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Abstract

Normal mixture models are widely used for statistical modeling of data, including
cluster analysis. However maximum likelihood estimation (MLE) for normal mixtures
using the EM algorithm may fail as the result of singularities or degeneracies. To avoid
this, we propose replacing the MLE by a maximum a posteriori (MAP) estimator, also
found by the EM algorithm. For choosing the number of components and the model
parameterization, we propose a modified version of BIC, where the likelihood is eval-
uated at the MAP instead of the MLE. We use a highly dispersed proper conjugate
prior, containing a small fraction of one observation’s worth of information. The re-
sulting method avoids degeneracies and singularities, but when these are not present
it gives similar results to the standard method using MLE, EM and BIC.
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1 Introduction

Finite mixture models are an increasingly important tool in multivariate statistics (e.g.

McLachlan and Basford 1988; McLachlan and Peel 2000). Approaches to density estimation

and clustering based on normal mixture models have shown good performance in many

applications (McLachlan and Peel 2000; Fraley and Raftery 2002). Despite this success,

there remain issues to be overcome. One is that standard parameter estimation methods

can fail due to singularity for some starting values, some models, and some numbers of

components. The techniques proposed in this paper are largely able to eliminate these

difficulties.

We propose replacing the MLE by a maximum a posteriori (MAP) estimator, for which

we use the EM algorithm. For choosing the number of components and the model param-

eterization, we propose a modified version of BIC, in which the likelihood is evaluated at

the MAP instead of the MLE. We use a highly dispersed proper conjugate prior, containing

a small fraction of one observation’s worth of information. The resulting method avoids

degeneracies and singularities, but when these are not present it gives similar results to the

standard method that uses MLE, EM and BIC. It also has the effect of smoothing noisy

behavior of the BIC, which is often observed in conjunction with instability in estimation.

This paper is organized as follows. In Section 2, we give a brief overview of model-based

clustering, which can also be viewed as a proceedure for normal mixture estimation that

includes model selection, both in terms of component structure and number of components.

In Section 3, we describe our Bayesian regularization method and we discuss selection of prior

hyperparameters appropriate for clustering. In Section 4, we do the same for multivariate

normal mixtures. In Section 5, we give examples of mixture estimation with these priors

for real data. Other topics treated in this section are alternative priors, extension to other

parameterizations of multivariate normal mixtures, and the types of failures that can still

occur when a prior is used and how they can be overcome. In Section 6 we discuss our results

in the context of other research and further application of this approach.

2 Methods

2.1 Model-Based Clustering

In model-based clustering, the data y = (y1, . . . , yn) are assumed to be generated by a

mixture model with density

f(y) =
n
∏

i=1

G
∑

k=1

τk fk(yi | θk), (1)
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where fk(yi | θk) is a probability distribution with parameters θk, and τk is the probability of

belonging to the kth component. Most often (and throughout this paper), the fk are taken

to be multivariate normal distributions, parameterized by their means µk and covariances

Σk:

fk(yi | θk) = φ(yi | µk, Σk) ≡ |2πΣk|
−1/2 exp

{

−
1

2
(yi − µk)

T Σ−1
k (yi − µk)

}

,

where θk = (µk, Σk).

The parameters of the model are usually estimated by maximum likelihood using the

Expectation-Maximization (EM) algorithm (Dempster et al. 1977; McLachlan and Krishnan

1997). Each EM iteration consists of two steps, an E-step and an M-step. Given an estimate

of the component means µj, covariance matrices Σj and mixing proportions τj, the E-step

computes the conditional probability that object i belongs to the kth component:

zik = τkφ(yi|µk, Σk)/
G
∑

j=1

τjφ(yi|µj, Σj) .

In the M-step, parameters are estimated from the data given the conditional probabilities zik

(see, e.g., Celeux and Govaert 1995). The E-step and M-step are iterated until convergence,

after which an observation can be assigned to the component or cluster corresponding to the

highest conditional or posterior probability. The results of EM are highly dependent on the

initial values, and model-based hierarchical clustering can be a good source of initial values

for datasets that are not too large in size (Banfield and Raftery 1993; Dasgupta and Raftery

1998; Fraley 1998).

The covariance matrices can be either fixed to be the same across all mixture compo-

nents, or allowed to vary. In general, the multivariate normal density has ellipsoidal con-

tours, and the covariance matrices can also be constrained to make the contours spherical

or axis-aligned. Other parameterizations are possible and have been found to be useful;

regularization of these is discussed in Section 5.5.

Several measures have been proposed for choosing the clustering model (parameterization

and number of clusters); see, e.g., Chapter 6 of McLachlan and Peel (2000). We use the

Bayesian Information Criterion (BIC) approximation to the Bayes factor (Schwarz 1978),

which adds a penalty to the loglikelihood based on the number of parameters, and has

performed well in a number of applications (e.g. Dasgupta and Raftery 1998; Fraley and

Raftery 1998, 2002). The BIC has the form

BIC ≡ 2 loglik
M

(y, θ∗k) − (# params)M log(n), (2)

where loglik
M

(y, θ∗k) is the maximized loglikelihood for the model and data, (# params)M

is the number of independent parameters to be estimated in the model M, and n is the

number of observations in the data.
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The following strategy for model selection has been found to be effective in mixture

estimation and clustering:

— Specify a maximum number of components, Gmax, to consider, and a set of candidate

parameterizations of the Gaussian model.

— Estimate parameters via EM for each parameterization and each number of compo-

nents up to Gmax. The conditional probabilities corresponding to a classification from

model-based hierarchical clustering, or the estimated parameters for a simpler (more

parsimonious) model, are good choices for initial values.

— Compute BIC for the mixture likelihood with the optimal parameters from EM for up

to Gmax clusters.

— Select the model (parameterization / number of components) for which BIC is maxi-

mized.

For a review of model-based clustering, see Fraley and Raftery (2002). Efficient implemen-

tation for large datasets is discussed in Wehrens et al. (2004) and Fraley et al. (2005).

The EM algorithm can fail to converge, instead diverging to a point of infinite likelihood.

This is because for many mixture models the likelihood is not bounded, and there are paths

in parameter space along which the likelihood tends to infinity (Titterington, Makov and

Smith 1985). For example, in the univariate normal mixture model with component-specific

variances, where (1) becomes

f(y) =
n
∏

i=1

G
∑

k=1

τkφ(yi|µk, σ
2
k), (3)

the likelihood tends to infinity along any path in parameter space along which µk −→ yi and

σ2
k −→ 0, for any i, if τk is bounded away from zero. While these points of infinite likelihood

could technically be viewed as maximum likelihood estimates, they do not possess the usual

good properties of MLEs, which do hold for an internal local maximum of the likelihood

(Redner and Walker 1984).

In practice, this behavior is due to singularity in the covariance estimate, and arises most

often for models in which the covariance is allowed to vary between components, and for

models with large numbers of components. It is natural to wonder whether the best model

might be among the cases for which a failure is observed, and to seek to modify the method

so as to eliminate convergence failures.

We propose to avoid these problems by replacing the MLE by the maximum a posteriori

(MAP) estimate from a Bayesian analysis. We propose a prior distribution on the parameters
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that eliminates failure due to singularity, while having little effect on stable results obtainable

without a prior. The Bayesian predictive density for the data is assumed to be of the form

L(Y | τk, µk, Σk) P(τk, µk, Σk | θ),

where L is the mixture likelihood:

L(Y |τk, µk, Σk ) =
n
∏

j=1

G
∑

k=1

τkφ(yj |µk, Σk )

=
n
∏

j=1

G
∑

k=1

τk |2πΣk|
−

1

2 exp
{

−
1

2
(yj − µk)

T Σ−1
k (yj − µk)

}

,

and P is a prior distribution on the parameters τk, µk and Σk, which includes other param-

eters denoted by θ. We seek to find a posterior mode or MAP (maxiumum a posteriori)

estimate rather than a maximum likelihood estimate for the mixture parameters.

We continue to use BIC for model selection, but in a slightly modified form. We replace

the first term on the right-hand side of (2), equal to twice the maximized log-likelihood, by

twice the log-likelihood evaluated at the MAP or posterior mode.

3 Bayesian Regularization for Univariate Normal Mix-

ture Models

For one-dimensional data, we use a normal prior on the mean (conditional on the variance):

µ | σ2 ∼ N (µP, σ2/κP)

∝
(

σ2
)

−
1

2 exp
{

−
κP

2σ2
(µ − µP)2

} (4)

and an inverse gamma prior on the variance:

σ2 ∼ inverseGamma(νP/2, ς2
P
/2)

∝
(

σ2
)

−

νP+2

2 exp

{

−
ς2
P

2σ2

}

.
(5)

This is called a conjugate prior for a univariate normal distribution because the posterior can

also be expressed as the product of a normal distribution and an inverse gamma distribution.

The hyperparameters µP, κP , νP , and ς2
P

are called the mean, shrinkage, degrees of freedom

and scale, respectively, of the prior distribution. The values of the mean and variance at the

posterior mode for a univariate normal under this prior are:

µ̂ =
nȳ + κPµP

κP + n

7



Table 1: M-step Estimators for the Mean and Variance of Univariate Mixture Models Under
the Normal Inverse Gamma Conjugate Prior. The two rows for the variance correspond to the
assumptions of equal or unequal variance across components. Here zjk is the conditional probability
that observation j belongs to the kth component, nk ≡

∑n
j=1 zjk and ȳk ≡

∑n
j=1 zjkyj/nk.

Parameter Without Prior With Prior

µ̂k ȳk
nkȳk + κPµP

κP + nk

σ̂2

∑G
k=1

∑n
j=1 zjk(yj − ȳk)

2

n

ς2
P

+
∑G

k=1

[

κPnk

(κP+nk)
(ȳk − µP)2 +

∑n
j=1 zjk(yj − ȳk)

2
]

νP + n + G + 2

σ̂2
k

∑n
j=1 zjk(yj − ȳk)

2

nk

ς2
P

+ κPnk

(κP+nk)
(ȳk − µP)2 +

∑n
j=1 zjk(yj − ȳk)

2

νP + nk + 3

and

σ̂2 =
ς2
P

+ κPn
κP+n

(ȳ − µP)2 +
∑n

j=1(yj − ȳ)2

νP + n + 3
.

For derivations, see the appendix.

For univariate mixtures, it is usually assumed that either all of the components share a

common variance σ2, or else that the variance is allowed to vary freely among the components.

Constraining the variance to be equal is a form of regularization, and singularities are not

typically observed when this is done. Singularities often arise, however, when the variance

is unconstrained.

We use the normal inverse gamma conjugate prior (4) and (5), and take the prior dis-

tribution of the vector of component proportion (τ1, . . . , τG) to be uniform on the simplex.

Then the M-step estimators are given in Table 1. The prior hyperparameters (µP, κP, νP, ς2
P
)

are assumed to be the same for all components. For derivations, see the appendix.

We make the following choices for the prior hyperparameters:

µP: the mean of the data.

κP: .01

The posterior mean
nkȳk + κPµP

κP + nk

can be viewed as adding κP observations with value

µP to each group in the data. The value we used was determined by experimentation;

values close to and bigger than 1 caused large perturbations in the modeling in cases

where there were no missing BIC values without the prior. The value .01 resulted in

8



BIC curves that appeared to be smooth extensions of their counterparts without the

prior.

νP: d + 2 = 3

The marginal prior distribution of µ is a Student’s t distribution centered at µP with

νP−d+1 degrees of freedom. The mean of this distribution is µP provided that νP > d,

and it has a finite variance provided that νP > d+1 (see, e.g. Schafer 1997). We chose

the smallest integer value for the degrees of freedom that gives a finite variance.

ς2
P
:

var(data)
G2 (The empirical variance of the data divided by the square of the number

of components.) The resulting prior mean of the precision corresponds to a standard

deviation is one Gth that of all of the data, where G is the number of components.

This is roughly equivalent to partitioning the range of the data into G intervals of fairly

equal size.

4 Bayesian Regularization for Multivariate Normal Mix-

tures

For multivariate data, we use a normal prior on the mean (conditional on the covariance

matrix):
µ | Σ ∼ N (µP, Σ/κP)

∝ |Σ|−
1

2 exp
{

−
κP

2
trace

[

(µ − µP)T Σ−1 (µ − µP)
]

}

,
(6)

and an inverse Wishart prior on the covariance matrix:

Σ ∼ inverseWishart(νP , ΛP)

∝ |Σ|−
νP+d+1

2 exp
{

−
1

2
trace

[

Σ−1Λ−1
P

]

}

.
(7)

As in the univariate case, the hyperparameters µP, κP and νP are called the mean, shrinkage

and degrees of freedom respectively, of the prior distribution. The hyperparameter ΛP, which

is a matrix, is called the scale of the inverse Wishart prior. This is a conjugate prior for a

multivariate normal distribution because the posterior can also be expressed as the product

of a normal distribution and an inverse Wishart distribution. Under this prior, the posterior

means of the mean vector and the covariance matrix are:

µ̂ =
nȳ + κPµP

κP + n

and

Σ̂ =
Λ−1

P
+
(

κPn
κP+n

)

(ȳ − µP)(ȳ − µP)T +
∑n

j=1(yj − ȳ)(yj − ȳ)T

ν̃P + d + 2
.
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The normal inverted Wishart prior and its conjugacy to the multivariate normal are discussed

in e.g. Gelman et al. (1995) and Schafer (1997). The derivations leading to these results are

given in the appendix.

4.1 Multivariate Mixture Models

For multivariate normal mixtures, the contours of the component densities are ellipsoidal,

and the component covariance matrices can be constrained so that the contours are spherical

(proportional to the identity matrix), or axis-aligned (diagonal). It is usually assumed either

that all the components share a common covariance matrix, or that the covariance matrix

can vary freely between the components. As in the univariate case, constraining the variance

to be equal is a form of regularization, and failures in estimation are not typically observed

when this is done except when large numbers of mixture components are involved, causing

the mixing proportions of some components to shrink to zero. Constraining the covariance

matrix to be diagonal or spherical is also a form of regularization for multivariate data.

Although singularities may arise when the covariance is restricted to one of these forms

but otherwise allowed to vary among components, they occur less frequently than when the

covariance matrix is unconstrained.

Under the conjugate prior with the inverse gamma prior (5) on the variance components

for the diagonal and spherical models, the inverse Wishart prior (7) on the covariance for the

ellipsoidal models, and the normal prior (6) on the mean, the M-step estimators are given

in Table 2. The prior hyperparameters (κP, νP, ΛP, ς2
P
) are assumed to be the same for all

components. For derivations, see the appendix.

4.2 Multivariate Prior Hyperparameters

We make the following choices for the prior hyperparameters for mulivariate mixtures.

µP: the mean of the data.

κP: .01: the same reasoning applies as in the univariate case.

νP: d + 2

Analogously to the univariate case, the marginal prior distribution of µ is multivariate

t centered at µP with νP −d+1 degrees of freedom. The mean of this distribution is µP

provided that νP > d, and it has a finite covariance matrix provided νP > d + 1 (see,

e. g. Schafer 1997). We chose the smallest integer value for the degrees of freedom

that gives a finite covariance matrix.

10



Table 2: M-step estimators for the mean and variance of multvariate mixture models under the
normal inverse gamma and normal inverse Wishart conjugate priors. The rows for the variance
correspond to the assumptions of equal or unequal spherical variance across components, and equal
or unequal ellipsoidal variance across components. Here zjk is the conditional probability that
observation j belongs to the kth component, nk ≡

∑n
j=1 zjk, ȳk ≡

∑n
j=1 zjkyj/nk, and Wk ≡

∑n
j=1 zjk(yj − ȳk)(yj − ȳk)

T , and ei is the ith column of the identity matrix.

Parameter Without Prior With Prior

µ̂k ȳk
nkȳk + κPµP

κP + nk

σ̂2

∑G
k=1 trace (Wk)

nd

ς2
P

+
∑G

k=1 trace
[

κPnk

(κP+nk)
(ȳk − µP)(ȳk − µP)T + Wk

]

νP + (n + G)d + 2

σ̂2
k

trace (Wk)

nkd

ς2
P

+ trace
[

κPnk

(κP+nk)
(ȳk − µP)(ȳk − µP)T + Wk

]

νP + nkd + d + 2

diag(δ̂2
i )

diag
(

∑G
k=1 Wk

)

n

diag
(

ς2
P

+ eT
i

∑G
k=1

[

κPnk

(κP+nk)
(ȳk − µP)(ȳk − µP)T + Wk

]

ei

)

νP + n + 2

diag(δ̂2
ik)

diag (Wk)

nk

diag
(

ς2
P

+ eT
i

[

κPnk

(κP+nk)
(ȳk − µP)(ȳk − µP)T + Wk

]

ei

)

νP + nk + 2

Σ̂

∑G
k=1 Wk

n

ΛP +
∑G

k=1

[

κPnk

(κP+nk)
(ȳk − µP)(ȳk − µP)T + Wk

]

νP + n + G + d + 1

Σ̂k
Wk

nk

ΛP + κPnk

(κP+nk)
(ȳk − µP)(ȳk − µP)T + Wk

νP + nkd + d + 2

11



ς2
P
:

sum(diag(var(data)))/d

G2/d (For spherical and diagonal models.) The average of the

diagonal elements of the empirical covariance matrix of the data divided by the square

of the number of components to the 1/d power.

ΛP:
var(data)

G2/d (For ellipsoidal models.) The empirical covariance matrix of the data

divided by the square of the number of components to the 1/d power.

The volume of the ellipsoid defined by ς2
P

or ΛP is one G2th of the volume of the ellipsoid

defined by the empirical covariance matrix of all of the data, where G is the number of

components.

5 Examples

Figure 1 displays the symbols used in the BIC plots throughout this section along with their

associated model parameterization.

Spherical/Univariate:
  EII/E equal variance
  VII/V unconstrained
 
Diagonal: 
  EEI equal variance
  EVI equal volume
  VEI equal shape    
  VVI unconstrained
 
Ellipsoidal: 
  EEE equal variance 
  EEV equal volume & shape
  VEV equal shape
  VVV unconstrained

Figure 1: Legend for BIC Plots. Different symbols correspond to different model parameterizations.
The three letter codes are those used to designate equal (E) or varying (V) shape, volume, and
orientation, respectively, in the MCLUST software (Fraley and Raftery 1999, 2003). The letter I

designates a spherical shape or an axis-aligned orientation.
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Table 3: Source and Description for the Three Univariate Data Sets Used in the Examples.

dataset # observations reference
Acidity 155 Crawford et al. 1992
Enzyme 245 Bechtel et al. 1993
Galaxy 82 Roeder 1990

5.1 Univariate Examples

Figure 2 shows histograms and model-based clustering results for the three univariate datasets

analyzed in Richardson and Green (1997). The data are described in Table 3. The equal-

variance model is started with the outcome of model-based hierarchical clustering for that

model, and the unequal variance model is started with the result of the equal variance model1.

Note that without the prior, there are no results available for the unconstrained variance

model when the number of components is sufficiently large. The reason is that parameters

could not be estimated due to singularities.

For the acidity data, the standard BIC values based on the MLE are not available for the

unequal variance model with five or more mixture components. In the five-component case,

the EM algorithm hits a path around the 250th iteration along which the variance for the

first component tends rapidly to zero and the likelihood diverges to infinity (see Table 4).

With the prior, BIC values are available for all models and numbers of groups. The results

are similar with and without the prior in cases where both are available, and the overall

conclusion is unchanged.

For the enzyme data, including the prior allows us to assess solutions more than eight

components, but does not otherwise change the analysis.

For the galaxy data, BIC without the prior chooses six components with unequal vari-

ances, by a small margin over the three-components model, while with the prior it chooses

three components fairly clearly. This dataset has been extensively analyzed in the literature,

including a number of studies using mixtures of normals.

Roeder and Wasserman (1997) chose three components using an approach similar to ours

based on MLE via EM and BIC; their choice of three rather than six components seems

to be due to their using a different (and lower) local mode of the likelihood for the six-

component model. Richardson and Green (1997) did a Bayesian analysis using reversible

jump MCMC, and reported a posterior distribution with both mode and median at six

components, although they indicated later that convergence may not have been achieved

(Richardson and Green 1997, page 789).

Figure 3 shows the classifications and the estimated densities for these two competing

1This initialization differs from the default in the MCLUST software for the unequal variance case.
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Figure 2: BIC for the Univariate Acidity, Enzyme and Galaxy Datasets. The histogram for the
dataset is given in the left column, while plots of the number of components versus BIC values
are shown for the model-based clustering without (center) and with (right). The equal variance
model is indicated by filled symbols, while the model in which the variance is allowed to vary across
components is indicated by open symbols.

models. They agree that the seven smallest observations form a group, as do the largest

three. They disagree about whether the middle 72 observations can be adequately described

by one normal density, or whether four normal components are needed. The figure suggests

that several of the groups in the six-group solution may be spurious.

One can also shed some light on this issue by assessing the fit of a normal distribution to

the middle 72 observations. Figure 4(a) shows the cumulative distribution function (CDF)

for the full galaxy dataset, together with the CDFs for 99 datasets of the same size simulated

from the fitted normal distribution. Thirteen of the 82 observations lie outside the pointwise

band, in line with the well-accepted conclusion that one normal does not fit the entire dataset.

Figure 4(b) shows the same thing for the middle 72 observations; the entire empirical CDF

lies inside the band, suggesting that one normal distribution is adequate for this group.
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Table 4: Values of σ2
k from the M-step of EM for the Acidity Data Under the Five-Component,

Unconstrained Variance Model Without the Prior. The variance for one of the components falls
below the threshold for failure due to singularity.

iteration σ2
k, k = 1, . . . , 5

1 0.046731 0.018704 0.071418 0.058296 0.024956
2 0.056739 0.025452 0.085215 0.070723 0.030543
3 0.065152 0.031345 0.092778 0.077127 0.033145
4 0.072763 0.036744 0.097979 0.080919 0.034621
5 0.079982 0.041453 0.102011 0.08329 0.035558
...

...
...

...
...

...
246 0.22418 0.049378 0.182963 0.063843 0.044054
247 0.171405 0.049469 0.183083 0.063836 0.044056
248 0.108567 0.049606 0.183261 0.063829 0.044057
249 0.038607 0.049819 0.183493 0.063823 0.044058
250 0.000307 0.050004 0.183625 0.063815 0.04406

Kolmogorov-Smirnov test statistics for testing a normal distribution tell a similar story: the

P value for the full dataset is 0.005, while that for the middle 72 observations is 0.254.

Note that these results are based on estimated parameters, which is anti-conservative. If

account were taken of parameter uncertainty, the tests would be less likely to reject the

null hypothesis of normality, and so the conclusion for the middle 72 observations would be

unchanged. Overall, this analysis provides support for the three-group solution.
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Figure 3: Classifications (top) and Densities Corresponding to the Mixture Models Fitted to the
Univariate Galaxy Data Without and With the Prior. In the classification plots, all of the data is
shown at the bottom, while the different classes are separated on the lines above.
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Same Size Simulated from the Fitted Normal Distribution (black) for (a) the Full Galaxy
Dataset, and (b) the Middle 72 Observations.
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5.2 Butterfly Example

In this section we consider observations from the butterfly dataset (Celeux and Robert,

1993), consisting of the measurements of the widths of the upper and lower wings for 23

butterflies, shown in Figure 5. The original goal was to ascertain how many species were

present in the sample and classify the butterflies into them.

Upper Wing Width
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Figure 5: Wing widths from the butterfly dataset. There are 23 observations.

Figure 6 shows the BIC for equal variance and unconstrained variance models, assuming

spherical, diagonal, and elliptical shapes (the models for which priors were discussed in

Section 4). For all models, EM was started using the results from model-based hierarchical

clustering on the unconstrained ellipsoidal variance model. The model and classification

chosen according to the BIC are the same regardless of whether or not the prior is imposed,

but failures due to singularity for the unconstrained models are eliminated with the prior.

The four-component unconstrained model without the prior fails at the outset. The

hierarchical clustering result based on the unconstrained model used for initialization assigns

a single observation to one of the groups in this case. In this case, the Bayesian regularization

allows the identification of a group with a single member while allowing the covariance matrix

to vary between clusters, which is not possible without the prior.
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Figure 6: The top row gives the BIC for the six models for variables 3 and 4 the butterfly
dataset, while the middle row shows details of the maximum BIC models. Refer to Figure 1 for
the correspondence between symbols and models. The bottom row displays a projection of the
data showing the classification corresponding to the maximum BIC. Failures due to singularities no
longer occur when the prior is included in the model, although the BIC selects a model mapping
to the same four group classfication regardless of whether or not the prior is imposed.
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5.3 Trees Example

In this section we analyze the trees dataset (Ryan et al. 1976) included in the R lan-

guage (www.r-project.org). A pairs plot of the data is shown in Figure 7. There are 31

observations of 3 variables.
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Figure 7: Pairs plot of the trees dataset. There are 31 observations.

Figure 8 shows the BIC for the trees data for the equal variance and unconstrained

variance models, assuming spherical, diagonal, and ellipsoidal shapes. For the equal variance

models, EM was started using the results from model-based hierarchical clustering assuming

no constraints on the variance. For the unconstrained variance model, EM was started using

the results from the equal variance model.

Figure 9 shows the 3 and 5 group classifications where the BIC has peaks without the

prior, and the 2 group classification corresponding to the maximum BIC with the prior. The

six-component unconstrained model fails to converge without the prior in this case because
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Figure 8: The top row gives the BIC for the six models for the trees dataset, while the bottom
row shows details of the BIC near the maximum. Refer to Figure 1 for the correspondence between
symbols and models. Two groups are favored over five when the prior is imposed.

one of the covariances becomes singular as the EM iterations progress, as shown in Figure

10.
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Figure 9: Trees Data: A Projection of the Data Showing the Three and Five Group Classifications,
where the BIC has peaks without the prior, and the 2 group classification where the BIC peaks
with the prior.
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Figure 10: For a projection of the trees data, the top row shows the initial equal-variance models
fitting a six-component unconstrained model without and with the prior. The bottom left figure
shows the six-component model after the first iteration without the prior, showing the covariance for
component 6 collapsing to near singularity. At the bottom left is the six-component unconstrained
model converged fit with the prior.
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Table 5: Summary Results (mean, standard deviation (‘sd’), min, max) for the BIC and Number
of Components for the Brain MRI Data, with and without the prior. EM was initialized with
parameters from model-based hierarchical clustering over 10 different initial random samples of
size 2,371. Note that there is much greater variability in both the BIC and number of components
without the prior.

number of mixture components BIC

mean sd min max mean sd min max
without prior 29.3 7.4 15 38 −756,481 533 −757,870 −756,051
with prior 25.4 2.8 21 30 −756,486 270 −756,889 −756,090

5.4 Brain MRI

These data describe a four-band magnetic resonance image (MRI) consisting of 23,712 pixels

of a brain with a tumor 2. Because of the size of the dataset, it is not feasible to do model-

based hierarchical clustering on the entire dataset to obtain initial values for EM estimation,

so instead we apply hierarchical clustering to a random sample of the observations to get

initial parameter estimates for EM (e.g. Wehrens et al. 2004; Fraley et al. 2005). Table 5

summarizes the results for the BIC and number of clusters for the brain MRI initialized with

model-based hierarchical clustering over 10 different initial random samples of size 2,371.

The main observation is that the variability in both the BIC values and the number of

components is greatly reduced by imposing the prior, which seems to stabilize the results.

Figure 11 shows classifications obtained with and without the prior for one of the initial

samples.

5.5 Other Parameterizations and Priors

Banfield and Raftery (1993) expressed the covariance matrix for the k-th component of a

multivariate normal mixture model in the form

Σk = λkDkAkD
T
k , (8)

where Dk is the matrix of eigenvectors determining the orientation, Ak is a diagonal matrix

proportional to the eigenvalues determining the shape, and λk is a scalar determining the

volume of the cluster. They used this formulation to define a class of hierarchical clustering

methods based on cross-cluster geometry, in which mixture components may share a common

shape, volume, and/or orientation. This approach generalizes a number of existing clustering

methods. For example if the clusters are restricted to be spherical and identical in volume,

2These data were obtained from Professor Ron Wehrens, Department of Analytical Chemistry, Univeristy
of Nijmegen, and Professor A. Heerschap of the Radboud University Medical Center, Nijmegen, The Nether-
lands.
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without prior with prior

Figure 11: An instance of the MRI classification without and with prior using the same initial
sample.

the clustering criterion is the same as that which underlies Ward’s method (Ward 1963) and

k-means clustering (MacQueen 1967). Banfield and Raftery (1993) developed this class of

models in the context of hierarchical clustering estimated using the classification likelihood,

but the same parameterizations can also be used with the mixture likelihood. A detailed

description of 14 different models that are possible under this scheme can be found in Celeux

and Govaert (1995).

Many of these models can be estimated by the MCLUST software (Fraley and Raftery

1999, 2003), and there they are designated by a three-letter symbol, where the three letters

indicate volume, shape and orientation, respectively. The letter E indicates cross-cluster

equality, while V denotes freedom to vary across clusters, and the letter I designates a

spherical shape or an axis-aligned orientation.

It is possible to formulate priors that eliminate singularity in a manner similar to that

used to derive the priors in Table 2 for most cases of the parameterization (8). These

priors are summarized in Table 6. The cases for which no prior is given are those for which

neither the volume and shape nor the shape and orientation can be treated as a unit across

components. For other models that are not covered in Table 2 of Section 4, the M-step

computations would need to be derived in the manner described in Celeux and Govaert

(1995) once the prior terms have been added to the complete data loglikelihood.

We have obtained good results with an alternative heuristic that can be applied to all
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Table 6: Parameterizations of the Covariance Matrix via Eigenvalue Decomposition, with the
associated prior. λ is a scalar controling volume, A a diagonal matrix controling shape, and D an
orthogonal matrix corresponding to the eigenvectors of the covariance matrix controling orientation.
The subscript k indicates variation across components in the mixture model.

MCLUST symbol parameterization prior applied to
EII λI inverse gamma λ
VII λkI inverse gamma λk

EEI λA inverse gamma each diagonal element of λA
VEI λkA
EVI λAk

VVI λkAk inverse gamma each diagonal element of λkAk

EEE λDADT inverse Wishart Σ = λDADT

VEE λkDADT inverse gamma λk

inverse Wishart Σ̃ = DADT

EVE λDAkD
T

VVE λkDAkD
T inverse gamma each diagonal element of λkAk

EEV λDkADT
k inverse gamma each diagonal element of λA

VEV λkDkADT
k

EVV λDkAkD
T
k inverse gamma λ

inverse Wishart Σ̃k = DkAkD
T
k

VVV λkDkAkD
T
k inverse Wishart Σk = λkDkAkD

T
k

parameterizations based on the decomposition (8): noting that the computations involved

in the M-step without the prior involve the weighted sums of squares and products matrix

Wk ≡
n
∑

j=1

zjk(yj − ȳk)(yj − ȳk)
T

(see Celeux and Goavert 1995), we replace Wk in the M-step formulas with their analogs

from Table 2.

Figures 12 and 13 show results for the trees dataset for ten models, including four (VEI,

EVI, EEV, and VEV) for which we use the heuristic just described. In Figure 12, all models are

initialized with the result from model-based hierarchical clustering using the unconstrained

model, so there are some differences with Figure 8 in those instances where the models are

the same. Without a prior, the model fragments the data into several small, highly ellipsoidal

components (see Figure 13). There is one component to which only one observation would

be assigned according to its highest conditional probability. With the prior, a model with

fewer components is selected.

26



without prior with prior

number of components

B
IC

2 4 6 8

−
60

0
−

58
0

−
56

0
−

54
0

−
52

0
−

50
0

number of components

B
IC

2 4 6 8

−
60

0
−

58
0

−
56

0
−

54
0

−
52

0
−

50
0

Figure 12: BIC for Ten Models for the Trees Dataset. Refer to Figure 1 for the correspondence be-
tween symbols and models. Without the prior, the BIC is maximized with the same five-component
unconstrained model obtained in Section 5.3, with the steep increase and cutoff in BIC suggesting
near singularity. With the prior it is maximized at at two-component model in which the volume
and shape of the covariances of the components in the model are the same, but their orientation
may vary. Compare with Figure 8, which shows the BIC for the restricted set of six models for
which an explicit prior is available.

5.6 Vanishing Components

Of note in Figure 12 is that the estimation for the trees data fails for some models, even

when the prior is imposed. For this example, all failures without the prior were due to

singularity in the estimated covariance matrices, while all failures with the prior were due to

the mixing proportion of one or more components shrinking to zero. In this latter case, it is

still possible to estimate the BIC, although no associated parameter or loglikelihood values

are available. This is accomplished by adding the appropriate terms penalizing the number

parameters of parameters (formula (2) in Section 2.1) to the loglikehood available for the

largest number of components with the same parameterization scheme. Figure 14 plots the

BIC for mixture estimation with the prior for the trees data, with the values for models that

include vanishing components shown.

6 Discussion

We have proposed a Bayesian regularization method for avoiding the singularities and de-

generacies that can arise in estimation for model-based clustering using the EM algorithm.

The method involves a dispersed but proper conjugate prior, and uses the EM algorithm to

find the posterior mode, or MAP estimator. For model selection it uses a version of BIC

that is slightly modified by replacing the maximized likelihood by the likelihood evaluated at
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Figure 13: LEFT: A Projection of the Trees Data Showing the Model and Classification Cor-
responding to the Five-Component Unconstrained Model (highest BIC), and to the 7-component
constant volume and shape model without the prior (second highest BIC). RIGHT: a projection of
the data showing the model and classification corresponding to the two-component constant volume
and shape model with the prior (highest BIC). Compare with Figure 9, which shows the choice
from a restricted set of six models using an explicit prior.

the MAP. In application to a range of datasets, the method did eliminated singularities and

degeneracies observed in maximum likelihood methods, while having little effect on stable

results.

In model-based clustering, parameterization through eigenvalue decomposition with ex-

plicit eigenvector normalization (8) allows cross-component constraints on the geometry

(shape, volume and orientation) of normal mixture components, and constitutes a form of

regularization that has been exploited both in clustering (Banfield and Raftery 1993; Celeux

and Govaert 1995; Fraley and Raftery 1998, 2002) and in discriminant analysis (Flury 1988;

Bensmail and Celeux 1996; Fraley and Raftery 2002). With this scheme models can, for

example, be constrained to be either spherical or diagonal and have either fixed or vary-
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Figure 14: BIC plot for mixture estimation with the prior for the trees data, with values for
models that include vanishing components shown. Refer to Figure 1 for the correspondence between
symbols and models.

ing covariance across components; there are a number of intermediate possibilities as well.

Failures due to singularity are less likely to occur with models having less variation across

components, although with a corresponding loss of modeling flexibility.

In this paper we have limited our treatment to cases in which there are more observa-

tions than variables. However, there are many instances, such as gene expression data (e.g.

Quackenbush 2001), where the reverse is true. While the methods given here will not fail

due to singular covariance estimates when the prior on the covariance is nonsingular (for

example,
diag(var(data))

G2/d could be used if n ≤ d) more sophisticated techniques are usually

needed to obtain useful clustering. One approach is to adopt a mixture of factor analyz-

ers model (Ghahramani and Hinton 1997; McLachlan et al. 2003), in which the covariance

matrix has the form

Σk = Dk + BkB
T
k ,

where Dk is diagonal and Bk is a d × m matrix of factor loadings, with m � d. Some

regularization is still required to prevent the elements of Dk from vanishing during estimation;

this could be done, for example, by imposing a common value of Dk across components.

Another approach to mixture modeling of high-dimensional data is variable selection,
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which arises as an important consideration in many types of modeling, even when there are

more observations than attributes or variables. Usually variable selection is accomplished

by a separate (often heuristic) procedure prior to analysis. Raftery and Dean (2005) devel-

oped a model-based clustering that incorporates variable selection as an integral part of the

procedure. It would be possible to modify their method by including a prior distribution as

we have done here.

The presence of noise in the data can have a significant effect on density estimation

and clustering. Spurious singularities can be introduced due to noise when fitting Gaussian

mixtures. In mixture modeling, one approach is to add a term with a first-order Poisson

distribution to the mixture model to account for noise (Banfield and Raftery 1993; Dasgupta

and Raftery 1998); our Bayesian regularization approach could also be applied to these

models. An alternative is to model with mixtures of t distributions, which have broader tails

than normals (McLachlan and Peel 1998; McLachlan et al. 1999).

Mkhadri et al (1997) reviewed regularization techniques in discriminant analysis, in-

cluding parameterization of normal mixture models by eigenvalue decomposition (8) and

Bayesian estimation using conjugate priors analogous to those we have used here in the case

of unconstrained covariance. These methods were extended to cases with mixed discrete and

continuous variables by Merbouha and Mkhadri (2004).

Several studies have used the EM algorithm to extimate the posterior mode in a Bayesian

approach for mixture models. Roberts et al. (1998) used a Dirichlet prior on the mixing

proportions and a noninformative prior on the elements of the means and covariances, while

Figueiredo and Jain (2002) used noninformative priors on all of the parameters to be es-

timated. Brand (1999) proposed an entropic prior on the mixing proportions, and applied

his method to hidden Markov models as well as Gaussian mixtures. These methods work

by starting with more components than necessary, and then pruning those for which mixing

proportions are considered negligible.

Bayesian estimation for mixture models can be done via Markov chain Monte Carlo

simulation, using priors on the means and covariances similar to the ones we have used here

(e.g. Lavine and West 1992, Diebolt and Robert 1994, Crawford 1994, Bensmail et al. 1997,

Richardson and Green 1997, Dellaportas 1998, Bensmail and Meulman 2003, Zhang et al.

2004, Bensmail et al. 2005). We have shown that Bayesian estimation using the posterior

mode from EM is straightforward for many models, and that these results can be used for

approximate Bayesian estimation in other models (Section 5.5). Thus, for many applications

it is not clear that the use of MCMC for mixture estimation and model-based clustering is

needed given its computational demands.
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A Algebraic Relations

uTΣ−1v = trace
(

uT Σ−1v
)

= trace
(

Σ−1vuT
)

(9)

∑n
j=1(yj − µ)(yj − µ)T =

∑n
j=1(yjy

T
j − µyT

j − yjµ
T + µµT )

=
∑n

j=1 yjy
T
j − nµȳT − nȳµT + nµµT

=
∑n

j=1 yjy
T
j − nȳȳT + nȳȳT − nµȳT − nȳµT + nµµT

=
∑n

j=1 yjy
T
j − nȳȳT + n(ȳ − µ)(ȳ − µ)T

=
∑n

j=1 yjy
T
j −

∑n
j=1 ȳyT

j −
∑n

j=1 yjȳ
T +

∑n
j=1 ȳȳT + n(ȳ − µ)(ȳ − µ)T

=
∑n

j=1(yj − ȳ)(yj − ȳ)T + n(ȳ − µ)(ȳ − µ)T ,

= n(ȳ − µ)(ȳ − µ)T +
∑n

j=1(yj − ȳ)(yj − ȳ)T ,

(10)

noting that

nȳȳT =
n
∑

j=1

ȳyT
j =

n
∑

j=1

yjȳ
T =

n
∑

j=1

ȳȳT .

The term
∑n

j=1(yj − ȳ)(yj − ȳ)T is the sums of squares and products matrix.
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κP(µ − µP)(µ − µP)T + n(µ − ȳ)(µ − ȳ)T

= κPµµT − κPµµT
P
− κPµPµT + κPµPµT

P
+ nµµT − nµȳ − nµȳT + nȳȳT

= (κP + n)µµT − nµȳT − κPµµT
P
− nȳµT − κPµPµT + κPµPµT

P
+ nȳȳT

= (κP + n)µµT − nµȳT − κPµµT
P
− nȳµT − κPµPµT + κPµPµT

P
+ nȳȳT

= (κP + n)µµT − µ(nȳ + κPµP)T − (nȳ + κPµP)µT +
1

(κP + n)
(nȳ + κPµP)(nȳ + κPµP)T

+ κPµPµT
P

+ nȳȳT −
1

(κP + n)
(nȳ + κPµP)(nȳ + κPµP)T

= (κP + n)
(

µ −
[

nȳ + κPµP

κP + n

])(

µ −
[

nȳ + κPµP

κP + n

])T

+ κPµPµT
P

+ nȳȳT −
1

(κP + n)
(n2ȳȳT + κPnµP ȳT + nκP ȳµT

P
+ κ2

P
µPµT

P
)

= (κP + n)(µ − µ̃P)(µ − µ̃P)T + κP

(κP + n)

(κP + n)
µPµT

P
+ n

(κP + n)

(κP + n)
ȳȳT

−
n2

(κP + n)
ȳȳT −

κPn

(κP + n)
µPȳT −

nκP

(κP + n)
ȳµT

P
−

κ2
P

(κP + n)
µPµT

P

= (κP + n)(µ − µ̃P)(µ − µ̃P)T

+
nκP

(κP + n)
µPµT

P
+

κPn

(κP + n)
ȳȳT −

κPn

κP + n
µP ȳT −

nκP

κP + n
ȳµT

P

= (κP + n)(µ − µ̃P)(µ − µ̃P)T +
κPn

(κP + n)
(ȳ − µP)(ȳ − µP)T

(11)

where

µ̃P ≡
(

n

κP + n

)

ȳ +
(

κP

κP + n

)

µP.
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By analogy to the derivation of (10),
∑n

j=1 zjk(yj − µk)(yj − µk)
T =

∑n
j=1 zjk(yjy

T
j − µky

T
j − yjµ

T
k + µkµ

T
k )

=
∑n

j=1 zjkyjy
T
j − nkµkȳ

T
k − nkȳkµ

T
k + nkµkµ

T
k

=
∑n

j=1 zjkyjy
T
j − nkȳkȳ

T
k + nkȳkȳ

T
k − nkµkȳ

T
k − nkȳkµ

T
k + nkµkµ

T
k

=
∑n

j=1 zjkyjy
T
j − nkȳkȳ

T
k + nk(ȳk − µk)(ȳk − µk)

T

=
∑n

j=1 zjkyjy
T
j −

∑n
j=1 zjkȳkyj −

∑n
j=1 zjkyjȳ

T
k +

∑n
j=1 zjkȳkȳ

T
k + nk(ȳk − µk)(ȳk − µk)

T

=
∑n

j=1 zjk(yj − ȳk)(yj − ȳk)
T + nk(ȳk − µk)(ȳk − µk)

T ,

= nk(ȳk − µk)(ȳk − µk)
T , +

∑n
j=1 zjk(yj − ȳk)(yj − ȳk)

T

(12)

where zjk is the probability that the jth observation belongs to the kth component,

nk ≡
n
∑

j=1

zjk and ȳk ≡
1

nk

n
∑

j=1

zjkyj,

and we have used the relation

nkȳȳT =
n
∑

j=1

zjkȳkyj =
n
∑

j=1

zjkyjȳ
T =

n
∑

j=1

zjkȳȳT .

By analogy to the derivation of (11), we also have

κP(µk − µP)(µk − µP)T + nk(µk − ȳk)(µk − ȳk)
T

= (κP + nk)
(

µk −
[

nkȳk + κPµP

κP + nk

])(

µk −
[

nkȳk + κPµP

κP + nk

])T

+
κPnk

(κP + nk)
(ȳk − µP)(ȳk − µP)T .

(13)

B The Univariate Normal Distribution and Normal In-

verted Gamma Conjugate Prior

The likelihood for the univariate normal (n observations) is

∏n
j=1 φ(yj |µ, σ2 ) =

n
∏

j=1

(

1

2πσ2

)

1

2

exp
{

−
1

2σ2
(yj − µ)2

}

=
(

1

2πσ2

)

n
2

exp







−
1

2σ2

n
∑

j=1

(yj − µ)2







=
(

1

2πσ2

)

n
2

exp







−
µ2

2σ2
n +

µ

σ2

n
∑

j=1

yj −
1

2σ2

n
∑

j=1

y2
j







.

(14)
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A conjugate3 prior that is commonly used for the univariate normal is the normal inverse

gamma prior, in which the prior for µ conditional on σ2 is normal:

µ | σ2 ∼ N (µP, σ2/κP) ∝
(

1

σ2

)

1

2

exp
{

−
κP

2σ2
(µ − µP)2

}

and the prior for σ2 is inverse gamma:

σ2 ∼ inverseGamma(νP/2, ς2
P
/2) ∝

(

σ2
)

−

νP+2

2 exp

{

−
ς2
P

2σ2

}

.

The hyperparameters µP, κP , νP , and ς2
P

are called the mean, shrinkage, degrees of freedom

and scale, respectively, of the prior distribution. The prior is therefore proportional to

(

1

σ2

)

1

2

exp
{

−
κP

2σ2
(µ − µP)2

}

× (σ2)
νP+2

2 exp

{

−
ς2
P

2σ2

}

(

1
σ2

)

νP+3

2 exp
{

− 1
2σ2 [ς2

P
+ κP(µ − µP)2]

}

=
(

1

σ2

)

νP+3

2

exp

{

−
µ2

2σ2
κP +

µ

σ2
κPµP −

1

2σ2

[

ς2
P

+ κPµ2
P

]

}

.

(15)

Combining (14) and (15), the posterior is proportional to

(

1

σ2

)

νP+n+3

2

exp







−
1

2σ2



ς2
P

+ κP (µ − µP)2 +
n
∑

j=1

(yj − µ)2











, (16)

and the log posterior (leaving out the constant terms) is:

−
(

νP + n + 3

2

)

log σ2 −
1

2σ2



ς2
P

+ κP (µ − µP)2 +
n
∑

j=1

(yj − µ)2



 .

From the one dimensional case of (10)

n
∑

j=1

(yj − µ)2 = n(ȳ − µ)2 +
n
∑

j=1

(yj − ȳ)2

and the one dimensional case of (11)

κP(µ − µP)2 + n(ȳ − µ)2 = (κP + n)(µ − µ̃P)2 +
κPn

κP + n
(ȳ − µP)2,

where

µ̃P ≡
nȳ + κPµP

κP + n
,

3A conjugate prior is one in which the posterior has the same form as the prior, but with different
hyperparameters.
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the complete data posterior can be expressed as the product of a normal distribution and

an inverse gamma distribution:

(

1

σ2

)

νP+n+3

2

exp
{

−
κP + n

2σ2
(µ − µ̃P)2

}

exp







−
1

2σ2



ς2
P

+
κPn

κP + n
(ȳ − µP)2 +

n
∑

j=1

(yj − ȳ)2











.

The posterior mode therefore corresponds to

µ̂ = µ̃P ≡
nȳ + κPµP

κP + n
, (17)

and

σ̂2 =
ς2
P

+ κPn
κP+n

(ȳ − µP)2 +
∑n

j=1(yj − ȳ)2

νP + n + 3
. (18)

B.1 Univariate Normal Mixtures

The univariate normal mixture likelihood or density (n observations, G components) has the

form

L(Y | τ, µ, σ2) =
n
∏

j=1

G
∑

k=1

τkφ(yj | µk, σ
2
k), (19)

where φ is as defined in (14).

The M-step of the EM algorithm for maximum loglikelihood is the maximization of

G
∑

k=1

n
∑

j=1

zjk

{

log τk + log φ(yj | µk, σ
2
k)
}

, (20)

where zjk is the probability (computed in the E-step) that the jth observation belongs to

the kth component. The M-step for posterior modes is the maximization of the sum of (20)

and the log prior (Dempster, Laird and Rubin 1977).

B.1.1 Unequal Variance

Assuming that µP, κP , νP and ς2
P

are the same for each component, the normal inverted

gamma prior for a univariate normal mixture with unequal variance is proportional to:

G
∏

k=1

(

σ2
k

)

−
νP+3

2 exp

{

−
ς2
P

2σ2
k

}

exp

{

−
κP

2σ2
k

(µk − µP)2

}

=
G
∏

k=1

(

σ2
k

)

−

νP+3
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The M-step objective for maximum loglikelihood (20) can be expanded as follows:
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(22)

where nk ≡
∑n

j=1 zjk and
∑G

k=1 nk = n.

The function to be maxmized in the M-step to estimate the posterior mode is the sum of

the log posterior (21) and equation (22), and can be expressed as:
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(23)

Using (12) and (13), the M-step objective (23) can be written as:
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2











.

(24)

The M-step estimators for the mean and variance are then

µ̂k =
nkȳk + κPµP

κP + nk

and
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.
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B.1.2 Equal Variance

Assuming that µP, κP , νP and ς2
P

are the same for each component, the normal inverted

gamma prior for a univariate normal mixture with equal variance (σ2
k ≡ σ2) is proportional

to:
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The M-step objective for maximum loglikelihood (20) has the following expansion under the

equal variance (σ2
k ≡ σ2) assumption:
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(26)

where nk ≡
∑n

j=1 zjk and
∑G

k=1 nk = n.

The function to be maximized in the M-step is the sum of the log posterior (25) and on (26),

and can be expressed as:
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Using (12) and (13), the M-step objective (23) for estimating the posterior mode then be-
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comes:
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The M-step parameter estimates are

µ̂k =
nkȳk + κPµP
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and
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.

C The Multivariate Normal and Normal Inverted Wishart

Conjugate Prior

The likelihood for the multivariate normal (n observations) is

∏n
j=1 φ(yj |µ, Σ) =
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(28)

where we have used (9) and (10) to obtain the final form.

Wishart distribution. If X is an m × p data matrix whose rows are iid N (0, ΛP), then

the cross-product matrix XT X is has a Wishart distribution

XTX ∼ Wishart(νP, ΛP).

The parameters νP and ΛP are the degrees of freedom and scale of the distribution. For

multivariate normal data Y , the Wishart distribution is the sampling distribution of the

sample covariance matrix.

inverted Wishart distribution. If XT X is Wishart,
(

XT X
)

−1
is inverted Wishart:

(

XT X
)

−1
∼ inverseWishart(νP, ΛP).
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The inverted Wishart density is proportional to
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The inverted Wishart distribution reduces to a scaled inverted chisquare distribution in

the one-dimensional case, which is equivalent to an inverted gamma distribution when the

parameters are of the form assumed in the prior discussed above for univariate data.

normal inverted Wishart prior. A conjugate prior that is commonly used for the mul-

tivariate normal is the normal inverse Wishart prior, in which the prior for µ conditional on

Σ is normal:
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The prior density is therefore proportional to
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Unconstrained Covariance. Combining (28) and (31), the posterior is proportional to
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It follows from (32) and (11) that the complete data posterior can be expressed as the product

of an inverted Wishart and a normal distribution:
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where
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Like the prior, the complete-date posterior is also the product of an inverted Wishart and a

normal distribution, but with different hyperparameters:
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and the posterior is proportional to:

(

σ2
)

−

νP+d+2

2 exp
{

−
1

2σ2

[

ς2
P

+ κP(µ − µP)T (µ − µP)
]

}

(

σ2
)

−
nd
2 exp







−
1

2σ2

[
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with κ̃P and µ̃P are as defined above in (34) and (35).

The parameter values at the posterior mode are:
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Diagonal Covariance. In the special case where the variance Σ in (28) and (31) is as-

sumed to be spherical, that is, of the form diag(δ2
i ), i = 1, . . . , d, we assume an inverse

gamma distribution for each diagonal element δ2
i of the covariance, as in the univariate case,

giving the following prior:
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and the posterior is proportional to:
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with κ̃P and µ̃P are as defined above in (34) and (35). The parameter values at the posterior

mode are:
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where ei is the ith column of the identity matrix.

C.1 Multivariate Normal Mixtures

For multivariate normal mixtures the likelihood or density has the form

L(Y |τ, µ, Σ) =
∏n

j=1

∑G
k=1 τk φ(yj | µk, Σk), (40)

where φ is defined as in (28).

Analogous to the univariate case, the M-step of the EM algorithm for maximum loglikelihood

is the maximization of
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where zjk is the probability (computed in the E-step) that the jth observation belongs to

the kth component, and the M-step for posterior modes is the maximization of the sum of

(20) and the log prior (Dempster, Laird and Rubin 1977).

C.1.1 Unconstrained Ellipsoidal Covariance

Assuming that µP, κP, νP and ΛP are the same for each component, the normal inverted

Wishart prior for a multivariate normal mixture with unconstrained covariance across com-

ponents is proportional to:
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The M-step objective for maximum loglikelihood (41) can be expanded as follows:
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where nk ≡
∑n

j=1 zjk and
∑G

k=1 nk = n. Adding the log prior and eliminating constant terms,

the function to be maximized in the M-step is:
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Combining this with (12), the M-step objective can be written as:
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T
])

.

(45)

Using (13), the M-step objective for estimating the posterior mode can be expressed as a

sum of separable terms
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where

ν̃k ≡ νP + nk κ̃k ≡ κP + nk (47)

µ̃k ≡
nkȳk + κPµP

κP + nk
(48)
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The parameter values corresponding to the posterior mode are as follows:
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C.1.2 Equal Ellipsoidal Covariance

Assuming that µP, κP, νP and ΛP are the same for each component, the normal inverted

Wishart prior for a multivariate normal mixture with equal covariance across components is

proportional to:
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The M-step objective for maximum loglikelihood (41) can be expanded as follows:
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where nk ≡
∑n

j=1 zjk and
∑G

k=1 nk = n. Adding the log prior and eliminating constant terms,

the function to be maximized in the M-step is:
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Using (12) and (13), the M-step objective for estimating the posterior mode becomes:
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where κ̃k and µ̃k are as defined in (47) and (48). The parameter values corresponding to the

posterior mode are as follows:

µ̂k = µ̃k ≡
nkȳk + κPµP

κP + nk
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C.1.3 Unequal Spherical Covariance

Assuming that µP, κP , νP and ς2
P

are the same for each component, the normal inverted

Wishart prior for a multivariate normal mixture with unequal spherical covariance across

components is proportional to:
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The M-step objective for maximum loglikelihood (41) can be expanded as follows:
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where nk ≡
∑n

j=1 zjk and
∑G

k=1 nk = n. Adding the log prior and eliminating constant terms,

the function to be maximized in the M-step is:
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Using (12) and (13), the M-step objective for estimating the posterior mode becomes:
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where κ̃k and µ̃k are as defined in (47) and (48). The parameter estimates corresponding to

the posterior mode are as follows:
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C.1.4 Equal Spherical Covariance

Assuming that µP, κP , νP and ς2
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are the same for each component, the normal inverted

Wishart prior for a multivariate normal mixture with unequal spherical covariance across

components is proportional to:
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The M-step objective for maximum loglikelihood (41) can be expanded as follows:
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where nk ≡
∑n

j=1 zjk and
∑G

k=1 nk = n. Adding the log prior and eliminating constant terms,

the function to be maximized in the M-step is:
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Using (12) and (13), the M-step objective for estimating the posterior mode becomes:
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where κ̃k and µ̃k are as defined in (47) and (48). The parameter estimates corresponding to

the posterior mode are as follows:
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C.1.5 Unequal Diagonal Covariance

Assuming that µP, κP , νP and ς2
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are the same for each component, the normal inverted

Wishart prior for a multivariate normal mixture with unequal diagonal covariance across

components is proportional to:
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The M-step objective for maximum loglikelihood (41) can be expanded as follows:
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where nk ≡
∑n

j=1 zjk and
∑G

k=1 nk = n. Adding the log prior and eliminating constant terms,

the function to be maximized in the M-step is:
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Using (12) and (13), the M-step objective for estimating the posterior mode becomes:
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where κ̃k and µ̃k are as defined in (47) and (48). The parameter values corresponding to the

posterior mode are as follows:

µ̂k = µ̃k ≡
nkȳk + κPµP

κP + nk

and
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T
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,

where ei is the ith column of the identity matrix.

C.1.6 Equal Diagonal Covariance

Assuming that µP, κP , νP and ς2
P

are the same for each component, the normal inverted

Wishart prior for a multivariate normal mixture with unequal diagonal covariance across

components is proportional to:
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The M-step objective for maximum loglikelihood (41) can be expanded as follows:
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where nk ≡
∑n

j=1 zjk and
∑G

k=1 nk = n. Adding the log prior and eliminating constant terms,

the function to be maximized in the M-step is:
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Using (12) and (13), the M-step objective for estimating the posterior mode becomes:
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where κ̃k and µ̃k are as defined in (47) and (48). The parameter values corresponding to the

posterior mode are as follows:

µ̂k = µ̃k ≡
nkȳk + κPµP

κP + nk

and
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where ei is the ith column of the identity matrix.
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