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Bayesian Restoration Using a New Nonstationary
Edge-Preserving Image Prior

Giannis K. Chantas, Nikolaos P. Galatsanos, and Aristidis C. Likas

Abstract—In this paper, we propose a class of image restoration
algorithms based on the Bayesian approach and a new hierar-
chical spatially adaptive image prior. The proposed prior has
the following two desirable features. First, it models the local
image discontinuities in different directions with a model which
is continuous valued. Thus, it preserves edges and generalizes the
on/off (binary) line process idea used in previous image priors
within the context of Markov random fields (MRFs). Second,
it is Gaussian in nature and provides estimates that are easy
to compute. Using this new hierarchical prior, two restoration
algorithms are derived. The first is based on the maximum a
posteriori principle and the second on the Bayesian methodology.
Numerical experiments are presented that compare the proposed
algorithms among themselves and with previous stationary and
non stationary MRF-based with line process algorithms. These
experiments demonstrate the advantages of the proposed prior.

I. INTRODUCTION

I
MAGErestoration isawell-known, ill-posed inverseproblem

that requires regularization. Due to the wide-band nature of

the additive noise and the low-pass characteristics of the image

and blurring operator, smoothness constraints on the restored

image are used for regularization [1]. The Bayesian formulation

of the image restoration problem offers many advantages since

it provides a systematic and flexible way for regularization.

Furthermore, it provides a rigorous framework for estimation of

the model parameters; see, for example, [2] and [3].

In many Bayesian formulations, for the image restoration

problem, image priors based on a Gaussian stationary assump-

tion for the residuals of the local image differences have been

used; see, for example, [3]–[6]. The most popular such model is

the simultaneously autoregressive (SAR) in which the statistics

of the image are assumed invariant at all spatial locations of the

image; see, for example, [3]–[6]. This model greatly facilitates

the parameter estimation process since few parameters are used

and, thus, can be easily estimated. However, such stationary

models are seriously handicapped because they do not provide

the flexibility to model the spatially varying structure of images

in edge and texture areas. In other words, such priors enforce

smoothness uniformly across the entire image and correspond

to uniform “regularization.” There have been a number of

efforts to ameliorate this problem. A complete survey of all of

them is out of the context of this paper. In what follows, we
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will discuss two such efforts in more detail that are related to

the methodology proposed in this paper.

In one such effort, a class of stochastic non stationary image

models, called compound Gauss–Markov models, have been

proposed; see, for example, [17]–[21]. In these models, the

image is assumed to be generated by a two-level process. The

first level represents the correlations of adjacent pixels of the

image. The second level contains a binary process used to cap-

ture the image variations (edges). In other words, when the line

process between two pixels is “on” smoothness is not enforced

between them while when it is “off” smoothness is enforced.

Although restoration approaches based on doubly stochastic

MRF use a rigorous model for the image and a systematic ap-

proach to learn and infer the restored image they have two disad-

vantages. First, they are difficult to solve from a computational

point of view. One reason for this difficulty is the cyclic depen-

dency of the random variables in such models. In other words,

the corresponding generative graphical model contains cycles

and is well known that learning such models is difficult and com-

putationally expensive; see, for example, [22]. Second, from an

image modeling point of view, the binary (on/off) nature of the

line process that is used is insufficient to capture the image vari-

ations of most natural images. More specifically, edges of dif-

ferent strengths and “degrees of sharpness” are present in natural

images and a binary model is limited since it inevitably intro-

duces quantization in representing them.

In another effort to avoid uniform regularization, determin-

istic approaches based on the visibility of the errors in images

have been developed; see, for example, [8]–[11]. These methods

are based on the intuitive notion that in areas of high image

variation (edge and texture) errors are less visible; thus, less

smoothing is necessary, while, in areas of low activity (smooth

area), the errors are more visible, and more smoothing is neces-

sary [7].

The methods based on the error visibility idea use a contin-

uous (non binary) model to capture the visibility of the image

artifacts. Since the visibility of the artifacts is related to the

variation structure of the image, these methods use a contin-

uous model for the image variations. However, their main short-

coming is that quantification of visibility is not rigorous but

rather heuristic. Thus, the estimation of all the necessary pa-

rameters is not based on a systematic framework derived from

a rigorous model. As a result, such models are cumbersome to

use, and suboptimal.

In this paper, we introduce a methodology that ameliorates

the difficulties of the above mentioned methods. In particular,

we propose a new hierarchical (two-level) Gaussian nonsta-

tionary image prior. This prior assumes that the residuals of the

first order differences of the image, in four different directions,

1057-7149/$20.00 © 2006 IEEE

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on January 8, 2010 at 05:00 from IEEE Xplore.  Restrictions apply. 



2988 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 10, OCTOBER 2006

are Gaussian random variables with zero mean and variance

that is spatially varying. As a result, these local directional

variances capture the image discontinuities with a continuous

value model and can be thought as “continuous line processes.”

In order to deal with the resulting over-parameterization of

this model, the spatially varying variances are considered as

random variables (not parameters) and a Gamma hyper-prior is

imposed on them. The parameters of the imposed hyper-prior

control the mean and the variance of the residual variances and

in a sense control the degree of nonstationarity of the imposed

image prior.

Another aspect of this image model is that it enforces sparse

first order directional differences in the image using the same

Bayesian mechanism as in sparse kernel-based regression and

basis selection; see, for example, [12] and [29]. Sparse signal

representations have found extensive applications in inverse

problems and are becoming very important area of research

for many signal and image processing applications [29]. This

model is an effort to capture the “best of both worlds.” It is edge

preserving and Gaussian in nautre, thus being easy to compute.

Tolearn thismodelandinfer the imageweproposetwoiterative

algorithms.Thefirst isbasedonthemaximumaposterioriestima-

tion (MAP) principle and computes explicitly both the image and

the spatially varying variances in all four directions. The second

is a Bayesian algorithm that marginalizes the “hidden variables”;

see, for example, [14]. At this point, we would like to make two

observations. First, unlike MRF-based models, the generative

graphical model that stems from the proposed prior in this paper

does not contain cycles; thus, learning and inference based on it

is easy. Second, we obtain as MAP estimates of the inverse local

variancesthespatiallyadaptiveregularizationweightsin[8]–[11]

which were previous obtained based on heuristic arguments. An

identical algorithm to the herein proposed itereative MAP can

also be derived using the deterministic half-quadratic regulariza-

tion methodology proposed in [30]. More specifically, (5) in this

paper is identical to (16) in [30] when four direction differences

are used in the potential function ϕ with

the selection and . However,

the main advantage of the proposed approach is that it provides

statistical interpretation for all the parameters used. Thus, unlike

the half-quadratic formulation in [30], it provides with guidelines

for selecting good values for them in practical problems.

We provide numerical experiments where we compared the

proposed restoration algorithms with two different versions of

the classical Wiener filter [24], the constrained least squares

approach with spatially adaptive constraints [8]–[11], previous

Bayesian algorithms based first on the stationary SAR model in

[3], and second on the CGMRF that use “binary line processes”

in [21]. We also compared the proposed algorithms among

themselves in terms of both the bias and the variance of the

inferred restored image using a Monte-Carlo simulation. Our

experimental results are encouraging and demonstrate the

advantages of both the proposed new prior and the Bayesian

methodology.

The rest of this paper is organized as follows. In Section II,

we present the imaging and the proposed image prior models.

In Section III, we present the MAP-based restoration algorithm.

In Section IV, we derive the Bayesian marginalization-based

algorithm. In Section V, we present our numerical experiments,

and, finally, in Section VI, we provide conclusions and thoughts

for future research.

II. IMAGING AND IMAGE PRIOR MODEL

A linear imaging model is assumed. The vector ,

represents the observed degraded image which is obtained by

(1)

where is the (unknown) original image, is a known

convolution matrix and is additive white noise. We assume

Gaussian statistics for the noise given by where

is a vector with zeros and the identity ma-

trix, respectively, and the noise variance which is assumed

unknown.

For the image prior model we assume that the first order dif-

ferences of the image in four directions, 0 , 90 , 45 , and

135 , respectively, are given by

and (2)

with 1, 2, 3, 4, the difference residuals for the image

location . The above equations can be also written in ma-

trix vector form for the entire image as , 1, 2, 3, 4,

where is the directional difference operators for

images. Without loss of generality, in what follows, for conve-

nience, we will use one-dimensional notation; in other words,

we assume . We assume that the residuals

have Gaussian statistics according to , for

and 1, 2, 3, 4, where the inverse variance

of and the size of the image.

For the inverse variance , we introduce the notation

an diagonal matrix and

a diagonal matrix and

a vector. Also, for the errors, we use

the notation . We assume that the errors in

each direction and at each pixel location are independent. This

is based on the assumption that at each pixel location an edge

can occur at any direction independently of what happens in ad-

jacent pixels. This assumption makes subsequent calculations

tractable. Thus, the joint density for the errors is Gaussian and

is given as

To relate with the image , we define the operator

. Then, the relation between
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the image and the residuals is . Based on this relation

and , we can define an improper prior for the image .

This prior is given by

(3)

This prior is termed improper since it is not scaled to in-

tegrate to 1. For a proper Gaussian the normalizing con-

stant as a function of the spatially varying variances,

cannot be of the form in (3), since is not a square matrix,

where is a con-

stant, even though is diagonal. However, improper priors are

used on a routinely basis with success in Bayesian modeling

[15]. More specifically, the prior in (3) is obtained by assuming

that all the elements of the diagonal matrix are equal to their

geometric mean . This implies, because

is a matrix, that

. This assump-

tion results in the improper prior in (3) and leads to tractable

calculations.

The role of the parameters is to capture the directional vari-

ation structure of the image. More specifically, a large variance

(small ) indicates the presence of a large variation along the

direction of the difference, in other words, an edge perpendic-

ular to this direction. The introduction of the spatially varying

scales down the differences of adjacent pixels in regions of

image discontinuities. As a result this prior maintains edges and

suppresses noise in smooth areas of the image. This principle

is identical to the one that motivated the use of the binary (0 or

1) line process idea; see for example [17]–[21]. However, since

the values of are continuous our model can be considered

as generalization of the MRF model with the on/off binary line

process.

The drawback of the proposed prior is that it introduces

parameters that have to be estimated from observations.

This is clearly not a desirable situation from an estimation point

of view. For this purpose we employ the Bayesian paradigm and

consider as random variables (instead of parameters) and

introduce Gamma hyper-priors for them. In the case of a sta-

tionary model where all s are equal the over parameterization

problem does not exist, and it is rather straightforward to obtain

good estimates for the unknown parameters using even max-

imum likelihood (ML).

The rationale for using a Gamma prior in the non stationary

case is threefold. First, it is “conjugate” for the variance of a

Gaussian and facilitates analysis of the Bayesian model [14].

Second, similar hierarchical models have been used success-

fully in Bayesian formulations of other statistical learning prob-

lems and produce sparse representations; see, for example, [12]

and [29]. Sparse local differences encouraged by this model are

a good model for image edges which are overall much less than

the pixels in the image. Finally, as we shall see in what follows,

it produces update equations for s that were previously de-

rived empirically.

We consider the following parameterization for the Gamma

hyper-prior:

(4)

For such a representation the mean and variance of Gamma

are given by , and

, respectively; see [3] and [13]. This rep-

resentation is used because the value of the parameter can be

also interpreted as the level of confidence to the prior knowl-

edge provided by the Gamma hyper prior. More specifically, as

, and . In other

words, the prior becomes very informative and restrictive re-

sulting in . This also implies that the image

model becomes stationary. In contrast, when , then both

and ; thus, the prior becomes un-

informative and does not influence at all the values of the s.

In other words, the s are free from the moderating influence

of the prior and are allowed to “vary wildly” following the data.

In such case the image model becomes “highly non stationary.”

As a result, the value of the parameter can be also viewed as

a way to adjust for the degree of non stationarity of the image

model.

III. MAXIMUM A Posteriori (MAP) ESTIMATION

At first, we propose a MAP approach to infer and . This

is based on maximization of the posterior probability. Thus, we

have

where

Maximizing the quantity with respect to

and is equivalent to minimizing the negative logarithm

(5)
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To minimize the above function with respect to and , we

adopt an iterative scheme that sets alternatively the gradient of

and equal to zero. Setting

yields

(6)

Setting yields

(7)

However, (7) cannot be solved in closed form since analytical in-

version of is not possible

due to the noncirculant nature of matrices . Thus, we resort

to a numerical solution using a conjugate gradient algorithm.

The proposed MAP algorithm iterates between (6) and (7) till

convergence.

It is interesting to point out that a formula similar to (6) was

used in previous works to compute spatially varying regular-

ization weights. Such a formula was derived based on heuristic

arguments and empirical observations; see [8]–[10], and [11].

In addition, the observation of the previous section that the

parameters control the degree of nonstationarity of the model

can be verified from (6), the MAP estimates of the . More

specifically, when , , and the

image model becomes stationary. In contrast, when ,

; thus, the s are completely un-

affected from the moderating effect of the Gamma hyper-prior

and only follow the data. For example, in smooth areas of the

image where the local residual in the denominator of (6) tend to

zero, it holds that .

IV. BAYESIAN ALGORITHM

In the Bayesian analysis of the proposed model, hidden

variables are marginalized while parameters are estimated [14].

In our case, as explained in Section II, and are considered

“hidden” (latent) variables, while , , and are the un-

known parameters. In the Bayesian inference paradigm, hidden

variables are marginalized while parameters are estimated by

maximizing the likelihood of the observations

(8)

The exact evaluation of this Bayesian integral is not possible

since we cannot integrate in closed form with respect to both

and . Instead, we marginalize in closed form only with respect

to . We chose to marginalize for two reasons: first, because

the maximization with respect to that follows is tractable;

second, because this approach requires explicit computation of

as part of the Bayesian algorithm and we do not have to com-

pute it separately. More specifically, we have

(9)

The calculation of the integral can be made as shown in the

equation at the bottom of the page. Observing the integrand in

the above expression it is easy to notice it is of the form ,

i.e., it is similar to a Gamma PDF. Thus, its integral is given

by (10), shown at the bottom of the next page. Replacing the

integral of (10) in (9) gives (11), shown at the bottom of the

next page.

Thus, the image is estimated by its value at the mode

of . To compute the mode, we minimize

with respect to

(see the equation shown at the bottom of the next page).

The mode is found by an iterative modified Newton algo-

rithm with the following update equation

(12)

where and denote the Gradient and the Hessian

matrix of the function respectively (with respect to ). The
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Gradient and the Hessian can be computed analytically, and are

given by

where

and the matrix is diagonal with diagonal elements

equal to

To find the step in (12), we adopted a backtracking line

search method [23].

V. NUMERICAL EXPERIMENTS

In this section, we present numerical experiments to evaluate

our algorithms. First, we compare the proposed methods with

previous methods in terms of the quality of the images pro-

vided. Second, we compare the proposed MAP and Bayesian

algorithms in terms of the bias and variance of the inferred re-

stored images.

The metrics used to quantify the quality of the degraded im-

ages, the noise levels in our degraded images and the quality of

our restoration results are the peak signal to noise ratio (PSNR),

the signal to noise ratio (SNR), and the improvement in signal

to noise ratio (ISNR), respectively. These metrics are defined as

and

where , , , and are the noise variance, the original, re-

stored and degraded images, respectively.

In our experiments we used the well-known 256 256

“Lena” image, shown in Fig. 1(a). The image was blurred

(10)

(11)
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Fig. 1. (a) Original “Lena” image. (b) Degraded “Lena” image with 7� 7 uniform blur and additive noise SNR = 25.36 dB.

by a uniform 7 7 PSF (normalized to mean equal to 1) and

white Gaussian noise was added such that SNR 25.36 dB.

The degraded image is shown in Fig. 1(b) with corresponding

PSNR 27.08 and 23.22 dB, respectively.

In order to compare the proposed approaches with previous

ones, we implemented 1) the classical Wiener filter in the DFT

domain [24] using the degraded image to estimate the image

power spectrum assuming that the additive noise variance is

known. The resulting image is shown in Fig. 1(c); 2) the clas-

sical Wiener filter in the DFT domain [24] using the original

image to estimate the image power spectrum and assuming

that the additive noise variance is known. Clearly, this is not

a realistic scenario; however, it compares our algorithm to the

performance limit of the Wiener filter. The resulting image is

shown in Fig. 1(d). 3) The Bayesian approach using a stationary

SAR prior [3]; the corresponding image and ISNR are shown

in Fig. 1(e). 4) The iterative constrained least squares (CLS)

approach with spatially adaptive regularization [8], [11]. The

optimal parameters for this model were found in a trial and

error fashion. The resulting image is shown in Fig. 1(f). 5) The

non stationary CGMRF-based approach that uses a binary line

process to model the image edges in [21]. The resulting image

is shown in Fig. 1(g).

To facilitate learning the proposed image model we used the

(additive noise variance) and equal that was obtained by

learning a stationary SAR model assuming a Laplacian operator

for the residuals [3]. The parameters were obtained as

where the image model parameter of

the stationary SAR model. The parameters were selected to

be equal to a value denoted by . Since, as explained previously

they can be used to adjust, the degree of nonstationarity of the

image model, values in the interval were found

using trial and error to provide the best restored images based on

both visual criteria and the ISNR metric. Since both algorithms

run very fast (1–3 min) and only one parameter is adjusted the

trial and error procedure is feasible.

In order to test the performance limits of the proposed

model we implemented the MAP approach estimating the

model parameters from the original image. The resulting image

is shown in Fig. 1(h). The resulting restored images using

the proposed methods where all the unknowns are estimated

from the observations are shown in Fig. 1(i) for MAP and

Fig. 1(j) for the Bayesian approach. From the restored images

shown in these figures is clear that the proposed non stationary

restoration algorithms provide both higher ISNR and visually

more pleasing results than all previous stationary and nonsta-

tionary-based methods. It is interesting to point out that even

when the original image is used to estimate the image statistics,

as in the case of the Wiener filter, both proposed approaches

outperformed it.

We also tested the proposed algorithms with wavelet-based

approaches with respect to the ISNR metric using the three ex-

periments described in [25]. Although the ISNR metric is not

always an accurate measure of visual impression it is an objec-

tive metric of estimation performance. Our MAP algorithm for

the first and third set of experiments in [25] gave better ISNR, as

shown in Tables I and II, respectively. In the first experiment, the

256 256 “Cameraman” image was degraded by additive noise

with or SNR 38.64 dB, and uniform 9 9 blur

shown in Fig. 2(a). We also show and provide ISNRs for the fol-

lowing cases: 1) the stationary restored image assuming an SAR

prior [3], in Fig. 2(b); 2) the restored image obtained by the CLS

spatially adaptive approach, [8], [11], in Fig. 2(c); and 3) the re-

stored image by the proposed MAP algorithm in Fig. 2(d). In

the third experiment described in [25], the 512 512 “Lena”

image was degraded or SNR 16.62 dB, and sepa-

rable 5 5 blur implemented by blurring with a PSF given by

in each direction. For the second experiments
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Fig. 1. (Continued.) (c) Wiener filter restoration, ISNR = 3.2 dB. (d) “Optimal” Wiener filter restoration, ISNR = 4.40 dB.

Fig. 1. (Continued.) (e) Stationary restoration, ISNR = 4.25 dB. (f) CLS method (adaptive smoothness constraint) restoration, � = 1000, a = 0:01, ISNR =

4.65 dB.

in [25], the ISNR obtained by the proposed here MAP algo-

rithm was approximately equal to the best one obtained by the

methods presented in [25]. In all experiments, the same termina-

tion criterion was used as in [25]. The proposed Bayesian algo-

rithm in this set of experiments was not as competitive and gave

slightly lower ISNR than the best case of the results reported in

[25].

Finally, in order to compare the statistical properties of the

proposed MAP and Bayesian algorithms, we considered two

metrics, the bias (BIAS) and the variance (VAR) of the restored

images. These metrics were estimated by Monte-Carlo simula-

tions using the following equations:

with
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Fig. 1. (Continued.) (g) Restoration with GMRF algorithm [21], ISNR= 3.46 dB. (h) MAP “optimal” non stationary restoration, ISNR = 10.43 dB, l = 2:01.

Fig. 1. (Continued.) (i) MAP non Stationary restoration, ISNR = 5.63 dB, l = 2:2. (j) Bayesian non stationary restoration, ISNR = 5.22 dB, l = 2:2.

where, is the original and for the restored

image, obtained from different restoration runs in

which the degraded images were corrupted with different noise

realizations. The results for three images (in addition to “Lena”

and “Cameraman” a 256 256 segment of the “Barbara” image

was also used) at two different noise levels are shown in Ta-

bles III and IV, respectively. The blur used here was circular

Gaussian shaped with shape parameter (normalized to

mean equal to 1).

The above experiments demonstrate that the Bayesian ap-

proach has a lower variance than the MAP approach, as ex-

pected since it marginalizes the directional variances and does

not use point estimates. However, in terms of bias, both MAP

and Bayesian algorithms give comparable results.

In terms of computational cost both proposed algorithms

were very fast. Typically, our algorithms required about 20

iterations to converge using as criterion the change of the

likelihood between successive iterations to be less than 0.1%.

Our algorithms were implemented in MATLAB and take about

1–4 min on a Pentium 4 at 2.8 GHz personal computer for

256 256 images. In contrast, a C implementation of the

deterministic relaxation MAP algorithm in [21] required 10–15
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Fig. 2. (a) Degraded “cameraman” image with 9� 9 uniform blur and additive noise SNR = 38.64 dB, (� = 0:308). (b) Stationary restoration, ISNR =
6.88 dB.

Fig. 2. (Continued.) (c) CLS method (adaptive smoothness constraint) restoration, � = 0:05, a = 0:003, ISNR = 7.38 dB. (d) MAP non stationary restoration,

ISNR = 9.42 dB, l = 2:1.

min on a Xeon 3.2-GHz machine. The constrained least squares

method with spatially adaptive constraints [8]–[11] was imple-

mented using a conjugate gradient algorithm and is of the same

computational complexity, given that the correct parameters

have been found, to the proposed methods. The Wiener filter

and the Bayesian approach with the stationary SAR model are

much faster since all calculations are done in the DFT domain

and require 5”–10” using MATLAB on a Pentium 4 at 2.8 GHz

personal computer.

VI. CONCLUSION AND FUTURE RESEARCH

The power of the proposed image prior model was clearly

demonstrated with the MAP approach when the original image

was used to estimate the model parameters. Apart from the very

high visual quality of the restored images, shown in Fig. 1(h), in

terms of ISNR it outperforms by almost 5 dB the one obtained

by the Wiener filter shown in Fig. 1(d), when the original image

was also used to estimate the power spectrum. Furthermore, the

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on January 8, 2010 at 05:00 from IEEE Xplore.  Restrictions apply. 



2996 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 10, OCTOBER 2006

TABLE I
ISNR COMPARISONS WITH THE EXPERIMENTS IN [25, TABLE I]

TABLE II
ISNR COMPARISONS WITH THE EXPERIMENTS IN [25, TABLE III]

TABLE III
BIAS METRIC FOR THE MAP AND THE BAYESIAN ALGORITHMS

proposed methods compared favorably with recent CGMRF and

wavelet-based methods [21] and [25], respectively.

Since the parameters of the proposed hyperpriors can be

viewed as quantifying the degree of nonstationarity of the image

model, developing an image prior with spatially varying pa-

rameters of the hyperprior seems a natural extension to this

work. More specifically, we will focus on developing hierar-

chical priors with an additional hidden layer that allows spatially

varying hyperparameters for the hyperpriors. We also believe

that the proposed image prior can be used in other related image

processing problems, for example, image reconstruction from

projections, motion field estimation, and denoising and restora-

tion of video.

TABLE IV
VARIANCE METRIC FOR THE MAP AND THE BAYESIAN ALGORITHMS
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