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Abstract— We propose a semantic representation and
Bayesian model for robot localization using spatial relations
among objects that can be created by a single consumer-grade
camera and odometry. We first suggest a semantic representa-
tion to be shared by human and robot. This representation
consists of perceived objects and their spatial relationships,
and a qualitatively defined odometry-based metric distance.
We refer to this as a topological-semantic distance map. To
support our semantic representation, we develop a Bayesian
model for localization that enables the location of a robot
to be estimated sufficiently well to navigate in an indoor
environment. Extensive localization experiments in an indoor
environment show that our Bayesian localization technique
using a topological-semantic distance map is valid in the sense
that localization accuracy improves whenever objects and their
spatial relationships are detected and instantiated.

I. INTRODUCTION

Service robots perform complex tasks whose execution
requires frequent interaction with humans. Imagine visiting a
university and asking a security guard how to get to Professor
Suh’s office. The guard might say, ”Go to the IT building and
proceed along the corridor to your right, where you will see
restrooms on your left as well as classrooms. When you reach
the end of the corridor, turn left. At that point, you will find
the office on your right.” You would find the correct room
without any difficulty following these instructions. Humans
do not necessarily use accurate quantitative information to
perceive space in the current location or for traveling to
another location. Instead, humans remember a few landmarks
that define the space. Based on a specific structure or distinct
objects, humans restructure their knowledge based on spatial
contexts and then reuse the knowledge [15]. This method
may not define the exact location quantitatively, but as
many fragments of spatial context accumulate, it enables a
sufficiently high level of space recognition and localization.

It is necessary to build an accurate metric map and a
semantic map for symbolic inference for the current robot lo-
calization problem. This requires symbol grounding between
the metric data and the semantic representation. An accurate
sensor is essential for the execution of complicated maneu-
vers. In the semantic map proposed by Kuipers et al. [6],
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the semantic structure of space is inferred using the model
built, based on a hierarchy of successive environmental data
accumulated while the robot moves around. In addition, a
global map is derived by integrating the global topology
information and the local metric data.

Many robot localization methods have been studied over
the last decade, using grid-based maps [5], feature-based
maps [8][20], topological maps [7], semantic maps [6], or
selecting diverse types of maps adaptively [9].

In research on the probabilistic Bayesian model, Thrun
et al. applied Bayes’ rule to robot localization [3]. The
topological map is represented in semantics using ontology,
and relies on semantics to infer navigation [10][11].

In a recent semantic approach, Vasudevan et al. proposed
a hybrid map that relies on numerical data in an indoor
environment and uses topological information for the inte-
gration of each space [2][16]. Based on this approach, we
constructed a probabilistic object graph using the spaces of
recognized objects. In addition, we propose place classifica-
tion using such a representation.

Ranganathan et al. proposed a method of semantic location
modeling for space recognition using the semantic informa-
tion of the recognized objects [1]. They suggested a Bayesian
inference structure that contains probabilistic models for low-
level features up to high-level inference. There, the increase
in computational complexity was resolved with a Markov
chain Monte Carlo approach.

Semantic representation is necessary for human-
interacting service robots to take orders and complete
tasks. Until now, we have concentrated on robot-centered
knowledge that enables humans to interact with robots
[13][17].

Most research on high-level knowledge has detected ob-
jects in camera images and estimated the distance from the
camera to the observed objects to create relationships among
the objects. However, these quantities are inaccurate due to
lens distortion and incorrect feature detection and matching.
This leads to errors when applied to real environments.

To cope with these issues, we suggest a semantic rep-
resentation and Bayesian model for spatial relationships
among objects, and show that our representation is useful
for the localization of a mobile robot. The spatial context
used in the proposed semantic representation includes the
observed objects, the robot-to-object (r-o) distance context
that represents the distance from the robot to a particular
object, the r-o bearing context that represents the direction
from the robot to a particular object, and the object-to-
object (o-o) relationship context that denotes the relationship
among objects. For this, we use visual pattern recognition to
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recognize objects and estimate rough metric data [18].
We next propose a topological-semantic distance map con-

sisting of spatial object contexts and spatial robot contexts.
In a topological-semantic distance map, a node is one of
the components of a general topological map that plays the
role of a standard and contains information on the spatial
object contexts. In addition, spatial robot contexts used in the
proposed semantic representation can explain an approximate
distance and bearing from one assigned node to another. We
describe how an approximate qualitative distance is the node-
to-node (n-n) distance context and qualitative bearing is the
n-n bearing context. Global localization is therefore made
possible by the object in the topological-semantic distance
map and the spatial object contexts. In addition, the localiza-
tion is processed more specifically and locally based on the
information gathered from the global localization, deriving
the probability distribution of a robot possibly locating itself
around the node. Therefore, we propose the probabilistic
Bayesian model by which localization accuracy can be
improved as many fragments of spatial object contexts are
continually obtained, and eventually verify the practicality of
the proposed methods through an experiment so that robot
localization is sufficiently qualified for navigation in indoor
environments. One of the most important contributions of
the paper is the manner in which noise in the measurements
provided by the ERSP(Evolutionary Robotics Software Pack-
age) system with a single camera is reasonably managed.

II. TOPOLOGICAL-SEMANTIC DISTANCE MAP

Almost all data in our methods are represented semanti-
cally by means of ontology, which ensures that only sound
and complete data are asserted and propagated with ontology
inference. Noisy sensor data such as false-positives and true-
negatives can be filtered using the relationships and rules
of logical reasoning. In many cases of false-positive, the
properties are illogical, such as when a misclassified object
is floating in the air or penetrating walls or other objects.
These cases can be evaluated logically by axiomatic rules,
and the robot will know what to expect in the next step. That
enables robots to predict and pay attention a priori.

A. Spatial Object Contexts

Figure 1 shows the changes in real relationships between a
robot and observed objects according to the robot’s location
transition from x to x′ in the real world. Parameters r,
ζ, and ω are the metric distance of the object relative
to the robot, the metric bearing of the object relative to
the robot, and the bearing among objects in real-world
coordinates, respectively. The subscripts indicate the indexes
of the objects observed.

Figure 2 shows the changes in metric relationships be-
tween a robot and observed objects according to the robot
location transition from x to x′. Parameters r̃, ω̃, and ζ̃
denote the estimated metric distance of an object relative to
the robot, the metric bearing of an object relative to the robot,
and the bearings among objects in the robot coordinates,
respectively, measured by a single camera. In general, the
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Fig. 1. Spatial relationships between robot and objects in the real world.
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Fig. 2. Metric relationships between robot and objects in image sequences.
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Fig. 3. Semantic representation comprising a set of respective spatial object
contexts among the observed objects and the robot.

distance and orientation obtained using a commercial vision
system such as the ERSP vision system with a single camera
are often inaccurate. In cases when a single camera is
attached to a robot, the metric data quantities such as distance
and orientation to an object from the robot become too
unreliable to be used. Thus, for semantic representation,
the metric data are linked to the symbols of the spatial
relationships, according to the given conditions. However,
we use the information that mutual association exploits the
geometric relationship between objects (landmarks) [19].
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TABLE I

SEMANTIC REPRESENTATION INCLUDING ALL OF THE SPATIAL OBJECT

CONTEXTS IN FIGURE 3.

State Semantic Representation
Previous state nearby(o1, Robot), left front(o1, Robot),

right near(o1, o2), right far(o1, o3),
far(o2, Robot), front(o2, Robot),

left near(o2, o1), right near(o2, o3),
far(o3, Robot), right front(o3, Robot),

left far(o3, o1), left near(o3, o2)
Current state near(o2, Robot), left front(o2,Robot),

right far(o2, o3)
nearby(o3, Robot), right front(o3, Robot)

left far(o3, o2)

Object recognition is a fundamental factor in semantic
representation. In general, an object is recognized visually
by measuring the similarity between features of observed
objects and those of corresponding object models. In this
section, we use scale-invariant feature transform (SIFT)
features that are known to be invariant to scale and rotation
changes [4][12].

The distance from the robot to the observed object is
estimated with a single camera to derive a fragment of spatial
context. After an object is recognized, its height in the image
space is measured using a set of corresponding features, and
then a metric distance is estimated by ERSP [18].

B. Semantic Representation of Spatial Object Contexts

Figure 3 shows a semantic representation consisting of
observed objects and their respective spatial symbols. Here,
the spatial context includes distance, bearing, and relation-
ship contexts. The r-o distance context denoted by sr is the
distance of the object from the robot. Each distance context
is represented by one of a set of distance symbols, that is,
sr = {nearby, near, far}. The r-o bearing context denoted by
sω = { front, left front, left, left rear, rear, right rear, right,
right front} is the bearing of the object relative to the robot.
The o-o relationship context denoted by sζ = { left far,
left near, left nearby, right nearby, right near, right far} is
the relationship among objects.

Table 1 shows a semantic representation using symbols for
all of the spatial contexts in Figure 3. Our robot localization
application finds the position of the robot using only these
types of semantic representations with qualitative metric
data.

C. Topological-Semantic Distance Map

Neither the method we propose here nor the experiments
we conducted focused on topological map-building, which
can be considered merely a placeholder scheme from the
robotic research point of view.

Figure 4 shows an example of topological nodes obtained
using a laser sensor. In our experiments, we registered
topological nodes when the robot was located at positions de-
fined by a generalized Voronoi graph. Topological-semantic
distance-map building takes place in three steps:

Fig. 4. Example of topological nodes using a generalized Voronoi graph
of the 4th floor of the IT building at Hanyang University, Seoul, Korea.
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Fig. 6. Graphical model of Bayesian localization.

1) Topological nodes from a range sensor are assigned to
a distinct space.

2) Observed objects and estimated spatial object contexts
are registered in the topological-semantic distance map as
the robot rotates 360◦ around a fixed position.

3) The distance context and the bearing context estimated
during robot movement is added between nodes. This is
considered a spatial robot context of n-n contexts.

The first step is identical to the assignment of distinct
nodes. We used a laser sensor (SICK 5000) to assign nodes
that were subsequently processed to build a topological map
[7]. In the second step, observed objects and spatial object
contexts were added to the topological-semantic distance
map. Each spatial object context individually determines for
which current robot it locates at node. In the third step,
the spatial robot contexts estimated by odometry between
nodes are added to the topological-semantic distance map.
These contexts constitute relative information between nodes.
Figure 5 gives an example of a topological-semantic distance
map.

III. BAYESIAN MODEL FOR SEMANTIC LOCALIZATION

In this section, we describe our Bayesian models and
their mathematical formulations. We rely partially on the
probabilistic Bayesian model proposed by Thrun et al.[3] and
Ranganathan et al. [1] to formulate our probabilistic models.

A. Probabilistic Localization Model

Figure 6 depicts a graphical model of Bayesian localiza-
tion. The robot is given a map and its goal is to determine
its location relative to this map given observations of the
environment and the robot’s movements.
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Fig. 5. Example of a topological-semantic distance map. (a) Semantic representation comprising a set of respective spatial object contexts and spatial
robot contexts. (b) Specific example of a topological-semantic distance map comprising a set of respective spatial object contexts and spatial robot contexts.
(c) Relationship between topological-semantic distance map and the real environment.

In the figure, robot location is denoted by x =
[v(i) e(i,j) ρ(i,j) θ(i,j)]T where v(i) and e(i,j) are the topo-
logical node and edge, respectively. In addition ρ(i,j) and
θ(i,j) are metric distance and bearing on edge e(i,j), respec-
tively. The object is denoted by o. This metric-topological
framework enables localization to be bounded globally, the
map size to increase monotonically in dimensionality, and the
location to be calculated locally between two nodes. A set
of semantics for spatial object contexts containing distance,
bearing, and relationship is denoted by s = {sr, sω, sζ}. A
set of semantics for spatial robot contexts containing distance
and bearing is denoted by c = {cρ, cθ}. We represent the
features extracted from the image with z and the map is
denoted by m. We have already discussed the type of map,
the topological-semantic distance map.

Probabilistic robot location represents beliefs through con-
ditional probability distribution. We will denote belief over
a state xt by Bel(xt), which is an abbreviation for the
following:

Bel(xt) = p(x0:t|s1:t, o1:t, z1:t, c1:t, u1:t,m) (1)

Psterior Bel(xt) is obtained in a similar way as the
derivation using Bayes’ rule and the Markov assumption.
In particular, we have

Bel(xt)

= η · p(st, ot, zt|xt,m)
∫

p(xt|xt−1, ct, ut)Bel(xt−1)dxt−1

(2)
where the probability p(st, ot, zt|xt,m) is the se-

mantic measurement, the probability p(xt|xt−1, ct, ut)
is the state transition, and Bel(xt−1) is belief at
time t − 1, respectively. The prediction model is∫

p(xt|xt−1, ct, ut)Bel(xt−1)dxt−1. The probabilistic local-
ization model is divided into two parts, namely, the mea-
surement model and the prediction model, which correspond
to two terms on the right side of Eq. (2). The measurement

model uses the semantic representation and is the main focus
of this work. Contexts are uncertain data so they should
be approximated with a stochastic distribution. The focus
of this section is the measurement model and contexts of
objects. Here, we assume that sensors are uncertain, and a
lower distribution is approximated because fewer semantics
are available. The reverse would also be true. We calculate
the location posterior using the semantic representation de-
scribed in Section II. B.

B. Semantic Measurement Model

The semantic measurement model is based on the joint
probability of robot location x, map m, spatial object con-
texts s, object o, and extracted feature z, From the graphical
model in Figure 6, the joint probability can be written as

p(st, ot, zt|xt,m) =
p(xt)p(ot|xt,m)p(st|xt, ot,m)p(zt|st, ot)

p(xt,m)
(3)

Here, we assume that the probability p(xt) is the same as
p(xt,m) because the robot position xt is located on map m.
Applying Bayes’ law to the semantic measurement model
from Eq. (3) gives

p(st, ot, zt|xt,m)

= p(ot|xt,m)p(st|xt, ot,m)p(zt)p(ot|zt)p(st|ot,zt)
p(ot)p(st|ot)

(4)

We assume that the probability p(zt) has a uniform
distribution. Therefore, we can obtain the distribution of the
measurement model as

p(st, ot, zt|xt,m)

= η · p(ot|zt)p(st|ot, zt)p(ot|xt,m)p(st|xt, ot,m)
(5)

where η is the normalization constant and p(ot|zt) is a
term related to object recognition. It is evaluated based on the
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similarity between extracted features of the observed objects
and the features of the corresponding object models.

We use a supervised approach to building the object
models. Training data consist of images, each of which
contains only one object. These images are captured at
every known reference distance. The object model consists
of features for object recognition, distance from the camera
to the corresponding object, and the height of the object in
pixels.

The p(st|ot, zt) is the likelihood of similarity in spatial
context between the estimated metric data for the observed
object and the spatial contexts. It is evaluated based on the
similarity between extracted features of the observed objects
and the features of the corresponding object models.

Spatial contexts of objects are computed from the results
of estimated metric distances and bearings as

p(st|ot, zt) = {p(sd
t |ot, zt), p(sb

t |ot, zt), p(sr
t |ot, zt)} (6)

p(sr
t |ot, zt) = N(rs − r̃, σr

2) (7)

p(sω
t |ot, zt) = N(ωs − ω̃, σω

2) (8)

p(sζ
t |ot, zt) = N(ζs − ζ̃, σζ

2) (9)

where N(μ, σ2) is normally distributed with mean μ and
variance σ2. In addition, rs, ωs, and ζs are trained at every
known reference for the spatial context of distance, bearing
and relationship, respectively. The variances of σ2

r , σ2
ω, and

σ2
ζ are introduced to reflect the uncertainty of vision sensor.

The further an object is from the robot or from other objects,
the more inaccurate the metric distance and bearing will be.
More specifically, dividing the spatial context more finely
will improve localization performance.

The probability p(ot|xt,m) is the likelihood of similarity
between the observed objects in the current state and those
in the previous state, and formulated as

p(ot|xt,m) = exp(−‖o − ox‖2) (10)

where o and ox represent the observed object in the
current and previous states, respectively. The probability
p(st|xt, ot,m) is the likelihood of the spatial context.

The likelihood of the spatial context is computed as

p(st|xt, ot,m)

=
∑N

a [fc(sra − sr
x)fc(sωa − sω

x )
∑N

b fc(sζab − sζ
x)]

(11)

where fc(sa, sx) = exp(−‖sa − sx‖2), and s and sx

represent the estimated spatial contexts of an object in the
current and previous states, respectively. Each spatial context
of an object belongs to one of some number of different
distributions. Each context in Eq. (11) is described by a
component probability density function, and its mixture of
distributions is the probability that an observation comes

from this component. Here, a mixture of three normal dis-
tributions with different means may result in a density with
three spatial contexts of the object, which is not modeled by
standard parametric distributions.

C. Prediction Model and Recursive Bayesian Model

The last term on the right side of Eq. (2) is an update term.
The control model u represents simple motion data related
to the state transition, as follows:

⎡
⎢⎢⎢⎣

v
′
(i)

e
′
(i,j)

ρ
′
(i,j)

θ
′
(i,j)

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎣

v(i)

e(i,j)

ρ(i,j)

θ(i,j)

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0
0

Δρ · cos(θ(i,j) + Δθ − θc
(i,j))

Δθ

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0
0
ερ

εθ

⎤
⎥⎥⎦

(12)
where Δρ and Δθ are the robot motion of bearing and

movement, respectively, while ερ and εθ are a zero-mean
error variable of motion and bearing.

The localization posterior is calculated using Eq. (2), how-
ever, the modification is not applied directly to our Bayesian
model because Eq. (2) is not a predictable term. To solve
this problem, we modify Eq. (2) in the localization model
to a particle filter, a type of recursive Bayesian estimation
[3][14], to manage the complicated computations.

In particle filters, the samples of a posterior distribution
are called particles and are denoted by

χt := x
[1]
t , x

[2]
t , ..., x

[Y ]
t (13)

Each particle x
[y]
t (with 1 ≤ y ≤ Y ) is a concrete

instantiation of the state at time t. So-called importance
factors are used for each particle x

[y]
t to incorporate the

measurement into the particle set. The importance is thus
the probability of the measurement under the particle, given
by

w
[y]
t = target distribution

proposal distribution

= p(ot|zt)p(st|ot, zt)p(ot|x[y]
t ,m)p(st|x[y]

t , ot,m)
(14)

By resampling particles with a probability proportional to
w

[y]
t , the resulting particles are indeed distributed according

to the product of the proposal and the importance weights
w

[y]
t .

Bel(xt) = η
′ · w[y]

t

Y∑
y

p(x[y]
t |x[y]

t−1, ct, ut,m)Bel(xt−1)

(15)
Figure 7 shows a large particle distribution that denotes

the initial robot location, and then becomes smaller with
recursion, reflecting a number of spatial object contexts.
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Fig. 7. Example of a concentrated distribution with recursion reflecting a
number of contexts.

Fig. 8. Examples of trained object(landmark) images.

IV. EXPERIMENTAL RESULTS

A Pioneer 3 AT robot carrying a single consumer-grade
camera was driven around an indoor environment (14 × 26.5
m) to evaluate the performance of the proposed localization
process.

Figure 8 shows examples of trained object images selected
by the user. The camera observed 16 objects during its trav-
els. Distinctive objects such as doorplates, bulletin boards,
and panel boards were used for object recognition.

Figure 9 illustrates the topological-semantic distance map
consisting of 15 nodes (yellow, rectangle) and 42 objects
(green, circle). Solid lines between nodes are the edges that
represent n-n contexts of distances and bearings. The dotted
blue lines denote the r-o context and the dotted red lines
represent the o-o context. The topological-semantic distance
map is included as an ontological representation for robot
knowledge. Figure 10 shows part of the ontology schema
and map instance.

The experiment showed an 88.93% probability of exact
accuracy in topological localization. However, 13.07% of the
probable error only occurs around the neighboring node. The
reason that this error occurs is that a transition is processed
between a start node to a goal node in the transition between
edges.

Figure 11 shows the localization errors from node 11 to
node 12 in the proposed semantic localization. Even though
the robot’s location was initially estimated accurately, the
errors increased due to the lack of semantics obtained in
subsequent movements. When objects far from the robot
were observed, the localization error and standard deviation
were relatively high. However, the distribution of robot
locations became smaller as the robot continued to navigate
and the observed objects became closer. If the previously
observed object disappeared due to the rotation of the robot,
the standard deviation increased. In this experiment, the
maximum error was 68.04 cm, and the mean and standard
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Fig. 11. Localization errors in our experiment using spatial object contexts.

deviation were 27.3 and 21.29 cm, respectively.
At point A in Figure 11, the distribution of robot locations

became smaller due to observations of the objects near the
robot. At point B, the object disappeared due to the rotation
of the robot, thereby spreading out the distribution. At point
C, the observed objects were far from the robot, leading to
high uncertainty in the spatial context. The error in robot
location as well as the distribution became larger. However,
the situation at point D shows that robot location error and
its corresponding distribution decreased as the robot moved
closer to objects.

V. CONCLUSIONS

This paper proposed a semantic representation and
Bayesian model for robot localization using spatial contexts
among objects, and described them using symbols. Our
proposed method enables robots to be localized using spatial
object contexts and their probabilistic models. Experimental
results of our proposed Bayesian robot localization scheme
in an indoor environment demonstrated that as contextual
evidence increased, location accuracy improved despite using
an inaccurate sensor such as a consumer-grade camera.

REFERENCES

[1] A. Ranganathan and F. Dellaert, ”Semantic Modeling of Places using
Object,” Robotics: Science and Systems (RSS), 2007.

[2] S. Vasudevan, V. Nguyen, and R. Siegwart, ”Cognitive Maps for
Mobile Robots - An Object based Approach,” Proceedings of the IROS,
pp 7-12, 2006.

[3] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics, MIT Press,
Cambridge, MA, 2005.

[4] D.G. Lowe, ”Distinctive image features from scale invariant key-
points,” Int’l Journal of Computer Vision, Vol. 60, no 2, pp. 91-110,
2004.

[5] A. Elfes, ”Using occupancy grids for mobile robot perception and
navigation,” IEEE Computer, Vol.22, pp.44-57, 1989.

[6] B. Kuipers, ”The Spatial Semantic Hierarchy,” Artificial Intelligence,
pp.191-233, 2000.

3472



Nod e 1

Doo rA

near, right

PanelA

near, re ar

Window A

near, left rear

Node 2

Do orB

n ear, front

DoorA

nea r, left front

WindowA

near, right rea r

No de 3

CorridorA

nearby, front

D oorB

nea rby, right

Doo rA

near, right rea r

Node 4

PanelB

far, left front

Co rridorA

far, left

Nod e 5

DoorC

near, right

PanelB

ne ar, rear

N ode 6

D oorA

near, r ig ht fron t

DoorC near, right front

SdoorA

ne ar, left front

Node 7

Win dowB

far, r igh t

N ode 8

Doo rD

ne ar, right

Window B

near, re ar

Node 9

DoorA

ne ar, right rear

elev

near, left

Nod e 1 0

elev

far, fro nt

Sdoo rB

far, left

Nod e 1 1

Bo ardA

n ear, front

SdoorB

nea r, left rear

e le v
far, left re ar

ele v

fa r, left rear

N ode 12
BoardB

nea r, front

BoardC
near, front

DoorA

ne ar, right front

Corr idorA

near, rear

Board A

near, left rear

Node  13

Do orB

n ear, right

BoardD

ne ar, right rear

Corrid orCnea r, left

No de 14

Windo wA

far, right

BoardB

far, left

PanelB

far, left

Node  15

Pane lB
nea r, r ight fro nt

PanelB

far, r igh t fron t

DoorB

nearby, r ig ht rear

Window A

nearb y, re ar

2  step, left fron t4  step , right

5 step, front

3 step, front

3  step, front

8 step, front

3 step, r ig ht

5 step, front 6  step, right rea r 6 step, left fron t

4 s te p, fron t

4 step, front

7 step, front

2 step, right

le ft nearrigh t near
left nea r

left n earby

left nearb y

le ft nearby

left nearby le ft nearby left ne ar

left near

left ne ar

right nearby

r ight ne arby

righ t nea rby

2 step, front

Fig. 9. Result of topological-semantic distance-map building.

Fig. 10. Example of robot-centered ontology schema and map instance.
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