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Extracting value from vast amounts of data presents a major challenge to all those working in
computer science and related fields. Machine learning technology is already used to help with this
task in a wide range of industrial applications, including search engines, DNA sequencing, stock
market analysis and robot locomotion. As its usage becomes more widespread, the skills taught in
this book will be invaluable to students.

Designed for final-year undergraduate and graduate students, this gentle introduction is ideally
suited to readers without a solid background in linear algebra and calculus. It covers basic prob-
abilistic reasoning to advanced techniques in machine learning, and crucially enables students to
construct their own models for real-world problems by teaching them what lies behind the meth-
ods. A central conceptual theme is the use of Bayesian modelling to describe and build inference
algorithms. Numerous examples and exercises are included in the text. Comprehensive resources
for students and instructors are available online.
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PREFACE

The data explosion

We live in a world that is rich in data, ever increasing in scale. This data comes from many different
sources in science (bioinformatics, astronomy, physics, environmental monitoring) and commerce
(customer databases, financial transactions, engine monitoring, speech recognition, surveillance,
search). Possessing the knowledge as to how to process and extract value from such data is therefore
a key and increasingly important skill. Our society also expects ultimately to be able to engage
with computers in a natural manner so that computers can ‘talk’ to humans, ‘understand’ what they
say and ‘comprehend’ the visual world around them. These are difficult large-scale information
processing tasks and represent grand challenges for computer science and related fields. Similarly,
there is a desire to control increasingly complex systems, possibly containing many interacting parts,
such as in robotics and autonomous navigation. Successfully mastering such systems requires an
understanding of the processes underlying their behaviour. Processing and making sense of such
large amounts of data from complex systems is therefore a pressing modern-day concern and will
likely remain so for the foreseeable future.

Machine learning

Machine learning is the study of data-driven methods capable of mimicking, understanding and
aiding human and biological information processing tasks. In this pursuit, many related issues arise
such as how to compress data, interpret and process it. Often these methods are not necessarily
directed to mimicking directly human processing but rather to enhancing it, such as in predicting
the stock market or retrieving information rapidly. In this probability theory is key since inevitably
our limited data and understanding of the problem forces us to address uncertainty. In the broadest
sense, machine learning and related fields aim to ‘learn something useful’ about the environment
within which the agent operates. Machine learning is also closely allied with artificial intelligence,
with machine learning placing more emphasis on using data to drive and adapt the model.

In the early stages of machine learning and related areas, similar techniques were discovered
in relatively isolated research communities. This book presents a unified treatment via graphical
models, a marriage between graph and probability theory, facilitating the transference of machine
learning concepts between different branches of the mathematical and computational sciences.

Whom this book is for

The book is designed to appeal to students with only a modest mathematical background in under-
graduate calculus and linear algebra. No formal computer science or statistical background is
required to follow the book, although a basic familiarity with probability, calculus and linear algebra
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xvi Preface

would be useful. The book should appeal to students from a variety of backgrounds, including
computer science, engineering, applied statistics, physics and bioinformatics that wish to gain an
entry to probabilistic approaches in machine learning. In order to engage with students, the book
introduces fundamental concepts in inference using only minimal reference to algebra and calculus.
More mathematical techniques are postponed until as and when required, always with the concept
as primary and the mathematics secondary.

The concepts and algorithms are described with the aid of many worked examples. The exercises
and demonstrations, together with an accompanying MATLAB toolbox, enable the reader to exper-
iment and more deeply understand the material. The ultimate aim of the book is to enable the reader
to construct novel algorithms. The book therefore places an emphasis on skill learning, rather than
being a collection of recipes. This is a key aspect since modern applications are often so specialised
as to require novel methods. The approach taken throughout is to describe the problem as a graphical
model, which is then translated into a mathematical framework, ultimately leading to an algorithmic
implementation in the BRMLtoolbox.

The book is primarily aimed at final year undergraduates and graduates without significant
experience in mathematics. On completion, the reader should have a good understanding of the
techniques, practicalities and philosophies of probabilistic aspects of machine learning and be well
equipped to understand more advanced research level material.

The structure of the book

The book begins with the basic concepts of graphical models and inference. For the independent
reader Chapters 1, 2, 3, 4, 5, 9, 10, 13, 14, 15, 16, 17, 21 and 23 would form a good introduction to
probabilistic reasoning, modelling and machine learning. The material in Chapters 19, 24, 25 and 28
is more advanced, with the remaining material being of more specialised interest. Note that in each
chapter the level of material is of varying difficulty, typically with the more challenging material
placed towards the end of each chapter. As an introduction to the area of probabilistic modelling, a
course can be constructed from the material as indicated in the chart.

The material from Parts I and II has been successfully used for courses on graphical models. I
have also taught an introduction to probabilistic machine learning using material largely from Part
III, as indicated. These two courses can be taught separately and a useful approach would be to teach
first the graphical models course, followed by a separate probabilistic machine learning course.

A short course on approximate inference can be constructed from introductory material in Part I
and the more advanced material in Part V, as indicated. The exact inference methods in Part I can be
covered relatively quickly with the material in Part V considered in more depth.

A timeseries course can be made by using primarily the material in Part IV, possibly combined
with material from Part I for students that are unfamiliar with probabilistic modelling approaches.
Some of this material, particularly in Chapter 25, is more advanced and can be deferred until the
end of the course, or considered for a more advanced course.

The references are generally to works at a level consistent with the book material and which are
in the most part readily available.
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1: Probabilistic reasoning
2: Basic graph concepts
3: Belief networks
4: Graphical models
5: Efficient inference in trees
6: The junction tree algorithm
7: Making decisions

8: Statistics for machine learning
9: Learning as inference

10: Naive Bayes
11: Learning with hidden variables
12: Bayesian model selection

13: Machine learning concepts
14: Nearest neighbour classification
15: Unsupervised linear dimension reduction
16: Supervised linear dimension reduction
17: Linear models
18: Bayesian linear models
19: Gaussian processes
20: Mixture models
21: Latent linear models
22: Latent ability models

23: Discrete-state Markov models
24: Continuous-state Markov models
25: Switching linear dynamical systems
26: Distributed computation

27: Sampling
28: Deterministic approximate inference
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Part I:
Inference in probabilistic models

Part II:
Learning in probabilistic models

Part III:
Machine learning

Part IV:
Dynamical models

Part V:
Approximate inference
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xviii Preface

Accompanying code

The BRMLtoolbox is provided to help readers see how mathematical models translate into actual
MATLAB code. There is a large number of demos that a lecturer may wish to use or adapt to help
illustrate the material. In addition many of the exercises make use of the code, helping the reader gain
confidence in the concepts and their application. Along with complete routines for many machine
learning methods, the philosophy is to provide low-level routines whose composition intuitively
follows the mathematical description of the algorithm. In this way students may easily match the
mathematics with the corresponding algorithmic implementation.

Website

The BRMLtoolbox along with an electronic version of the book is available from

www.cs.ucl.ac.uk/staff/D.Barber/brml

Instructors seeking solutions to the exercises can find information at www.cambridge.org/brml,
along with additional teaching materials.

Other books in this area

The literature on machine learning is vast with much relevant literature also contained in statistics,
engineering and other physical sciences. A small list of more specialised books that may be referred
to for deeper treatments of specific topics is:

� Graphical models
– Graphical Models by S. Lauritzen, Oxford University Press, 1996.
– Bayesian Networks and Decision Graphs by F. Jensen and T. D. Nielsen, Springer-Verlag,

2007.
– Probabilistic Networks and Expert Systems by R. G. Cowell, A. P. Dawid, S. L. Lauritzen

and D. J. Spiegelhalter, Springer-Verlag, 1999.
– Probabilistic Reasoning in Intelligent Systems by J. Pearl, Morgan Kaufmann, 1988.
– Graphical Models in Applied Multivariate Statistics by J. Whittaker, Wiley, 1990.
– Probabilistic Graphical Models: Principles and Techniques by D. Koller and N. Friedman,

MIT Press, 2009.
� Machine learning and information processing

– Information Theory, Inference and Learning Algorithms by D. J. C. MacKay, Cambridge
University Press, 2003.

– Pattern Recognition and Machine Learning by C. M. Bishop, Springer-Verlag, 2006.
– An Introduction to Support Vector Machines, N. Cristianini and J. Shawe-Taylor, Cambridge

University Press, 2000.
– Gaussian Processes for Machine Learning by C. E. Rasmussen and C. K. I. Williams, MIT

Press, 2006.
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NOTATION

V A calligraphic symbol typically denotes a set of random variables page 3

dom(x) Domain of a variable 3

x = x The variable x is in the state x 3

p(x = tr) Probability of event/variable x being in the state true 3

p(x = fa) Probability of event/variable x being in the state false 3

p(x, y) Probability of x and y 4

p(x ∩ y) Probability of x and y 4

p(x ∪ y) Probability of x or y 4

p(x|y) The probability of x conditioned on y 4

X ⊥⊥Y|Z Variables X are independent of variables Y conditioned on variables Z 7

X��Y|Z Variables X are dependent on variables Y conditioned on variables Z 7∫
x
f (x) For continuous variables this is shorthand for

∫
x
f (x)dx and for

discrete variables means summation over the states of x,
∑

x f (x)

14

I[S] Indicator : has value 1 if the statement S is true, 0 otherwise 16

pa(x) The parents of node x 24

ch(x) The children of node x 24

ne(x) Neighbours of node x 24

dim (x) For a discrete variable x, this denotes the number of states x can take 34〈
f (x)

〉
p(x)

The average of the function f (x) with respect to the distribution p(x) 170

δ(a, b) Delta function. For discrete a, b, this is the Kronecker delta, δa,b and for
continuous a, b the Dirac delta function δ(a − b)

172

dim(x) The dimension of the vector/matrix x 183

� (x = s, y = t) The number of times x is in state s and y in state t simultaneously 207

�x
y The number of times variable x is in state y 293

D Dataset 303

n Data index 303

N Number of dataset training points 303

S Sample Covariance matrix 331

σ (x) The logistic sigmoid 1/(1+ exp(−x)) 371

erf(x) The (Gaussian) error function 372

xa:b xa, xa+1, . . . , xb 372

i ∼ j The set of unique neighbouring edges on a graph 624

Im The m×m identity matrix 644
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BRMLTOOLBOX

The BRMLtoolbox is a lightweight set of routines that enables the reader to experiment with
concepts in graph theory, probability theory and machine learning. The code contains basic routines
for manipulating discrete variable distributions, along with more limited support for continuous
variables. In addition there are many hard-coded standard machine learning algorithms. The website
contains also a complete list of all the teaching demos and related exercise material.

BRMLTOOLKIT

Graph theory

ancestors - Return the ancestors of nodes x in DAG A
ancestralorder - Return the ancestral order or the DAG A (oldest first)
descendents - Return the descendents of nodes x in DAG A
children - Return the children of variable x given adjacency matrix A
edges - Return edge list from adjacency matrix A
elimtri - Return a variable elimination sequence for a triangulated graph
connectedComponents - Find the connected components of an adjacency matrix
istree - Check if graph is singly connected
neigh - Find the neighbours of vertex v on a graph with adjacency matrix G
noselfpath - Return a path excluding self-transitions
parents - Return the parents of variable x given adjacency matrix A
spantree - Find a spanning tree from an edge list
triangulate - Triangulate adjacency matrix A
triangulatePorder - Triangulate adjacency matrix A according to a partial ordering

Potential manipulation

condpot - Return a potential conditioned on another variable
changevar - Change variable names in a potential
dag - Return the adjacency matrix (zeros on diagonal) for a belief network
deltapot - A delta function potential
disptable - Print the table of a potential
divpots - Divide potential pota by potb
drawFG - Draw the factor graph A
drawID - Plot an influence diagram
drawJTree - Plot a junction tree
drawNet - Plot network
evalpot - Evaluate the table of a potential when variables are set
exppot - Exponential of a potential
eyepot - Return a unit potential
grouppot - Form a potential based on grouping variables together
groupstate - Find the state of the group variables corresponding to a given ungrouped state
logpot - Logarithm of the potential
markov - Return a symmetric adjacency matrix of Markov network in pot
maxpot - Maximise a potential over variables
maxsumpot - Maximise or sum a potential over variables
multpots - Multiply potentials into a single potential
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xxii BRMLTOOLBOX

numstates - Number of states of the variables in a potential
orderpot - Return potential with variables reordered according to order
orderpotfields - Order the fields of the potential, creating blank entries where necessary
potsample - Draw sample from a single potential
potscontainingonly - Returns those potential numbers that contain only the required variables
potvariables - Returns information about all variables in a set of potentials
setevpot - Sets variables in a potential into evidential states
setpot - Sets potential variables to specified states
setstate - Set a potential’s specified joint state to a specified value
squeezepots - Eliminate redundant potentials (those contained wholly within another)
sumpot - Sum potential pot over variables
sumpotID - Return the summed probability and utility tables from an ID
sumpots - Sum a set of potentials
table - Return the potential table
ungrouppot - Form a potential based on ungrouping variables
uniquepots - Eliminate redundant potentials (those contained wholly within another)
whichpot - Returns potentials that contain a set of variables

Routines also extend the toolbox to deal with Gaussian potentials: multpotsGaussianMoment.m, sumpotGaus-

sianCanonical.m, sumpotGaussianMoment.m, multpotsGaussianCanonical.m See demoSumprodGaussCanon.m, demo-

SumprodGaussCanonLDS.m, demoSumprodGaussMoment.m

Inference
absorb - Update potentials in absorption message passing on a junction tree
absorption - Perform full round of absorption on a junction tree
absorptionID - Perform full round of absorption on an influence diagram
ancestralsample - Ancestral sampling from a belief network
binaryMRFmap - Get the MAP assignment for a binary MRF with positive W
bucketelim - Bucket elimination on a set of potentials
condindep - Conditional independence check using graph of variable interactions
condindepEmp - Compute the empirical log Bayes factor and MI for independence/dependence
condindepPot - Numerical conditional independence measure
condMI - Conditional mutual information I(x,y|z) of a potential
FactorConnectingVariable - Factor nodes connecting to a set of variables
FactorGraph - Returns a factor graph adjacency matrix based on potentials
IDvars - Probability and decision variables from a partial order
jtassignpot - Assign potentials to cliques in a junction tree
jtree - Setup a junction tree based on a set of potentials
jtreeID - Setup a junction tree based on an influence diagram
LoopyBP - Loopy belief propagation using sum-product algorithm
MaxFlow - Ford Fulkerson max-flow min-cut algorithm (breadth first search)
maxNpot - Find the N most probable values and states in a potential
maxNprodFG - N-max-product algorithm on a factor graph (returns the Nmax most probable states)
maxprodFG - Max-product algorithm on a factor graph
MDPemDeterministicPolicy - Solve MDP using EM with deterministic policy
MDPsolve - Solve a Markov decision process
MesstoFact - Returns the message numbers that connect into factor potential
metropolis - Metropolis sample
mostprobablepath - Find the most probable path in a Markov chain
mostprobablepathmult - Find the all source all sink most probable paths in a Markov chain
sumprodFG - Sum-product algorithm on a factor graph represented by A

Specific models

ARlds - Learn AR coefficients using a linear dynamical system
ARtrain - Fit auto-regressive (AR) coefficients of order L to v.
BayesLinReg - Bayesian linear regression training using basis functions phi(x)
BayesLogRegressionRVM - Bayesian logistic regression with the relevance vector machine
CanonVar - Canonical variates (no post rotation of variates)
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BRMLTOOLBOX xxiii

cca - Canonical correlation analysis
covfnGE - Gamma exponential covariance function
FA - Factor analysis
GMMem - Fit a mixture of Gaussian to the data X using EM
GPclass - Gaussian process binary classification
GPreg - Gaussian process regression
HebbML - Learn a sequence for a Hopfield network
HMMbackward - HMM backward pass
HMMbackwardSAR - Backward pass (beta method) for the switching Auto-regressive HMM
HMMem - EM algorithm for HMM
HMMforward - HMM forward pass
HMMforwardSAR - Switching auto-regressive HMM with switches updated only every Tskip timesteps
HMMgamma - HMM posterior smoothing using the Rauch–Tung–Striebel correction method
yHMMsmooth - Smoothing for a hidden Markov model (HMM)
HMMsmoothSAR - Switching auto-regressive HMM smoothing
HMMviterbi - Viterbi most likely joint hidden state of HMM
kernel - A kernel evaluated at two points
Kmeans - K-means clustering algorithm
LDSbackward - Full backward pass for a latent linear dynamical system (RTS correction method)
LDSbackwardUpdate - Single backward update for a latent linear dynamical system (RTS smoothing update)
LDSforward - Full forward pass for a latent linear dynamical system (Kalman filter)
LDSforwardUpdate - Single forward update for a latent linear dynamical system (Kalman filter)
LDSsmooth - Linear dynamical system: filtering and smoothing
LDSsubspace - Subspace method for identifying linear dynamical system
LogReg - Learning logistic linear regression using gradient ascent
MIXprodBern - EM training of a mixture of a product of Bernoulli distributions
mixMarkov - EM training for a mixture of Markov models
NaiveBayesDirichletTest - Naive Bayes prediction having used a Dirichlet prior for training
NaiveBayesDirichletTrain - Naive Bayes training using a Dirichlet prior
NaiveBayesTest - Test Naive Bayes Bernoulli distribution after max likelihood training
NaiveBayesTrain - Train Naive Bayes Bernoulli distribution using max likelihood
nearNeigh - Nearest neighbour classification
pca - Principal components analysis
plsa - Probabilistic latent semantic analysis
plsaCond - Conditional PLSA (probabilistic latent semantic analysis)
rbf - Radial basis function output
SARlearn - EM training of a switching AR model
SLDSbackward - Backward pass using a mixture of Gaussians
SLDSforward - Switching latent linear dynamical system Gaussian sum forward pass
SLDSmargGauss - Compute the single Gaussian from a weighted SLDS mixture
softloss - Soft loss function
svdm - Singular value decomposition with missing values
SVMtrain - Train a support vector machine

General
argmax - Performs argmax returning the index and value
assign - Assigns values to variables
betaXbiggerY - p(x>y) for x∼Beta(a,b), y∼Beta(c,d)
bar3zcolor - Plot a 3D bar plot of the matrix Z
avsigmaGauss - Average of a logistic sigmoid under a Gaussian
cap - Cap x at absolute value c
chi2test - Inverse of the chi square cumulative density
count - For a data matrix (each column is a datapoint), return the state counts
condexp - Compute normalised p proportional to exp(logp)
condp - Make a conditional distribution from the matrix
dirrnd - Samples from a Dirichlet distribution
field2cell - Place the field of a structure in a cell
GaussCond - Return the mean and covariance of a conditioned Gaussian
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xxiv BRMLTOOLBOX

hinton - Plot a Hinton diagram
ind2subv - Subscript vector from linear index
ismember sorted - True for member of sorted set
lengthcell - Length of each cell entry
logdet - Log determinant of a positive definite matrix computed in a numerically stable manner
logeps - log(x+eps)
logGaussGamma - Unnormalised log of the Gauss-Gamma distribution
logsumexp - Compute log(sum(exp(a).*b)) valid for large a
logZdirichlet - Log normalisation constant of a Dirichlet distribution with parameter u
majority - Return majority values in each column on a matrix
maxarray - Maximise a multi-dimensional array over a set of dimensions
maxNarray - Find the highest values and states of an array over a set of dimensions
mix2mix - Fit a mixture of Gaussians with another mixture of Gaussians
mvrandn - Samples from a multivariate Normal (Gaussian) distribution
mygamrnd - Gamma random variate generator
mynanmean - Mean of values that are not nan
mynansum - Sum of values that are not nan
mynchoosek - Binomial coefficient v choose k
myones - Same as ones(x), but if x is a scalar, interprets as ones([x 1])
myrand - Same as rand(x) but if x is a scalar interprets as rand([x 1])
myzeros - Same as zeros(x) but if x is a scalar interprets as zeros([x 1])
normp - Make a normalised distribution from an array
randgen - Generates discrete random variables given the pdf
replace - Replace instances of a value with another value
sigma - 1./(1+exp(-x))
sigmoid - 1./(1+exp(-beta*x))
sqdist - Square distance between vectors in x and y
subv2ind - Linear index from subscript vector.
sumlog - sum(log(x)) with a cutoff at 10e-200

Miscellaneous
compat - Compatibility of object F being in position h for image v on grid Gx,Gy
logp - The logarithm of a specific non-Gaussian distribution
placeobject - Place the object F at position h in grid Gx,Gy
plotCov - Return points for plotting an ellipse of a covariance
pointsCov - Unit variance contours of a 2D Gaussian with mean m and covariance S
setup - Run me at initialisation – checks for bugs in matlab and initialises path
validgridposition - Returns 1 if point is on a defined grid
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