X), where m0 is the minimum number of quantiles we use. Therefore,
‖p̂m(Bm|X,Y) − p(Bm|X,Y)‖TV ≤ 1

2LB
[Eπm(|p̂m(Y |X,Bm) − p(Y |X,Bm)|) + |p̂m(Y |X) −

p(Y |X)|] = O( 1√
m

) → 0 as m → ∞ (because of Lemmas A.2 and A.3).
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