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SUMMARY 

Using the posterior distribution of the realized error terms for residual analysis in a 

linear model was advocated in Zellner (1975) and Zellner & Moulton (1985). The same 

idea was used in Chaloner & Brant (1988) to define outliers and calculate posterior 

probabilities of observations being outliers. This paper extends the same concept to 

other models, including regression models for lifetime data, by using an approach 

similar to that of Cox and Snell (1968). Residual plots are proposed where realized 

errors are represented by interval estimates. Incorporating censored observations into 

this framework is straightforward. 

Some key words: Laplace approximation; Lifetime data; Posterior distribution. 

1 THE REALIZED ERROR TERMS 

Cox & Snell (1968) proposed a general definition of residuals for models where each 

observation Yi can be written as Yi= g;(0, c;) with 0 a vector of unknown parameters 

and the c;, i = 1, ... , n a sample of independent and identically distributed random 

variables from a known distribution. Suppose that the equation Yi = g;( 0, c;) has a 
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unique solution Ei = hi(Yi, 0). Cox & Snell define Ei = hi(Yi, 0) to be the residuals 

where iJ are the maximum likelihood estimates of 0. In the Bayesian approach used 

here define Ei = hi(Yi, 0), i = 1, ... , n to be the residuals. Each Ei is just a function of 

the unknown parameters and the posterior distribution is therefore straightforward 

to calculate. The posterior distribution can be examined for indications of possible 

departures from the assumed model and the presence of outliers. 

The posterior distribution of the realized errors is very different from the sampling 

distribution of their estimates. The posterior distribution represents the uncertainty 

about functions of the parameters; if the parameters, 0, and observations, y;, are 

known then so are the realized errors E; = hi(Yi, 0). 

With a large sample size, the posterior distribution of the Ei will be, approximately, 

multivariate normal centred at the posterior mean and with covariance matrix the 

posterior covariance matrix. An alternative approximation to the posterior mean of 

the realized errors would be the maximum likelihood estimates Ei. 

Following Chaloner & Brant (1988) an outlier can be defined to be any observation 

that has a surprising value of Ei. For lifetime data we might perhaps be especially 

interested in detecting any observations which are unusually large. If the cumulative 

distribution function of the Ei is F( ·) and we have n observations then we might, for 

example, choose 

(1) 

and define any observation with Ei > k to be an outlier. (We assume that 9i(0, ti) 

is monotonically increasing in Ei.) In this way the prior probability of no outliers is 

0.95 and outliers are not expected. After observing the data we can calculate the 

posterior probability that each observation is an outlier and any observation with a 

posterior probability, pr(Ei > kjy), larger than the prior probability of 1-F(k) would 

be suspect. The approach can clearly be adapted to detecting surprisingly short 

lifetimes, or, alternatively, lifetimes that are either surprisingly short or surprisingly 

long. Other, related, calculations were demonstrated in Chaloner & Brant (1988) for 

linear regression models with normal realized errors. 
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2 AN EXAMPLE WITHOUT CENSORING 

Consider the data from Feigl & Zelen {1965) which were also used by Cox & Snell 

{1968). The Yi are the weeks until death of leukemia patients and the explanatory 

variable x; is the log of the initial white blood cell count divided by 10,000. Only the 

17 AG positive patients will be used. The model can be written 

Y
. _ ef3o+f31xi.c. 
,- L.t, 

or, equivalently, 

and so 

The E; for i = 1, ... , n are an independent sample from an exponential distribution 

with mean 1, or, equivalently, the logt:; are an independent sample from a standard 

extreme value distribution. As the residuals are most usually examined in the un­

transformed scale in which they have an exponential distribution we compute their 

posterior mean in that scale. That is, if we denote the data by y, let 

~ E( Yi I ) 
E; = ef3o+/31x; Y · 

Using the normal approximation to the posterior distribution, we could construct 

an approximate 95% highest posterior density region for each E; by E; ± 2 ✓ var( t:;Jy ). 

As the E; are positive quantities, however, intervals calculated this way might contain 

negative values, and, indeed, for this example they do contain negative values. The 

normal approximation is therefore used on the posterior distribution of logt:; and the 

end points exponentiated. Specifically, the highest posterior density region for Ei is 

exp{E(logt:;Jy) ± 2 ✓ var(logt:;Jy)}. (2) 

The resulting approximate 95% intervals contain only positive values. These intervals 

are denoted as (L;, U;). Inspection of the posterior distribution of the Ei and logt:; for 
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this example reveals that the posterior distribution of logti is typically less skewed 

and is closer to normal than that of the f.i. 

Table 1 gives the data, the posterior means and the calculated intervals under 

a non-informative prior distribution where p(f3o, f3i) is constant on two-dimensional 

Euclidean space. The posterior means and variances were calculated using the Laplace 

approximations of Tierney & Kadane (1986) using the software of Tierney (1990, 

p. 70-6). The first order approximations to posterior means and variances using the 

maximum likelihood estimates and the second derivatives of the log likelihood function 

could also have been used and, in fact, give very similar results. Figure 1 is a plot 

of the ordered point estimates, i;, and their corresponding interval estimates, plotted 

against the expected order statistics of a sample from an exponential distribution 

with mean 1. A straight line through the origin, with slope 1, has been drawn in as 

this is what is expected under the prior distribution. 

A plot of the posterior means alone does not indicate anything other than what 

would be expected under an exponential distribution. The highest posterior density 

regions, however, indicate that there is uncertainty associated with some of the the 

residuals. The f.; with the largest f.; is observation 17 and the interval [L11, U11] is 

extremely large. There is great posterior uncertainty about that residual. A plot 

of the intervals against the explanatory variable indicates that patient 17 also has 

the largest initial white blood cell count. This patient survived 65 weeks, but two 

other patients with the same initial white blood cell count survived only 1 week. The 

augmented residual plot has drawn attention to this somewhat unusual feature. 

Outliers can be defined using the method outlined in §1. Choosing k as in Equa­

tion 1 gives k = 5.8. The Laplace approximation to the marginal posterior distribu­

tion p( t 17 ly) can be calculated and a plot of the distribution indicates that there is 

indeed a non-negligible posterior probability that f.17 is larger than 5.8. As p( logt17 ly) 

is closer to normal than p(t11IY) we use a normal approximation to p(logt11IY) to 

give an an approximate probability pr(t17 > 5.8ly). The Laplace approximations 

to the posterior mean and standard deviation of logt17 are 1.177 and 0.454 and so 

pr(t11 > 5.8ly) is approximately 0.1. This posterior probability is considerably larger 
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than the prior probability of 0.003. There is, therefore, some evidence that the life­

time of patient 17 might be in the extreme upper tail of the distribution of lifetimes at 

the value of x 17 under the assumed model. Note that observation 17 is also identified 

as being unusually influential by Cook & Weisberg (1982, p.178-86) using likelihood 

displacement methods. The analysis of Cox & Snell (1968) did not identify this 

observation as unusual. 

3 CENSORED OBSERVATIONS 

Now assume that censoring is present. If Yi is less than or equal to Ci, the censoring 

time of the ith observation, we observe the lifetime Yii if, alternatively, Yi is greater 

than Ci we do not observe the lifetime Yi, we just know that Yi > Ci. Units are either 

therefore observed to fail at time Yi or are censored at time Ci· Right censoring of 

this type is the only kind of censoring discussed here, although similar ideas can be 

applied to left censoring. 

The posterior distribution of 0 is usually straightforward to calculate numerically. 

For the uncensored observations the posterior mean and variance of h;(y;, 0) can be 

calculated to give point and interval estimates for the realized errors E;, as in §1 and 

§2. For the censored observations, however, we only know that h;(y;, 0) > h;( c;, 0) 

and even if the value of 0 is known exactly we will always have a distribution on 

h;(y;, 0) reflecting uncertainty in the unobserved Yi• 

Let the prior distribution of E; have cumulative distribution function F( · ), com­

pletely specified, and corresponding probability density function J( · ). Denote all 

the data, yis and c~s, by y, then the posterior distribution of E; conditional on the 

parameters 0 and y is given by 

J(t;)[l - F{h;(c;,0)})-1 if E; > h;(c;,0) 
p(t;j0,y) = 

0 otherwise 

which is just the prior distribution truncated at h;( c;, 0). The posterior density func­

tion of E; is most easily expressed as the following where I(·) denotes the indicator 
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function and the integral is over the whole parameter space 

( ·I ) = J f(Ei)l{Ei > hi(Ci,0)} (01 )d0 
p E, y l - F{h;(Ci,0)} p y . 

The posterior mean of Ei is the posterior mean of the function M(ci, 0) where 

1
00 zf(z) 

M(c;,0) = -----dz. 
h,(c,,0) 1- F{h;(ci,0)} 

(3) 

This expression often simplifies: for example if F( ·) corresponds to a unit exponential 

distribution then M(ci,0) = h(ci,0) + 1. The posterior mean li = E{M(ci,0)ly} is 

a point estimate of Ei which can be plotted on a residual plot. (This parallels the 

suggestion of Lawless, 1982 p. 281 and 320, to use M( ci, 0) as estimates of residuals 

for censored data.) 

The posterior mean of E; for censored observations is therefore usually easy to 

calculate. This single number, however, does not adequately reflect the inherent un­

certainty due to censoring. Even if 0 were known exactly we would have a distribution, 

not a single value, for Ei- Suppose 0 were known, then the value hi( Ci, 0) provides a 

lower bound and we could choose Ai( ci, 0) such that there would be probability 0.95 

that Ei, given 0, was in [hi( Ci, 0), Ai( Ci, 0)]. That is Ai( Ci, 0) is the 95th percentile of 

the distribution of p( E; 10, y), specifically: 

A(ci, 0) = p-1 (0.95 + 0.05F{hi(Ci, 0)}]. (4) 

Define the interval [h;,A.i] where hi= E{h(c;,0)ly} and A;= E{Ai(ci,0)}. This 

interval has been found to be a useful posterior estimate of Ei. 

In addition to [hi, Ai] a conservative 95% highest posterior density region for Ei is 

also useful. To calculate this interval, [Li, Ui], for a censored observation some further 

approximations are proposed. First we suggest a method for a lower bound, Li. If 

the posterior distribution of hi( Ci, 0) is approximately normal and we take 

Li= E{h;(ci,0)ly}- 2 ✓ var{hi(c;,0)ly} (5) 

then pr{Li < hi(ci,0)ly} is approximately 0.025. As for any value of 0 we must have 

E; > h;( Ci, 0), the set of values of 0 for which Ei < L; must have posterior probability 
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less than 0.025 and so pr{ Ei < Li Jy} < 0.025 and Li provides a conservative lower 

bound for an approximate 95% highest posterior density region. Alternatively, if the 

posterior distribution of log hi( Ci, 0) is closer to having a normal posterior distribution 

we might use 

L; = exp[E{logh(ci,0)ly}- 2 ✓ var{logh(c;,0)Jy}]. (6) 

For the upper end point, U;, of the highest posterior density region note that 

pr(t; > ujy)::; {1 -F(u)} j[1 -F{h(c;,0)}J- 1p(0Jy)d0. 

If U; is chosen to be 

-1( 0.025 ) 
U; = F l - E{[l - F{hi(Ci,0)}]- 1 Jy} 

(7) 

we have pr(Ei > U;Jy)::; 0.025 and Ui is a conservative upper bound for a 95% highest 

posterior density interval. 

Both intervals, [h;, A;] and [Li, U;], are useful to plot as will be demonstrated 

with the example to follow. The interval [hi, Ai] is based on the conditional distri­

bution given 0 and therefore can be thought of as representing an estimate of the 

uncertainty in Ei due to censoring. The interval [Li, Ui] is based on the unconditional 

posterior distribution and is typically a larger interval incorporating all the posterior 

uncertainty. 

4 AN EXAMPLE WITH CENSORING 

Now consider a data set with censoring. The data set is originally from Glasser 

(1965) and is reproduced in Lawless (1982, p. 319). The response y; is the survival 

time in days of lung cancer patients. There are two explanatory variables, age ( x 1 , 

in years with the mean age subtracted) and performance status (x2). There are 16 

observations, 6 of which are censored. The data set is given in Table 2. 

The lifetimes y; are taken to have a log-normal distribution and we let 
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and 

The E;'s are independent and have a standard normal distribution. It seems more 

natural in this case to work with realized errors which are a sample from a normal 

distribution rather than a sample from a log-normal distribution as normal residual 

plots are so familiar. The prior cumulative distribution function of the Ei is just the 

standard normal distribution function, <I>(·). 

For the uncensored observations we use the method described in §1 taking i.; = 

E{h;(y;,0)} and the highest posterior density region to be i.; ± 2 ✓ var{h;(y;,0)\y}. 

For the censored observations Equation 3 simplifies to give E; as the posterior mean 

of 

exp[-{ h;( c;, 0) }2 /2] 

M(c;,0) = (21r)l/2[1- <I>{h;(c;,0)}r 

Equation 7 with F(·) = <I>(·) gives U;, and L; is straightforward to calculate using 

Equation 5. Note also that h; = E{h;(c;,0)\y} and A; is the posterior expectation 

of A;( c;, 0) given in Equation 4. A non-informative prior distribution is again used, 

taking p(/30 , /31 , /32 , logo') proportional to a constant. 

The quantities to be calculated require taking posterior expectations of functions 

of 0. In this example, as in §1, we use Laplace approximations to the posterior 

expectations, but first order approximations, using the maximum likelihood estimates, 

could easily have been used instead to give similar results. 

The Laplace approximations to the posterior means of (/30 , /31 , /32 , logo') are (1.614, 

-0.0060, 0.1021, -1.033). The i.;, L; and U;, calculated using Laplace approximations 

to posterior means and variances, are given in Table 2 together with values of h; and 

A; for the censored observations. 

Figure 2 is a plot of the residuals and their corresponding interval estimates plotted 

against case number. A dashed line is used for the intervals [h;, A.;] for the censored 

observations and solid lines for the remaining part of the intervals [L;, U;]. The 

posterior means are shown on the plot using a different symbol for the censored and 

uncensored observations. 
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The dashed lines represent the inherent uncertainty, due to censoring because y; 

is not observed. The dashed lines are an estimate of an interval, with 95% posterior 

probability, if 0 were known. The solid lines, for the remaining part of [L;, U;] represent 

additional uncertainty due to uncertainty about 0. If more observations were taken 

from the model the uncertainty in 0 would decrease and the solid part of the interval 

[L;, U;] become shorter but the dashed lines would have, approximately, constant 

length. 

The plot does not indicate any overwhelming violations of the normality assump­

tion but it does point to two censored observations having interesting features. One is 

observation 14 which has the largest posterior mean (i14 = 1.78) and some posterior 

probability of being quite large. Using the guideline given in §1 and Equation 1 we 

might take an outlier to be any observation with E; > 2. 73. The 95% highest pos­

terior density region for t:14 includes the value 2. 73 and so observation 14 may have 

a small, but non-negligible, probability of being an outlier. The second interesting 

feature of the plot is the great uncertainty in the residual for observation 12, as the 

95% interval is very large. Although there is no indication that t: 12 is greater than 

2. 73, there is some posterior probability that it might be unusually small. Inspection 

of the data reveals that both observation 12 and 14 have values of the explanatory 

variables which are extremes. Observation 12 has the largest value of performance 

status (x 2 ) and observation 14 the smallest. In addition they both have the second 

largest value of age, (x 1 ). These extreme values will contribute to the large posterior 

variance of the residual. These two observations are not necessarily outliers but the 

residual plot indicates that they deserve closer inspection. On closer inspection it is 

interesting that if observation 14 is deleted the posterior mean of /31 changes from 

-0.006 to -0.019 and the posterior mean of /32 changes from 0.102 to 0.176. Both these 

changes are approximately one standard error in magnitude, and, for /32 this change 

makes the coefficient change from being not significantly different from zero to being 

significantly different from zero at the usual levels. Deleting observation 12 does not 

change the estimates very much further. Neither observation 12 or 14 would be no­

ticed in a standard residual plot but the Bayesian residual plot of Figure 2 highlights 
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them for further inspection. 
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Table 1. Table of Yi, Xi, posterior mean li, and lower and upper bounds for a 95% 

highest posterior density region, L; and Ui, for Feig/ €3 Zelen data. 

z Yi Xi Ei L· • ui 

1 65 -1.470 0.576 0.243 1.176 

2 156 -2.590 0.874 0.241 2.332 

3 100 -0.844 1.163 0.591 2.082 

4 134 -1.347 1.251 0.549 2.486 

5 16 -0.511 0.216 0.118 0.366 

6 108 0.049 1.890 1.110 3.034 

7 121 0 2.069 1.212 3.329 

8 4 0.531 0.088 0.051 0.143 

9 39 -0.616 0.502 0.269 0.864 

10 143 -0.357 2.072 1.166 3.436 

11 56 -0.062 0.930 0.542 1.501 

12 26 1.163 0.786 0.410 1.380 

13 22 1.253 0.696 0.356 1.243 

14 1 2.303 0.055 0.020 0.124 

15 1 2.303 0.055 0.020 0.124 

16 5 1.649 0.194 0.089 0.376 

17 65 2.303 3.582 1.309 8.043 
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Table 2. Table of logyi, logci, age, Xzi, posterior mean ti, and lower and upper bounds 

for a 95% highest posterior density region, Li and Ui, with 't and Ai for the censored 

observations, for lung cancer patients under the log-normal model. 

z logyi logci age Xzi t:; Li ui h· 
' 

A; 

1 1.94 42 4 -0.368 -1.720 0.984 

2 2.23 67 6 0.072 -0.931 1.075 

3 1.94 62 4 -0.087 -1.090 0.916 

4 1.98 52 6 -0.699 -1.377 -0.020 

5 2.23 57 5 0.212 -0.461 0.885 

6 1.59 58 6 -1.488 -2.363 -0.613 

7 2.13 55 6 -0.320 -0.882 0.241 

8 1.80 63 7 -1.228 -2.117 -0.339 

9 2.32 44 5 0.231 -0.910 1.373 

10 1.92 62 7 -0.973 -1.764 -0.182 

11 2.15 51 7 0.4745 -1.412 2.113 -0.612 1.809 

12 2.05 64 10 0.213 -3.005 2.017 -1.495 1.708 

13 2.48 54 8 0.748 -1.106 2.266 -0.112 1.945 

14 2.42 64 3 1.787 -0.158 3.129 1.297 2.622 

15 2.56 54 9 0.702 -1.489 2.271 -0.213 1.930 

16 2.56 57 9 0.724 -1.413 2.282 -0.171 1.940 
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Plot of estimated residuals and their highest 
posterior density regions for the Feigl and Zelen 
data, plotted against the expected order statistics 
of a standard exponential distribution. 
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Plot of the estimated residuals and their highest 
posterior density regions for the data from 
Glasser (1965), (x mean for uncensored residual, 
o mean for censored residual). 




