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The nuclear matter parameters (NMPs), those underlie in the construction of the equation of state (EoS)
of neutron star matter, are not directly accessible. A Bayesian approach is applied to reconstruct the posterior
distributions of NMPs from EoS of neutron star matter. The constraints on lower-order parameters as imposed by
the finite nuclei observables are incorporated through appropriately chosen prior distributions. The calculations
are performed with two sets of pseudo data on the EoS whose true models are known. The median values of
second or higher order NMPs show sizeable deviations from their true values and associated uncertainties are
also larger. The sources of these uncertainties are identified as (i) the correlations among various NMPs and
(ii) leeway in the EoS of symmetric nuclear matter, symmetry energy, and neutron-proton asymmetry which
propagates into the posterior distributions of the NMPs.

I. INTRODUCTION

The bulk properties of neutron stars are instrumental in con-
straining the equation of state (EoS) of dense matter [1, 2].
The conditions of charge neutrality and β-equilibrium im-
posed on the neutron star matter renders it highly asymmetric
leading to neutron-proton ratio much larger than unity. The
nuclear part of the EoS can be decomposed into two main
components: the EoS of symmetric nuclear matter (SNM) and
density-dependent symmetry energy. The knowledge of the
EoS of neutron star matter may provide an alternative probe
to understand the behavior of underlying symmetric nuclear
matter and symmetry energy over a wide range of density
which may not be readily accessible in the terrestrial labo-
ratory. Usually, the components of neutron star matter EoS
are expressed in terms of nuclear matter parameters (NMPs),
namely, the energy per nucleon for symmetric nuclear matter,
symmetry energy and their density derivatives evaluated at the
saturation density (ρ0 ' 0.16 fm−3). The lower-order NMPs,
governing the behavior of neutron star EoS at low densities
are determined by nuclear models calibrated to the bulk prop-
erties of finite nuclei [3–7]. The higher-order NMPs are gen-
erally estimated using observed maximum neutron star mass
together with radius and tidal deformability corresponding to
the neutron star with canonical mass [8–10]. Such investi-
gations due to the lack of availability of enough experimental
data or for sake of simplicity are restricted to a small subspace
of NMPs.

Gravitational-wave astronomy through the observations of
gravitational wave signals emitted during the merging of bi-
nary neutron stars, promises unprecedented constraints on
the EoS of neutron star matter. The tidal deformability in-
ferred from these gravitational wave events encodes informa-
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tion about the EoS. For the first time, gravitational wave event
GW170817 was observed by LIGO-Virgo detector from a low
mass compact binary neutron star (BNS) merger with the to-
tal mass of the system 2.74+0.04

−0.01M� [11, 12]. Another grav-
itational wave signal likely originating from the coalescence
of BNS GW190425 is observed [13]. These two events have
already triggered many theoretical investigations to constrain
the EoS of neutron star matter [13–22]. The upcoming runs
of LIGO-Virgo and the Einstein Telescope are expected to ob-
serve many more gravitational wave signals emitted from co-
alescing neutron stars. The mass and radius of neutron stars,
observed either in isolation or in binaries, by the Neutron star
Interior Composition Explorer [23–25] have offered comple-
mentary constraints on the EoS. A sufficiently large number
of such observations may be employed to constrain the NMPs
directly which underlie in the construction of the EoS of neu-
tron star matter. Since one needs to estimate simultaneously
the values of about ten NMPs, investigations along this direc-
tion require computationally efficient statistical tools which
allow the evaluation of the likelihood function for the experi-
mental data that may require appropriate marginalization.

A Bayesian approach is often applied to analyze
gravitational-wave signals, which involves nearly fifteen pa-
rameters, to infer their source properties [26]. It has been
also extended to investigate the properties of short gamma-
ray burst [27], neutron star [28–30], the formation history of
binary compact objects [31–35], population using hierarchical
inference [11, 36] and to test general relativity [37–40]. Re-
cently, Bayesian approach has become a useful statistical tool
for parameter estimation in the field of nuclear and nuclear-
astrophysics. It allows one to obtain joint posterior distri-
butions of the model parameters and the correlations among
them for a given set of data. Various constraints on the pa-
rameters known a priori are incorporated through their prior
distributions.

Extraction of nuclear matter properties from the chiral ef-
fective field theory (EFT), in particular, the issue of over-
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fitting by appropriately choosing the prior is described in great
detail in Ref. [41]. Recently, Bayesian techniques have also
been employed to constrain symmetry energy [42], masses
and radii of neutron stars [43] using the bounds obtained
from chiral EFT. To obtain the symmetry energy parameters
from lower bound on neutron matter-energy [44]; to extract
the crustal properties of neutron star [45, 46]; to limit the
bounds on cold neutron star matter EoS from observational
constraints [47–49]; to test the compatibility of GW170817
event with multi-physics data [50, 51]; to constrain neutron
star matter from existing and upcoming constraints on the
gravitational wave and pulsar data [52]; to limit the neutron
star EoS with microscopic and macroscopic collisions [53];
to filter models based on astrophysical observations [54]; or
to limit the reach of nucleonic hypothesis in the astrophysical
context [22, 55] Bayesian techniques have been used exten-
sively.

It is common to study different correlations in the posterior
involving parameters and observables alike, within a Bayesian
analysis [21, 45, 50, 56]. The origin of these uncertainties is
embedded either in the underlying models used or in the vari-
ances of the data employed. Existing correlations and uncer-
tainties among the extracted nuclear matter properties from a
plethora of nuclear physics data both from the laboratory as
well as from the heavens and theoretical calculations at low
densities are often left for interpretation [21, 45, 50]. It is also
quite useful to test the limit of a certain type of data on phys-
ical quantities which are extracted by employing Bayesian
analyses. How far the constraints on the static properties of
a neutron star can pinpoint the nuclear matter parameters is
still a question of great interest. The same applies to the data
from heavy-ion collisions which can probe nuclear matter at
supra saturation densities [57–59]. These studies can be done
only in a controlled environment, as the present observations
associate large uncertainties on the data. We have tried to do
this by employing theoretical modeling to mimic data on neu-
tron star matter, as well as symmetric matter and symmetry
energy.

We first build the EoS of the neutron star matter by expand-
ing it around symmetric nuclear matter within the quadratic
approximation as most commonly employed. The EoS of
symmetric nuclear matter and density-dependent symmetry
energy, the two main components, are further expanded
around saturation density within the Taylor and n

3 expansions.
The expansion coefficients in the former case are the individ-
ual NMPs and their linear combinations in the latter case. A
suitable set of NMPs is chosen so that the resulting neutron
star matter EoS is consistent with the currently observed maxi-
mum mass of∼ 2M� and satisfies the causality condition. As
test cases, we employ these EoSs as pseudo data in a Bayesian
analysis. The true values of NMPs for the pseudo data are thus
known a priori . The constraints imposed on the lower-order
nuclear matter parameters by the experimental data, for the
bulk properties of finite nuclei, are incorporated through ap-
propriate choice of the prior distributions. The median values
of marginalized posterior distributions of NMPs and the as-
sociated uncertainties on them as obtained for both the EoS
models show similar trends. The inherent nature of the model

responsible for the deviations in the median values of NMPs
from their true values and uncertainties on them has been iden-
tified.

The paper is organized as follows, The Taylor and n
3 expan-

sions for the EoS of neutron star matter are briefly outlined in
Sec. II. a Bayesian approach is also discussed in the same
section. The results for the posterior distributions of NMPs
obtained from the EoS of symmetric nuclear matter, density-
dependent symmetry energy and the EoS of neutron star mat-
ter is presented in Sec. III. The main outcomes of the present
investigation are summarized in the last section.

II. METHODOLOGY

The nuclear part of the energy per nucleon for neutron star
matter ε(ρ, δ) at a given total nucleon density, ρ and asym-
metry, δ can be decomposed into the energy per nucleon for
the SNM, ε(ρ, 0) and the density-dependent symmetry energy,
J(ρ) in the parabolic approximation as,

ε(ρ, δ) = ε(ρ, 0) + J(ρ)δ2 + ..., (1)

where, δ =
(
ρn−ρp
ρ

)
with ρn and ρp being the neutron and

proton densities, respectively. The value of δ at a given ρ is
determined by the condition of β-equilibrium and the charge
neutrality. Once δ is known, the fraction of neutron, proton,
electron, muon can be easily evaluated. In the following, we
expand ε(ρ, 0) and J(ρ) appearing in Eq. (1) using Taylor
and n

3 expansions. The coefficients of expansion in case of the
Taylor correspond to the individual nuclear matter parameters.
In the latter case, they are expressed as linear combinations of
the nuclear matter parameters. These EoSs are used as pseudo
data in a Bayesian approach to reconstruct the posterior distri-
butions of nuclear matter parameters.

A. Taylor’s expansion

The ε(ρ, 0) and J(ρ) can be expanded around the saturation
density ρ0 as [60–64],

ε(ρ, 0) =
∑
n

an
n!

(
ρ− ρ0
3ρ0

)n
, (2)

J(ρ) =
∑
n

bn
n!

(
ρ− ρ0
3ρ0

)n
, (3)

so that,

ε(ρ, δ) =
∑
n

1

n!
(an + bnδ

2)

(
ρ− ρ0
3ρ0

)n
, (4)

where the coefficients an and bn are the nuclear matter param-
eters. We truncate the sum in Eqs. (2) and (3) at 4th order, i.e.,
n = 0 - 4. Therefore, the coefficients an and bn correspond
to,
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an ≡ ε0, 0,K0, Q0, Z0, (5)
bn ≡ J0, L0,Ksym,0, Qsym,0, Zsym,0. (6)

In Eqs. (5) and (6), ε0 is the binding energy per nucleon,
K0 the incompressibility coefficient, J0 the symmetry energy
coefficient, it’s slope parameter L0, Ksym,0 the symmetry en-
ergy curvature parameter, Q0(Qsym,0) and Z0(Zsym,0) are re-
lated to third and fourth order density derivatives of ε(ρ, 0) (
J(ρ)), respectively. The subscript zero indicates that all the
NMPs are calculated at the saturation density.

It may be noticed from Eq. (4) that the coefficients an and
bn may display some correlations among themselves provided
the asymmetry parameter depends weakly on the density. Fur-
ther, the Eq. (4) may converge slowly at high densities, i.e.,
ρ >> 4ρ0. This situation is encountered for the heavier neu-
tron stars. The neutron stars with a mass around 2M�, typi-
cally have central densities ∼ 4− 6ρ0.

B. n
3

expansion

Alternative expansion of ε(ρ, δ) can be obtained by expand-
ing ε(ρ, 0) and J(ρ) as [65, 66],

ε(ρ, 0) =

6∑
n=2

(a′n−2)

(
ρ

ρ0

)n
3

, (7)

J(ρ) =

6∑
n=2

(b′n−2)

(
ρ

ρ0

)n
3

, (8)

ε(ρ, δ) =

6∑
n=2

(a′n−2 + b′n−2δ
2)

(
ρ

ρ0

)n
3

. (9)

We refer this as the n
3 expansion. It is now evident from

Eqs.(7) and (8) that the coefficients of expansion are no-longer
the individual nuclear matter parameters unlike in case of Tay-
lor’s expansion. The values of the NMPs can be expressed in
terms of the expansion coefficients a′ and b′ as,


ε0
0
K0

Q0

Z0

 =


1 1 1 1 1
2 3 4 5 6
−2 0 4 10 18
8 0 −8 −10 0
−56 0 40 40 0



a′0
a′1
a′2
a′3
a′4

 , (10)


J0
L0

Ksym,0

Qsym,0

Zsym,0

 =


1 1 1 1 1
2 3 4 5 6
−2 0 4 10 18
8 0 −8 −10 0
−56 0 40 40 0



b′0
b′1
b′2
b′3
b′4

 . (11)

The relations between the expansion coefficients and the
NMPs are governed by the nature of functional form for
ε(ρ, 0) and J(ρ). The off-diagonal elements in the above ma-
trices would vanish for the Taylor’s expansion of ε(ρ, 0) and
J(ρ) as given by Eqs. (2) and (3), respectively. Therefore,

each of the expansion coefficients are simply the individual
NMPs given by Eqs. (5) and (6). Inverting the matrices in
Eqs. (10) and (11) we have,

a′0 =
1

24
(360ε0 + 20K0 + Z0),

a′1 =
1

24
(−960ε0 − 56K0 − 4Q0 − 4Z0),

a′2 =
1

24
(1080ε0 + 60K0 + 12Q0 + 6Z0),

a′3 =
1

24
(−576ε0 − 32K0 − 12Q0 − 4Z0),

a′4 =
1

24
(120ε0 + 8K0 + 4Q0 + Z0), (12)

b′0 =
1

24
(360J0 − 120L0 + 20Ksym,0 + Zsym,0),

b′1 =
1

24
(−960J0 + 328L0 − 56Ksym,0 − 4Qsym,0

−4Zsym,0),

b′2 =
1

24
(1080J0 − 360L0 + 60Ksym,0 + 12Qsym,0

+6Zsym,0),

b′3 =
1

24
(−576J0 + 192L0 − 32Ksym,0 − 12Qsym,0

−4Zsym,0),

b′4 =
1

24
(120J0 − 40L0 + 8Ksym,0 + 4Qsym,0

+Zsym,0). (13)

Each of the coefficients a′ and b′ are the linear combinations
of nuclear matter parameters in such a way that the lower
order parameters may contribute dominantly at low densi-
ties. The effects of higher-order parameters become promi-
nent with the increase in density.

C. Bayesian estimation of NMPs

A Bayesian approach enables one to carry out detailed sta-
tistical analysis of the parameters of a model for a given set
of fit data. It yields joint posterior distributions of model pa-
rameters which can be used to study not only the distributions
of given parameters but also to examine correlations among
model parameters. One can also incorporate prior knowl-
edge of the model parameters and various constraints on them
through the prior distributions. This approach is mainly based
on the Bayes theorem which states that [67],

P (θ|D) =
L(D|θ)P (θ)

Z
, (14)

where θ and D denote the set of model parameters and the fit
data. The P (θ|D) is the joint posterior distribution of the pa-
rameters, L(D|θ) is the likelihood function, P (θ) is the prior
for the model parameters and Z is the evidence. The posterior
distribution of a given parameter can be obtained by marginal-
izing P (θ|D) over remaining parameters. The marginalized
posterior distribution for a parameter θi can be obtained as,
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P (θi|D) =

∫
P (θ|D)

∏
k 6=i

dθk. (15)

We use Gaussian likelihood function defined as,

L(D|θ) =
∏
j

1√
2πσ2

j

e
− 1

2

(
dj−mj(θ)

σj

)2

. (16)

Here the index j runs over all the data, dj and mj are the data
and corresponding model values, respectively. The σj are the
adopted uncertainties. The evidence Z in Eq. (14) is obtained
by complete marginalization of the likelihood function. It is
relevant when employed to compare different models. How-
ever in the present work Z is not very relevant. To populate
the posterior distribution of Eq. (14), we implement a nested
sampling algorithm by invoking the Pymultinest nested sam-
pling [68] in the Bayesian Inference Library [26].M

III. BAYESIAN RECONSTRUCTION OF NMPS

We have considered Taylor and n
3 expansions in the pre-

vious section to express the EoS for symmetric nuclear mat-
ter and the density-dependent symmetry energy in terms of
the NMPs. The EoS for neutron star matter can thus be con-
structed for a given set of NMPs using Eqs. (4) and (9) in
a straightforward way. On the contrary, it is not evident that
how reliably the values of NMPs can be extracted once the
EoS for the neutron star matter is known. To illustrate, we
construct EoS for the neutron star matter using Taylor and
n
3 expansion for a known set of NMPs. These EoSs are
then employed as pseudo data to reconstruct the marginal-
ized posterior distributions of the underlying NMPs through a
Bayesian approach. Since the true models for the pseudo data
are known, the sources of uncertainties associated with recon-
structed NMPs may be analyzed more or less unambiguously.
A significant part of the uncertainties on the model parame-
ters usually arises from the intrinsic correlations among them
[15, 69]. The intrinsic correlations among the NMPs are the
manifestation of the various constraints imposed by the fit data
[9, 45]. These correlations may also depend on the choice of
forms of the functions for the EoS of symmetric nuclear mat-
ter and density-dependent symmetry energy.

A. Likelihood function and prior distributions

To obtain the marginalized posterior distributions of model
parameters within a Bayesian approach one simply requires a
set of fit data, a theoretical model, and a set of priors for the
model parameters as discussed in Sec. II C. The likelihood
function for a given set of fit data is evaluated for a sample of
model parameters populated according to their prior distribu-
tions. The joint posterior distributions of parameters are ob-
tained with the help of the product of the likelihood function

and the prior distributions, Eq. (14). The posterior distribu-
tion for individual parameters can be obtained by marginaliz-
ing the joint posterior distribution with the remaining model
parameters. If the marginalized posterior distribution of a pa-
rameter is more localized compared to its prior distribution,
then, the parameter is said to be well constrained by the fit
data.

TABLE I: The values of nuclear matter parameters (in MeV) which
are employed to construct various pseudo data using the Taylor and
n
3

expansions. The parameters ε0, K0, Q0 and Z0 describes the EoS
of the symmetric nuclear matter part and J0, L0, Ksym,0, Qsym,0

and Zsym,0 describes density-dependent symmetry energy. The in-
dex ’N’ denotes the order of a given NMP.

N Symmetric nuclear matter Symmetry energy
0 ε0 -16.0 J0 32.0
1 L0 50.0
2 K0 230 Ksym,0 -100
3 Q0 -400 Qsym,0 550
4 Z0 1500 Zsym,0 -750

Our fit data are essentially the pseudo data for the EoS of
symmetric nuclear matter, density-dependent symmetry en-
ergy, and the EoS for neutron star matter constructed from
a suitable choice of NMPs as listed in Table I. The values of
lower-order NMPs are close to those obtained from the SLy4
parameterization of the Skyrme force calibrated to the bulk
properties for a few selected finite nuclei [70, 71]. The values
of second or higher-order NMPs are modified so that the EoS
for the neutron star matter remains causal for both the Tay-
lor and n

3 expansions. Further, the maximum mass of neutron
stars for both the expansions satisfies the current lower bound
of ∼ 2M�. The likelihood function is obtained using Eq (16)
for pseudo data and the corresponding model values with the
standard deviation, σ equal to unity at all densities ranging
from 0.5 - 6ρ0. The present investigation may not be sensitive
to the choice of the NMPs.

TABLE II: Two different sets P1 and P2 for the prior distributions of
the nuclear matter parameters (in MeV). The parameters of Gaussian
distribution (G) are µ (mean) and σ (standard deviation). The param-
eters ’min’ and ’max’ denote the minimum and maximum values for
the uniform distribution (U). The saturation density ρ0 is taken to be
0.16 fm−3.

Parameters P1 P2

Pr-Dist µ σ Pr-Dist. µ σ
min max min max

ε0 G -16 0.3 G -16 0.3
K0 G 240 100 G 240 50
Q0 U -2000 2000 G -400 400
Z0 U -3000 3000 U -3000 3000
J0 G 32 5 G 32 5
L0 U 20 150 G 50 50

Ksym,0 U -1000 1000 G -100 200
Qsym,0 U -2000 2000 G -550 400
Zsym,0 U -3000 3000 U -3000 3000
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The calculations are performed for two different sets of pri-
ors. In Table II, we provide the details for the prior sets P1
and P2. Usually, if the parameters are known only poorly,
their prior distribution is taken to be uniform. But, in case, if
some information about a parameter is known a priori , one
simply assumes Gaussian distributions for the corresponding
parameter. The priors for ε0, and J0 are taken to be Gaus-
sian with their means and standard deviations consistent with
the constraints imposed by the finite nuclei properties. For
most of the remaining NMPs, the prior set P1 assumes uni-
form distributions. The prior set P2 further imposes stronger
constraints on the lower order parameters such as K0 and L0

which are consistent with those obtained from finite nuclei
properties. The higher-order parameters are assumed to have
wide Gaussian distributions. We also impose an additional
constraint on the symmetry energy so that it always increases
monotonically with density.

B. Symmetric nuclear matter and symmetry energy

The EoS of the symmetric nuclear matter ε(ρ, 0) and
the density-dependent symmetry energy J(ρ) are the two
main components which govern the symmetric part and
the deviations from it in the EoS of the neutron star mat-
ter. The NMPs which are required in the constructions
of ε(ρ, 0) are ε0,K0, Q0 and Z0 and those for J(ρ) are
J0, L0,Ksym,0, Qsym,0 and Zsym,0. The nuclear matter pa-
rameters that appear in the expansions of ε(ρ, 0) might be
correlated with those NMPs appearing in the expansion of
J(ρ) (cf Eqs. (4) and (9)). These correlations might prevent
the NMPs from being determined accurately. Moreover, the
accurate values of NMPs may also be masked by the strong
correlations of symmetry energy with the asymmetry param-
eter δ which determines the fractions of different baryons and
leptons at a given density. The sources of uncertainties in the
NMPs are intrinsically present in a EoS model. To avoid some
of these uncertainties, we first consider a Bayesian estimation
of the NMPs for a given ε(ρ, 0) and J(ρ) separately, before
embarking on their estimations from a EoS of the neutron star
matter.

We perform a Bayesian analysis using Gaussian likelihood
(cf. Eq. (16)) which can be easily evaluated for a set of fit
data together with corresponding model values obtained for a
sample of each parameter. We construct two sets of pseudo
data for ε(ρ, 0) and J(ρ) each. These pseudo data corre-
spond to the Taylor and n

3 expansions referred hereafter as
models M1 and M2, respectively. The values of NMPs used
for these pseudo data are the same as listed in Table I. So,
the true values of NMPs for a given pseudo data are known.
The marginalized posterior distributions (PDs) for the NMPs
which underlie in the constructions of ε(ρ, 0) and J(ρ) are
obtained separately.

The median values of NMPs and associated 1σ uncertain-
ties from the marginalized PDs as listed in Table III are ob-
tained for the models M1 and M2 for two different prior sets.
The median values of NMPs obtained for all the different
cases are very close to their true values as listed in Table I. The

FIG. 1: Corner plots for marginalized posterior distributions of the
NMPs which appear in the expansion of the EoS for the symmetric
nuclear matter (top) and those in the density-dependent symmetry
energy (bottom). The results are obtained for the model M1 with
the prior set P2. One dimensional posterior distributions (light blue)
plotted along the diagonal plots are also compared with the corre-
sponding prior distributions (light green). The vertical lines indicate
the 68% confidence interval of the NMPs. The confidence ellipses
for two-dimensional posterior distributions are plotted with 1σ, 2σ
and 3σ confidence intervals.
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uncertainties on the NMPs obtained for both the prior sets are
quite similar to each other for a given model. However, the
uncertainties are significantly larger for the third and fourth-
order NMPs in the case of model M2 in comparison to the
ones for M1. The uncertainties for third-order NMPs for M2
are about five times larger than those for the M1. It increases
to more than ten times for the fourth-order NMPs. The 1σ
uncertainties obtained from the marginalized PDs for NMPs
as listed in Table III are significantly smaller than the ones cor-
responding to their prior distributions. The prior distribution
for a given NMP thus appears relatively uniform compared to
its marginalized PD, as will be seen later.

TABLE III: The median values and the 1σ errors for the nuclear
matter parameters (in MeV) from their marginalized posterior dis-
tributions. The distributions of ε0, K0, Q0 and Z0 are reconstructed
from the EoS of the symmetric nuclear matter and those for J0, L0,
Ksym,0, Qsym,0 and Zsym,0 from the density-dependent symmetry
energy. The results are presented for the Taylor (M1) and n

3
(M2)

expansions obtained using prior sets P1 and P2.

NMPs M1-P1 M1-P2 M2-P1 M2-P2

ε0 −16.0+0.2
−0.2 −16.0+0.2

−0.2 −16.0+0.2
−0.2 −16.0+0.2

−0.2

K0 230+8
−8 230+8

−8 230+14
−15 230+13

−14

Q0 −402+35
−35 −401+35

−35 −403+128
−124 −403+122

−116

Z0 1502+53
−53 1501+53

−53 1515+756
−773 1517+711

−739

J0 32.0+0.4
−0.4 32.0+0.4

−0.4 32.0+0.5
−0.5 32.0+0.4

−0.4

L0 50.0+2.6
−2.8 50.0+2.6

−2.6 50.0+2.6
−2.6 50.0+2.5

−2.5

Ksym,0 −100+18
−18 −100+18

−18 −100+27
−27 −100+24

−24

Qsym,0 551+58
−59 549+58

−59 548+184
−193 551+163

−166

Zsym,0 −750+80
−75 −749+78

−77 −734+1064
−1034 −759+936

−906

The marginalized PDs and the confidence ellipses for the
NMPs, which determine ε(ρ, 0) and J(ρ), obtained for mod-
els M1 and M2 are displayed as corner plots in Figs. 1 and
2. These results correspond to prior set P2 which assumes
very wide Gaussian distributions for the higher-order NMPs
(see Table II). The one-dimensional marginalized PDs for the
NMPs are displayed along the diagonals of the corner plots
(light blue full lines) together with the corresponding prior
distributions ( light green lines). These PDs for all the NMPs
are quite symmetric around their median values or they repre-
sent Gaussian distribution. The PDs for most of the NMPs are
localized compared to the corresponding prior distributions.
As a result, the prior distributions for most of the NMPs ap-
pear to be flat in comparison to the ones for the marginalized
PDs. This is also the reflection of the constraints imposed
by the pseudo data. The median values of NMPs are very
close to their true values. The confidence ellipses are plot-
ted along with the off-diagonal elements of the corner plots
corresponding to 1σ, 2σ, and 3σ confidence intervals. The

FIG. 2: Same as Fig. 1, but, for model M2.

width and inclination of the confidence ellipses for a pair of
NMPs depend on their covariance which determines the na-
ture of the linear correlations among them [69, 72]. It may
be noted that the correlation patterns obtained for both mod-
els are only marginally different. However, the uncertainties
in the higher-order parameters are significantly larger for the
model M2. This fact may be attributed to some complex in-
trinsic correlations among the NMPs.It is clear from Eqs. (12)
and (13) that the expansion coefficients for the model M2 are
the linear combinations of the NMPs unlike those in M1. Fur-
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thermore, it can be seen that the higher-order terms in model
M2 relative to the lower-order ones have less impact as com-
pared to those in M1.

FIG. 3: The EoS for symmetric nuclear matter (top) and the sym-
metry energy (bottom) as a function of density obtained within 95%
confidence interval from the posterior distributions of nuclear matter
parameters for models M1 and M2 for the prior set P2. The pseudo
data for M1 and M2 are shown by triangles and squares, respectively.

In Fig.3, the variations of ε(ρ, 0) and J(ρ) as a function
of density with 95% confidence intervals are plotted. The
95% confidence interval lies in a very narrow range which
once again points to the fact that the large uncertainties on the
NMPs are predominantly due to the correlations among them.
The results presented in Figs. 1-3 provides firm ground to
perform the analysis of the NMPs obtained in the following
sub-section, using the EoS of neutron star matter, which in-
volves ε(ρ, 0) and J(ρ), simultaneously. On passing, we may
also remark that though the values of ε(ρ, 0) and J(ρ) for the
models, M1 and M2 are obtained using the same set of NMPs,
their behavior at high densities is significantly different. The
lower-order NMPs, which govern the low-density behavior of
ε(ρ, 0) and J(ρ), maybe model-independent.

C. Neutron star matter

We now apply a Bayesian approach to reconstruct the
marginalized PDs for the NMPs using the EoS for the neutron
star matter which satisfies the conditions of β-equilibrium and
charge neutrality. The EoS for neutron star matter ε(ρ, δ) can
be obtained using Eq. (1) for a given ε(ρ, 0) and J(ρ). We
construct two sets of pseudo data for ε(ρ, δ) corresponding to
the models M1 and M2 obtained using NMPs of Table I in

Eqs. (4) and (9), respectively. The marginalized distributions
of all the nine NMPs are reconstructed simultaneously from
the pseudo data for ε(ρ, δ), since it consists of ε(ρ, 0) and
J(ρ). A Bayesian analysis is performed with models M1 and
M2 for prior sets P1 and P2. The median values of the NMPs
obtained from the marginalized PDs and the corresponding 1σ
errors are listed in Table IV. The NMPs are somewhat better
estimated for the prior set P2. The symmetry energy slope pa-
rameter L0 seems to be a special case as its counterpart in the
symmetric nuclear matter vanishes (cf. Eqs. (5) and (6)). It
may be noticed that the uncertainties on Ksym,0, Qsym,0 and
Zsym,0 are much larger than their counterparts in the EoS for
symmetric nuclear matter. The errors onKsym,0 are, however,
similar to those derived from bulk properties of finite nuclei
or other correlation systematics [73–75], though, we have al-
lowed larger variations of K0 and L0. Once, the sufficiently
accurate values of ε(ρ, δ) are determined from various astro-
physical observations, they can be combined with finite nuclei
constraints to obtain L0 and Ksym,0 in tighter limits.

The results for NMPs in Table IV, obtained from the EoS
of neutron star matter are substantially different from those of
Table III, which were determined separately from the EoS of
symmetric nuclear matter and the density-dependent symme-
try energy. In general, these differences can be summarized
as follows, (i) the median values of NMPs in Table IV show
larger deviations from their true values compared to those in
Table III, (ii) the uncertainties on the NMPs determined from
the EoS of neutron star matter are several times larger for most
of the NMPs, (iii) the uncertainties on the Z0 and Zsym,0 in
Table IV are somewhat asymmetric about their median val-
ues reflecting their non-Gaussian nature, and (iv) the ratios of
uncertainties between the models, M1 and M2 were obtained
for third and fourth-order NMPs listed in Table IV are signifi-
cantly smaller than the ones in Table III. This already provides
us some clue that there are additional sources of uncertainties
on the NMPs determined from the EoS of the neutron star
matter. It may be pointed out that there are several addi-
tional sources of uncertainties on the NMIt is customary to
study different correlations in the posterior involving parame-
ters and observables alike, within a Bayesian analysis. . . . Ps
which were avoided by reconstructing them separately from
the ε(ρ, 0) and J(ρ) as shown in Figs. 1 and 2. These sources
of uncertainties are (i) inter-correlations of NMPs correspond-
ing to ε(ρ, 0) with the ones for J(ρ), (ii) compensation in the
change of J(ρ) with the asymmetry parameter δ and ε(ρ, 0) in
such a way that the EoS of neutron star matter remains more
or less unaltered. We analyze them in detail in the following.

The corner plots for the marginalized PDs for the NMPs
in one and two dimensions for the models M1 and M2 ob-
tained for prior set P2 are displayed in Figs. 4 and 5, re-
spectively. The difference between the one-dimensional PDs
for the NMPs and corresponding prior distributions reflect
the role of pseudo data in constraining the NMPs. These
marginalized posterior distributions of the NMPs are at vari-
ance with those obtained separately from the EoS for the sym-
metric nuclear matter and the density-dependent symmetry
energy as shown in Figs. 1 and 2. The shapes and the ori-
entations of the confidence ellipses suggest that the correla-
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TABLE IV: Same as Table III, but, the posterior distributions for all
the nuclear matter parameters are reconstructed simultaneously from
the EoS for the neutron star matter.

NMPs M1-P1 M1-P2 M2-P1 M2-P2

ε0 −16.0+0.3
−0.3 −16.0+0.3

−0.3 −16.0+0.3
−0.3 −16.0+0.3

−0.3

K0 187+65
−56 221+36

−28 213+47
−40 230+28

−25

Q0 −367+196
−220 −471+113

−123 −327+243
−198 −412+159

−123

Z0 1518+258
−236 1632+152

−157 1307+1069
−1656 1637+835

−1206

J0 31.8+2.5
−2.6 32.0+2.6

−2.7 32.0+2.5
−2.5 32.0+2.6

−2.4

L0 52.8+25
−19 55.5+17

−16 53.1+23.8
−19.3 51.0+14.0

−13.9

Ksym,0 −34+142
−178 −108+76

−72 −114+113
−138 −106+70

−70

Qsym,0 220+755
−563 486+257

−264 562+572
−488 522+248

−241

Zsym,0 807+1341
−1527 100+876

−668 −60+1944
−1921 −323+1920

−1643

FIG. 4: Corner plots for the marginalized posterior distributions of
nuclear matter parameters (in MeV) obtained from the EoS for the
neutron star matter for the model M1 with prior set P2. The prior
distributions (light green) are also plotted for the comparison.

FIG. 5: Same as Fig. 4, but, for the model M2.

tions among most of the pairs of NMPs have disappeared or
weakened. Strong correlations exist only between K0 − Q0

, Q0 − Z0 and L0 − Ksym,0 pairs with correlation coeffi-
cient r ∼ 0.8 for model M1. However, in model M2 the
K0 − Q0 correlation got disappeared. The inter-correlations
of the NMPs corresponding to ε(ρ, 0) with those for the J(ρ)
are almost absent. Z0 and Zsym,0 show almost no correlation
with the remaining NMPs. Overall reduction in the correla-
tions among the NMPs which are reconstructed from the EoS
of the neutron star matter, but, increase in their uncertainties at
the same time seem to be somewhat counter-intuitive. Other
sources of uncertainties as mentioned earlier need to be ad-
dressed.

We now examine the uncertainties in the NMPs which
might arise due to the allowed variations in the ε(ρ, 0), J(ρ)
and δ for a given ε(ρ, δ). The value of asymmetry parame-
ter δ is mainly governed by the symmetry energy at a given
density. As the symmetry energy increases, the δ decreases.
Thus, the symmetry energy and δ may balance each other in
such a way that the asymmetric part of the EoS of neutron star
matter remains unaffected. Moreover, the variations in the
asymmetric part of ε(ρ, δ) may also be compensated by the
symmetric nuclear matter ε(ρ, 0). In short, for a given ε(ρ, δ),
the values of J(ρ), ε(ρ, 0) and δ may have some leeway. We
use the marginalized PDs for the NMPs to obtain 68% and
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FIG. 6: Plots of 68% and 95% confidence intervals for the EoS
for neutron star matter (top), the symmetric nuclear matter (middle),
and the symmetry energy (bottom) as a function of scaled density
for model M2 with prior set P2. The results are obtained from the
posterior distributions of the NMPs which are reconstructed from
the pseudo data for the EoS of neutron star matter( triangles). The
spread in ε(ρ, 0) and J(ρ) are consistent with those for ε(ρ, δ).

95% confidence intervals for ε(ρ, δ), ε(ρ, 0) and J(ρ) . The
results are plotted only for the M2-P2 case in Fig. 6. Other
cases show similar qualitative trends and are not shown here.
The value of ε(ρ, δ) (top) vary in a narrow bound at a given
density, but, ε(ρ, 0) (middle) and J(ρ) (bottom) have larger
uncertainties. The 95% confidence intervals for ε(ρ, 0) and
J(ρ) are little asymmetric with respect to the ones for the 68%
due to the non-Gaussian nature of higher-order NMPs as can
be seen from Table IV and Fig. 5. The spread in the values
of J(ρ) increases with density rapidly beyond 2ρ0. For 68%
confidence interval, spread in J(ρ) at 4ρ0 is∼ 36 MeV which
increases to∼ 160 MeV at 6ρ0, whereas, the spread in ε(ρ, 0)
remains almost the same (∼ 15 MeV) for the density in the
range 4ρ0 to 6ρ0. The larger spread in J(ρ) is balanced by
asymmetry parameter δ as well as by change in ε(ρ, 0) such
that the EoS for neutron star matter remains almost unaffected.
These features are intrinsic in nature which is present in all the
models for neutron star matter (cf. Eq. 1). The marginalized
PDs for the NMPs, plotted in Figs. 4 and 5 effectively corre-
spond to the values of ε(ρ, 0) and J(ρ) displayed in Fig. 6.
To probe further, the confidence ellipses are plotted in Fig. 7
for the 68% confidence intervals for ε(ρ, 0), and δ as a func-
tion of J(ρ) at fixed densities ρ = 4ρ0 and 6ρ0. The J(ρ) is
anti-correlated with δ and ε(ρ, 0). The spread in the values of
J(ρ) is predominantly due to its anti-correlation with δ. The
uncertainties in ε(ρ, 0) and J(ρ) propagate into the NMPs.
That is why, the marginalized posterior distributions of NMPs
displayed in Figs. 4 and 5 are significantly different in com-
parison to those shown in Figs. 1 and 2. This also explains
the reason behind the larger uncertainties on the higher-order
NMPs, which govern the high-density behavior of J(ρ). As

FIG. 7: Plots of confidence ellipses with 1σ interval for the EoS for
symmetric nuclear matter (top) and asymmetry parameter (bottom)
as a function of symmetry energy at densities ρ = 4ρ0 and 6ρ0. The
symbol tilde denotes that the corresponding quantity is obtained with
respect to its median value.

the uncertainties in ε(ρ, 0) are smaller than those in J(ρ), they
get reflected in the uncertainties of the corresponding NMPs
(see Table IV). It seems that the EoS of neutron star matter,
usually constrained by using several astrophysical observables
alone may not be sufficient to determine the NMPs in narrow
bounds. The more reliable determination would also require
additional constraints on the EoS of symmetric nuclear matter
as well as on the density-dependent symmetry energy. The ex-
perimental data on the EoS of symmetric nuclear matter from
the heavy-ion collision and the symmetry energy beyond the
saturation density from the isobaric analog states may help in
constraining the NMPs further [76–80].

TABLE V: Values of correlation coefficients among selected pairs of
nuclear matter parameters obtained with the modified prior set P2′.
The width of Gaussian priors for Q0 and L0 are reduced by factor of
four and that for Ksym,0 by factor of two for P2′ in comparison to
the prior set P2

Parameters M1-P2 M1-P2′ M2-P2 M2-P2′

K0 −Q0 -0.9 -0.75 -0.5 -0.15

Q0 − Z0 - 0.97 -0.87 -0.88 -0.63

Ksym,0 − L0 -0.76 -0.44 -0.86 -0.62

We modify the prior distributions to simulate the influence
of the constraints on the NMPs derived from the data on the
microscopic systems such as heavy-ion collisions and the bulk
properties of finite nuclei. These data are expected to con-
straint the behavior of symmetric nuclear matter and symme-
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TABLE VI: Same as IV, but, for a modified priors set P2′.

NMPs M1-P2′ M2-P2′ NMPs M1-P2′ M2-P2′

ε0 −16.0+0.3
−0.3 −16.0+0.3

−0.3 J0 32.0+2.0
−2.0 32.0+2.2

−2.1

L0 51.6+7.4
−7.5 50.0+7.2

−6.9

K0 212+24
−21 225+27

−21 Ksym,0 −87+45
−44 −105+43

−41

Q0 −425+63
−55 −408+62

−59 Qsym,0 489+219
−222 544+213

−209

Z0 1561+75
−80 1650+573

−647 Zsym,0 −96+775
−604 −332+1857

−1621

try energy over a wide range of densities ranging from sub sat-
uration density to supra saturation densities up to 2-3ρ0. The
empirical values of pressure of the symmetric nuclear matter
at supra saturation densities may constrain the value of Q0.
The data on iso-vector giant dipole resonance and neutron-
skin thickness in heavy nuclei may constraint the value of L0

[80]. Once the values of J0 and L0 are constrained, Ksym,0

may also be somewhat constrained [44, 74]. We repeat our
calculations by reducing the width of Gaussian priors for Q0,
L0 and Ksym,0 in the prior set P2. For the Q0 and L0, the
values of width are reduced by a factor of four, whereas, for
the Ksym,0 by a factor of two. In Table V, we present the
values of correlation coefficients among some selected pairs
of NMPs obtained with the modified priors with those for
the prior set P2. In general, the correlations become weaker
with the modified prior. Consequently, the uncertainties on the
NMPs have decreased as can be seen from Table VI. In par-
ticular, the uncertainties on Z0 has now become almost half
for both the models M1 and M2. The spread in the values
of ε(ρ, 0) and J(ρ) become smaller by less than 10% for the
densities around 2ρ0. But, their spreads at higher densities
remain practically unaltered. The issue presented in this pa-
per needs further investigation. In the present work, we have
used the most commonly employed EoS expanded around the
symmetric nuclear matter. Some alternative representation of
the EoS of neutron star matter may be employed. One such
form is the expansion of the EoS around the neutron matter in
powers of the proton fraction [81].

IV. SUMMARY AND OUTLOOK

A Bayesian approach has been applied to reconstruct the
underlying nuclear matter parameters which describe the EoS
of the neutron star matter. The calculations are performed us-
ing the EoS for neutron star matter by expanding it around
symmetric nuclear matter within the parabolic expansion as
commonly employed. The EoS of symmetric nuclear matter
and density-dependent symmetry energy required for such an
EoS are expanded using Taylor and n

3 expansions. The expan-
sion coefficients for the former are the individual nuclear mat-
ter parameters and the linear combinations of them for the n

3

case. The pseudo data for the EoS for symmetric nuclear mat-
ter, neutron star matter, and density-dependent symmetry en-
ergy are constructed using both expansions. This pseudo data
enable us to identify the various sources of uncertainties asso-
ciated with the marginalized posterior distributions of NMPs,
since, the true models are known. The posterior distributions
of the nuclear matter parameters are obtained using two dif-
ferent sets of priors. One of the prior sets assumes that most
of the parameters are unknown, except for the lowest order
ones which are the binding energy per nucleon for the sym-
metric nuclear matter and the symmetry energy coefficient at
the saturation density.

The marginalized posterior distributions for the NMPs re-
constructed separately from the EoS of symmetric nuclear
matter and density-dependent symmetry energy are very much
localized around their true values. But, the posterior distribu-
tions for all the NMPs determined simultaneously from the
EoS of neutron star matter are at variance. The median values
significantly deviate from their true values and associated un-
certainties are also larger, in particular, for second or higher-
order NMPs. The main sources of uncertainties are found to
be (i) the correlations among higher-order parameters describ-
ing the EoS of symmetric nuclear matter and similar correla-
tions in the case of density-dependent symmetry energy and
(ii) the larger uncertainties in the symmetry energy at a given
density due to its anti-correlation with asymmetry parameter
and the EoS of symmetric nuclear matter such that neutron
star matter EoS remains mostly unaffected. These are intrin-
sic in nature for the EoS of neutron star matter obtained by
expanding it around the symmetric nuclear matter. The EoS
of neutron star matter alone may not be sufficient to determine
the higher-order NMPs in narrow bounds. The higher-order
NMPs are correlated to the lower-order ones, thus, the low-
density ab-initio predictions for the EoS of symmetric nuclear
matter and pure neutron matter from the chiral effective field
theory should also be considered for the improved parame-
terizations. The experimental data on the EoS of symmetric
nuclear matter from the heavy-ion collision and the symmetry
energy beyond the saturation density from the isobaric ana-
log states may further help in constraining the nuclear matter
parameters.

We have also performed the calculations by imposing strin-
gent constraints on prior distributions for Q0, L0 and Ksym,0

which led to the reduction of the correlations among the
NMPs. Consequently, the uncertainties on some of the NMPs
become smaller. The spread in the EoS of symmetric nuclear
matter and symmetry energy become smaller by less than 10%
for the densities around 2ρ0. But, their spreads at higher den-
sities remain practically unaltered. It remains to be understood
whether the sources of various uncertainties identified in the
present work are due to the expansion of the EoS around the
symmetric nuclear matter. It may be interesting to perform an
investigation using the EoS expanded around the pure neutron
matter instead of symmetric nuclear matter[81].
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