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Bayesian Robust Tensor Factorization for

Incomplete Multiway Data
Qibin Zhao, Guoxu Zhou, Liqing Zhang, Andrzej Cichocki, and Shun-ichi Amari

Abstract—We propose a generative model for robust tensor
factorization in the presence of both missing data and outliers.
The objective is to explicitly infer the underlying low-CP-rank

tensor capturing the global information and a sparse tensor
capturing the local information (also considered as outliers), thus
providing the robust predictive distribution over missing entries.
The low-CP-rank tensor is modeled by multilinear interactions
between multiple latent factors on which the column sparsity
is enforced by a hierarchical prior, while the sparse tensor is
modeled by a hierarchical view of Student-t distribution that
associates an individual hyperparameter with each element inde-
pendently. For model learning, we develop an efficient variational
inference under a fully Bayesian treatment, which can effectively
prevent the overfitting problem and scales linearly with data
size. In contrast to existing related works, our method can
perform model selection automatically and implicitly without
need of tuning parameters. More specifically, it can discover the
groundtruth of CP rank and automatically adapt the sparsity
inducing priors to various types of outliers. In addition, the
tradeoff between the low-rank approximation and the sparse
representation can be optimized in the sense of maximum model
evidence. The extensive experiments and comparisons with many
state-of-the-art algorithms on both synthetic and real-world
datasets demonstrate the superiorities of our method from several
perspectives.

Index Terms—Tensor factorization, tensor completion, robust
factorization, rank determination, variational Bayesian inference,
video background modeling

I. INTRODUCTION

TENSORS (i.e., multiway arrays) can provide an efficient

and faithful representation of structural properties for

multidimensional data. For instance, a facial image ensemble

affected by multiple conditions can be represented as a higher

order tensor with dimensionality of pixel× person× pose×
illumination. To model such data, tensor factorization has

shown significant advantages in terms of capturing multiple

interactions among a set of latent factors. Therefore its theory

and algorithms have been an active area of study within the

past decade, see e.g. [1], [2], and have been successfully
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applied to various fields of applications such as face recog-

nition, social network analysis, image and video completion,

and brain signal processing [3], [4], [5], [6]. The two most

popular tensor factorization frameworks are Tucker [7] and

CANDECOMP/PARAFAC (CP) [1], also known as canonical

polyadic decomposition (CPD) [8], which naturally results in

two different definitions of tensor rank, i.e., multilinear rank

and CP rank.

When original data is only partially observed, tensor factor-

ization can be applied for imputing the missing entries, known

as tensor completion. CP factorization with missing values

has been developed by employing CP weighted optimization

(CPWOPT) [9] and nonlinear least squares (CPNLS) [10]. To

naturally deal with missing data, the probabilistic framework

for tensor factorization was exploited [3], [11], which has been

extended to exponential family model [12] and nonparametric

Bayesian model [13]. The main limitation of the existing

tensor factorization scheme is that the tensor rank has to

be specified manually, which tends to under- or over-fit the

observations, resulting in severe deterioration of predictive

performance. It is important to emphasize that our knowledge

about the properties of tensor rank, especially CP rank, is

surprisingly limited [14]. There is no straightforward algorithm

to compute CP rank of an explicitly given tensor, and the

problem has been shown to be NP-hard [15], [16]. In fact,

determining or even bounding the tensor rank is quite difficult

in contrast to matrix rank [17], [18]. In [19], ARD framework

was applied to estimate the multilinear rank. However, the

solution is based on MAP point estimation and is not ap-

plicable to incomplete tensor data. Recently, Bayesian low-

rank decomposition of incomplete tensors has been proposed

in [20], which can perform tensor completion while the

CP rank can be also inferred by employing a multiplicative

Gamma process prior. However, the missing data is handled

by a heuristic way, i.e., estimating the missing data followed by

the factorization on a whole tensor alternately. In addition, the

inference is performed by Gibbs sampler which is generally

shown slow convergence.

The convex optimization of nuclear norm has gained consid-

erable attention in matrix completion, which essentially seeks

the minimum rank under the condition of limited observations.

Since multilinear rank of a tensor is defined as the rank

of its mode-n matricizations, it can be optimized by simply

applying nuclear norm based framework, yielding an extension

to tensor completion [21], which thus attracted many studies

on low multilinear rank approximations [22], [23], [24]. In

addition, the auxiliary information can be exploited to improve

completion accuracy [6], [25], which, however, is only suitable
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to some specific applications. It is worth noting that the convex

optimization of nuclear norm requires several tuning parame-

ters, which is prone to over- or under-estimate the tensor rank.

In addition, since CP rank, the standard definition of tensor

rank, cannot be optimized by applying matrix techniques

straightforwardly, its determination still remains challenging

so far.

On the other hand, non-Gaussian noises or outliers may

occur frequently in image and video data. To handle this

problem, many robust techniques have been developed such

as robust PCA [26], [27], [28], [29] and robust matrix

factorization [30], [31], [32], [33], [34]. For robust tensor

factorization, 2DSVD using R1-norm as the objective function

was proposed by Huang et al. [35] and robust Tucker decom-

positions were studied in [36], [37]. To handle both missing

data and outliers, the nuclear norm regularization has been

combined with L1-norm loss function, which leads to a robust

tensor completion [38]. However, the main limitation of above

mentioned approaches is that the performance is quite sensitive

to tuning parameters whose optimal selection is unrealistic or

prohibitively expensive. For example, the parameter balancing

model capacity between a low-rank term and a sparse term is

generally tuned by performance evaluated on the groundtruth

of missing data that is unknown in practice, implying that

most existing approaches are impractical to obtain the optimal

results. Therefore, an automatic model and parameter selection

based solely on observed data, which can achieve an optimal

predictive performance, is appealing. Another limitation of

existing robust tensor factorizations is that optimizations of

latent factors are mainly based on point estimation, which is

prone to overfitting especially when a large amount of missing

data is present and not able to provide uncertainty information

of predictions.

To address all these issues under a unified framework,

we propose a probabilistic model with aim to recover the

underlying low-rank tensor, modeled by multiplicative interac-

tions among multiple groups of latent factors, and an additive

sparse tensor modeling outliers, from partially observed data

represented by a tensor of any order. More specifically, for

the low-rank term, we specify a hierarchical sparsity-inducing

prior shared by multiple groups of latent factors, which gains

a column sparsity along the latent components, resulting in

an automatic determination of CP rank. For the sparse term,

a hierarchical view of Student-t prior is placed independently

on each element associated with an individual hyperparameter.

The top-level hyperparameters can be learned by maximizing

a lower-bound of the model evidence, resulting in that the

sparsity constraint can be automatically adapted to varying

fractions of outliers. To learn the model under a fully Bayesian

framework, we derive a variational Bayesian algorithm for

posterior inference, which is of high efficiency. Our method

can be used for robust tensor factorization, robust tensor

completion and anomaly detection with a significant advantage

of automatic model and parameter selections without requiring

any tuning parameters. Empirical results on both synthetic

and real-world datasets demonstrate that the proposed method

outperforms state-of-the-art methods in terms of predictive

performance and robustness to outliers, even though the

groundtruth is allowed to be used to tune the parameters in

competing methods.

The rest of this paper is organized as follows. Section II

discusses the related work. Section III introduces prelimi-

nary multilinear operations and notations. Section IV presents

model specification and approximate Bayesian inference for

robust tensor factorization, whose advantages are summarized

in Section V. Section VI shows extensive experimental results,

followed by the conclusion in Section VII.

II. RELATED WORK

Our work is somewhat related to probabilistic approaches

for robust PCA [39], [40] and for robust matrix factoriza-

tion [41], [42], [43]. In [39], Beta-Bernoulli distribution is

exploited to model outliers and the low-rank matrix exclu-

sively, which, however, results in high model complexity and

slow inference. Missing values are considered in [40], where

the number of latent components needs to be specified in

advance. In [43], Jeffreys prior is adopted to model both

noise and outliers. However, it cannot handle missing values.

PRMF [41] uses Laplace distribution to model the residuals,

while the rank of the underlying model should be given in

advance. A fully Bayesian treatment of PRMF [42] employs a

hierarchical view of Laplace distribution as the noise model,

and applies MCMC sampling for model inference. However,

the rank also needs to be tuned manually and missing values

are not considered. Finally, all these matrix based approaches

cannot handle interactions of multiple factors, which is crucial

for higher-order tensors.

Higher-order robust PCA (HORPCA), proposed very re-

cently in [38], is the only existing tensor method that can

handle both missing data and outliers. It formulates the prob-

lem by a convex optimization framework in which nuclear

norm and L1-norm are exploited as regularization terms on

the low-rank tensor and residual errors, respectively. However,

it essentially optimizes the multilinear rank and the predictive

performance is sensitive to tuning parameters. To our best

knowledge, our paper is the first to present a fully Bayesian

model for robust tensor factorization dealing with both missing

data and outliers within one framework.

III. PRELIMINARIES AND NOTATIONS

The order of a tensor is the number of dimensions, also

known as ways or modes. Vectors are denoted by boldface

lowercase letters, e.g., a. Matrices are denoted by boldface

capital letters, e.g., A. Higher-order tensors (order ≥ 3) are

denoted by boldface calligraphic letters, e.g., A. Given an N th

order tensor X ∈ R
I1×I2×···×IN , its (i1, i2, . . . , iN )th entry is

denoted by Xi1i2...iN where the indices typically range from 1
to their capital version, e.g., in = 1, 2, . . . , In, n = 1, . . . , N .

The inner product of two tensors is defined by 〈A,B〉 =
∑

i1i2...iN
Ai1i2...iNBi1i2...iN , and the squared Frobenius norm

by ‖A‖2F = 〈A,A〉.
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Fig. 1. Bayesian robust tensor factorization.

Definition III.1. The generalized inner product of N ≥ 3
vectors, matrices, or tensors is defined as a sum of element-

wise products. For example,
〈

A
(1), · · · ,A(N)

〉

=
∑

i,j

∏

n

A
(n)
ij . (1)

The Hadamard product is an entrywise product of two

vectors, matrices or tensors of the same sizes. For instance,

A ∈ R
I×J and B ∈ R

I×J , their Hadamard product, denoted

by A⊛B, is a matrix of size I×J . Without loss of generality,

the Hadamard product of a set of matrices {A(n)}Nn=1 is

simply denoted by

⊛
n

A
(n) = A

(1)
⊛A

(2)
⊛ · · ·⊛A

(N). (2)

The Kronecker product [1] of matrices A ∈ R
I×J and B ∈

R
K×L is a matrix of size IK × JL, denoted by A⊗B. The

Khatri-Rao product of matrices A ∈ R
I×K and B ∈ R

J×K is

a matrix of size IJ ×K defined by a columnwise Kronecker

product, and denoted by A⊙B. In particular, the Khatri-Rao

product of a set of matrices in a reverse order is denoted by
⊙

n

A
(n) = A

(N) ⊙A
(N−1) ⊙ · · · ⊙A

(1), (3)

while the Khatri-Rao product of {A(n)}Nn=1 except the nth

matrix, denoted by A
(\n), is defined by

⊙

k 6=n

A
(k) = A

(N) ⊙ · · · ⊙A
(n+1) ⊙A

(n−1) ⊙ · · · ⊙A
(1)

. (4)

IV. BAYESIAN ROBUST CP FACTORIZATION

A. Model Specification

Let Y be an incomplete N th-order tensor of size I1 × I2 ×
· · ·×IN with missing entries. YΩ denotes the observed entries

{Yi1i2...iN |(i1, i2, · · · , iN ) ∈ Ω} where Ω denotes a set of

indices. We also define an indicator tensor O, whose entry

Oi1i2···iN is equal to 1 if (i1, i2, · · · , iN ) ∈ Ω, otherwise is

equal to 0. We assume Y is a noisy measurement of the true

latent tensor X , and is corrupted by outliers S, i.e., Y =
X + S + ε, where X is generated by tensor factorization

with a low-CP-rank, representing the global information, S is

enforced to be sparse, representing the local information, and

ε is isotropic Gaussian noise (see Fig. 1).

The standard CP factorization [1] is expressed by

X =

R
∑

r=1

a
(1)
·r ◦ · · · ◦ a

(N)
·r = [[A(1), . . . ,A(N)]], (5)

where ◦ denotes the outer product of vectors and [[· · · ]] is a

shorthand notation of CP factorization. {A(n)|n = 1, . . . , N}
are latent factor matrices corresponding to each of N modes,

respectively. CP model can be interpreted as a sum of R

rank-one tensors, which is related to the definition of CP

rank that is the smallest integer R for which the above

representation holds. The mode-n factor matrix of size In×R
can be denoted by row-wise or column-wise vectors, that is,

A
(n) =

[

a
(n)
1 , . . . ,a

(n)
In

]T

=
[

a
(n)
·1 , . . . ,a

(n)
·R

]

.

To formulate robust CP factorization under the probabilistic

framework, a generative model is introduced based on model

assumptions. Specifically, the observation model is expressed

by

p
(

YΩ

∣

∣

∣
{A(n)}Nn=1,SΩ, τ

)

=

I1
∏

i1=1

· · ·
IN
∏

iN=1

N
(

Yi1...iN

∣

∣

∣

〈

a
(1)
i1
, · · · ,a

(N)
iN

〉

+ Si1...iN , τ
−1
)Oi1···iN

, (6)

where τ denotes the noise precision, a
(n)
in

denotes the inth

row vector of A
(n), and S only has values corresponding

to observed locations. The likelihood model in (6) indicates

that Yi1···iN is generated by multiple R-dimensional latent

vectors
{

a
(n)
in

∣

∣

∣
n = 1, . . . , N

}

, whereas each a
(n)
in

affects a

set of observations, i.e., a subtensor whose mode-n index

is in. The essential difference between matrix factorization

and tensor factorization is that the generalized inner product

of N(≥ 3) latent vectors allows us to capture multilinear

interactions reflecting the intrinsic structural property of data,

which however leads to much more difficulties in model

learning.

In practice, CP rank, i.e., the dimensionality of latent

space denoted by R, is unknown and considered as a tun-

ing parameter whose optimal selection is quite challenging

especially in the presence of missing data. Since R controls

the model complexity, we actually seek an automatic model

selection strategy that can infer the true CP rank from partially

observed data. To achieve this, in contrast to rank minimization

on X , we attempt to minimize the dimensionality of latent

space, which corresponds to column-wise sparsity of factor

matrices. Hence, we employ a sparsity inducing prior over

factor matrices by associating an individual hyperparameter to

each latent dimension. More specifically, a hierarchical prior

is equally specified over N factor matrices, which is expressed

by

p
(

A
(n)
∣

∣λ
)

=

In
∏

in=1

N
(

a
(n)
in

∣

∣0,Λ−1
)

, ∀n ∈ [1, N ]

p(λ) =

R
∏

r=1

Ga(λr|c0, d0),

(7)

where Λ = diag(λ) denotes an inverse covariance matrix

and is shared by latent factor matrices in all modes. The

hyperprior over λ is an i.i.d. Gamma distribution Ga(x|a, b) =
baxa−1e−bx

Γ(a) where Γ(a) is the Gamma function.

Due to the sparsity property, the initialization of R is

usually set to its maximum possible value, while the effective

dimensionality can be inferred automatically under Bayesian

inference framework. For instance, if a particular λr has a

posterior distribution concentrated at large values,
{

a
(n)
r |∀n ∈
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YΩ

A
(1)

A
(n) A

(N)SΩ τ· · · · · ·

λγ

c0 d0a0
γ

b0
γ

a
τ

0 b
τ

0

Fig. 2. The probabilistic graphical model of Bayesian robust CP factorization
of an incomplete tensor.

[1, N ]} will tend to be zero. Since the priors are shared by

N factor matrices, our framework can learn the same sparsity

pattern for all factor matrices, yielding the minimum number

of rank-one tensors.

The sparse term S is modeled also by a hierarchical sparsity

inducing prior. More specifically, Gaussian priors are placed

on each data entry associated with an individual precision hy-

perparameter on which an i.i.d. Gamma hyperprior is placed,

that is

p(SΩ|γ) =
∏

i1,...,iN

N (Si1...iN |0, γ−1
i1...iN

)Oi1...iN ,

p(γ) =
∏

i1,...,iN

Ga(γi1...iN |aγ0 , b
γ
0).

(8)

Note that when an individual parameter γi1...iN goes to infin-

ity, the corresponding element in S is enforced to be exact

zero.

The priors in (7) and (8) are related to the framework

of sparse Bayesian learning (SBL) [44] which is usually

employed for variable selections. Since Laplacian and Student-

t distributions are commonly applied to enforcing sparsity,

we may question why the choice of a Gaussian prior should

express any preference for sparsity. In fact, (8) can be inter-

preted as an infinite zero-mean Gaussian mixture with mixture

coefficients drawn from a Gamma distribution, which is thus a

hierarchical view of Student-t distribution. In other words, the

marginal prior of SΩ is an i.i.d. Student-t distribution with the

sparsity controlled by (aγ0 , b
γ
0) to some extent. For the case of

noninformative hyperprior with aγ0 = bγ0 = 0, we obtain the

improper marginal prior p(Si1...iN ) ∝ 1/|Si1...iN |. Note that

if aγ0 = 1, the hyperprior becomes an exponential distribution,

such that the marginal prior over SΩ is a Laplacian distri-

bution. The elegance of this strategy therefore lies in the use

of hierarchical modeling to obtain a prior which encourages

sparsity while keeping fully conjugate exponential-family dis-

tributions throughout, which leads to the possibility of the fully

Bayesian treatment. Although our setting is related to SBL,

the crucial difference lies in that our model specification can

achieve column-wise sparsity, and the statistical property is

shared by a set of factor matrices {A(n)}Nn=1.

To complete the model, we also place a hyperprior over the

noise precision τ , that is

p(τ) = Ga(τ |aτ0 , b
τ
0). (9)

Finally, the probabilistic graphical model of robust tensor

factorization is illustrated in Fig. 2. For simplicity of no-

tations, all unknowns including both latent factor matrices

and hyperparameters are collected and denoted together by

Θ = {A(1), . . . ,A(N),λ,SΩ,γ, τ}. Therefore, the joint dis-

tribution of the model, i.e., p(YΩ,Θ), can be expressed by

p
(

YΩ

∣

∣

∣
{A(n)}Nn=1,SΩ, τ

)

N
∏

n=1

p
(

A
(n)

∣

∣λ
)

p(SΩ|γ)p(λ)p(γ)p(τ).

In general, we can simply perform MAP estimation of

Θ from the log-joint distribution (see Sec. 1 of Appendix)

and most existing tensor factorization based on optimiza-

tion approaches can be interpreted as point estimation by

either maximum likelihood or MAP principles. However, in

this study, we aim to provide a fully Bayesian treatment

of the model by inferring the posterior distribution of Θ,

expressed by p(Θ|YΩ) = p(Θ,YΩ)∫
p(Θ,YΩ) dΘ

. Thus the predictive

distribution over missing entries Y\Ω can be also inferred by

p(Y\Ω|YΩ) =
∫

p(Y\Ω|Θ)p(Θ|YΩ) dΘ.

B. Model Learning via Bayesian Inference

Since exact Bayesian inference of our model is analytically

intractable, we must resort to the approximate inference.

Although variational Bayesian (VB) inference [45] is difficult

for derivations, especially when multiple interactions of latent

factors are involved, it has advantages of closed-form posterior

approximations and high efficiency as compared to sampling

based inference methods. Hence, we employ VB inference to

learn our model and present only the main results, while the

detailed derivations and proofs are provided in Appendix1.

We therefore seek a distribution q(Θ) to approximate the

true posterior distribution p(Θ|YΩ) in the sense of minimizing

the KL divergence, that is

KL
(

q(Θ)
∣

∣

∣

∣p(Θ|YΩ)
)

= ln p(YΩ)− L(q),

where L(q) =

∫

q(Θ) ln

{

p(YΩ,Θ)

q(Θ)

}

dΘ.
(10)

ln p(YΩ) denotes the model evidence that is a constant, and

its lower bound is denoted by L(q). Thus, minimum of KL

divergence implies the maximum of L(q). By applying mean

field approximation, we assume that the posteriors can be

factorized as

q (Θ) =

N
∏

n=1

q
(

A
(n)
)

q(SΩ)q(λ)q(γ)q(τ). (11)

Note that this is the only assumption about the distribution,

while the particular functional forms of the individual factors

can be explicitly derived in turn by virtue of conjugate

exponential family in our hierarchical model.

1) Posterior distribution of factor matrices: From the

graphical model shown in Fig. 2, the inference of mode-n fac-

tor matrix A
(n) can be performed by receiving the messages

from observed data, which are expressed by the likelihood

term (6), and incorporating the messages from their parents,

which are expressed by the prior term (7). The posteriors are

1The Appendix is provided in supplementary materials.
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shown to be factorized as independent distributions of their

rows which are also Gaussian (see Sec. 2 of Appendix for

details), i.e.,

q(A(n)) =

In
∏

in=1

N
(

a
(n)
in

∣

∣

∣
ã
(n)
in
,V

(n)
in

)

, ∀n ∈ [1, N ], (12)

where the posterior parameters can be updated by

ã
(n)
in

= Eq[τ ]V
(n)
in

Eq

[

A
(\n)T
in

]

vec (Y − Eq[S])
I(Oin

=1)

V
(n)
in

=
(

Eq[τ ]Eq

[

A
(\n)T
in

A
(\n)
in

]

+ Eq[Λ]
)−1

.
(13)

Eq[·] denotes the posterior expectation w.r.t. all variables

involved. I(Oin = 1) is a sample function denoting a subset

of the observed entries, whose mode-n index is in. The most

complex term in (13) is A
(\n)T
in

=
(
⊙

k 6=n A
(k)
)T

I(Oin=1)
,

where (·)I(Oin=1) denotes a subset of columns sampled ac-

cording to the subtensor Oin = 1. Note that the update of

V
(n)
in

involves expectation of the Khatri-Rao product, which

can not be evaluated straightforwardly. Hence, we introduce

the following results:

Lemma IV.1. Given a set of independent random matrices

{A(n)|n = 1, . . . , N}, we assume that ∀n, ∀in, the row

vectors {a
(n)
in

} are independent, then

E

[

(

⊙

n

A
(n)
)T(⊙

n

A
(n)
)

]

=
∑

i1,...,iN

⊛
n

(

E

[

a
(n)
in

a
(n)T
in

])

.

Proof. See Sec. 3 of Appendix for details.

According to Lemma IV.1, we can obtain that

Eq

[

A
(\n)T
in

A
(\n)
in

]

=
∑

(i1,...,iN )∈Ω

⊛
k 6=n

(

E

[

a
(k)
ik

a
(k)T
ik

])

. (14)

For simplicity, let B(n) of size In×R
2 denote an expectation

of a quadratic form related to A
(n) by defining inth-row vector

b
(n)
in

= vec
(

Eq

[

a
(n)
in

a
(n)T
in

])

= vec
(

ã
(n)
in

ã
(n)T
in

+V
(n)
in

)

,

then (14) can be written as

vec
(

Eq

[

A
(\n)T
in

A
(\n)
in

]

)

=
(

⊙

k 6=n

B
(k)
)T

vec(O···in···).

(15)

Note that the Khatri-Rao product in (15) is computed by all

mode factors except nth mode, while the sum is performed

according to the indices of observations, implying that only

factors that interact with a
(n)
in

are taken into account.

An intuitive interpretation of (13) is given as follows. V
(n)
in

is updated by combining Eq[Λ], denoting the factor prior, and

covariance of other factor matrices computed by (15), while

the tradeoff between these two terms is controlled by Eq[τ ]
that is related to model fitness. In other words, the better fitness

leads to more information from the current model than from

the factor prior. ã
(n)
in

is updated firstly by a linear combination

of all other factors, while the combination coefficients are

observed values, which implies that the larger observation

leads to more similarity of its corresponding latent factors.

Subsequently, ã
(n)
in

is rotated by V
(n)
in

and is scaled according

to the model fitness Eq[τ ].

2) Posterior distribution of hyperparameters λ: From

Fig. 2, the inference of λ can be performed by receiving

messages from N factor matrices and incorporating the mes-

sages from its hyperprior. We can show the posteriors of

λr, ∀r ∈ [1, R] are independent Gamma distribution, q(λ) =
∏R

r=1 Ga(λr|c
r
M , d

r
M ), where crM , drM denote the posterior

parameters learned from M observations and can be updated

by (see Sec. 4 of Appendix for details)

crM = c0 +
1

2

N
∑

n=1

In, drM = d0 +
1

2

N
∑

n=1

Eq

[

a
(n)T
·r a

(n)
·r

]

.

(16)

The posterior expectation term in (16) can be evalu-

ated using the posterior parameters in (13), thus we have

Eq

[

a
(n)T
·r a

(n)
·r

]

= ã
(n)T
·r ã

(n)
·r +

∑

in

(

V
(n)
in

)

rr
. Therefore, we

can further simplify the computation of dM = [d1M , . . . d
R
M ]T

by

dM =

N
∑

n=1

{

diag

(

Ã
(n)T

Ã
(n) +

∑

in

V
(n)
in

)}

. (17)

Based on the updated posterior of λ, we can obtain Eq[Λ] =
diag([c1M/d

1
M , . . . , c

R
M/d

R
M ]).

An intuitive interpretation is that the smaller
∑

n ‖a
(n)
·r ‖22

leads to larger Eq[λr], which thus updates the prior over

{a
(n)
·r }Nn=1, resulting in that the rth component is enforced

more strongly to be zero. Therefore, the smaller components

can be diminished eventually to exact zero and effectively

pruned out after several iterations, while the larger components

are enhanced to explain the data. This sparsity technique plays

an key role to obtain the minimum number of components and

automatic rank determination.

3) Posterior distribution of sparse tensor S: By combining

the priors in (8) and the likelihood in (6), we can derive the

posterior approximation of S as (see Sec. 5 of Appendix for

details)

q(S) =
∏

(i1,...,iN )∈Ω

N
(

Si1...iN

∣

∣

∣
S̃i1...iN , σ

2
i1...iN

)

, (18)

where the posterior parameters can be updated by

S̃i1...iN = σ2
i1...iN

Eq[τ ]
(

Yi1...iN − Eq

[〈

a
(1)
i1
, . . . ,a

(N)
iN

〉])

,

σ2
i1...iN

= (Eq[γi1...iN ] + Eq[τ ])
−1.

(19)

Observe that S captures the information which is not explained

by the low-rank CP approximation, while the magnitude is

controlled by σi1...iN that is affected by the prior parameter

Eq[γi1...iN ] and the precision of Gaussian noise Eq[τ ]. The

intuitive interpretation is that S can model individual noises

from total residuals, which are non-Gaussian. An alternative

interpretation is that [[A(1), . . . ,A(N)]] explains the global

information by using minimum number of rank-one tensors,

while S explains the local information that is too expensive

to be represented by increasing the model complexity.
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4) Posterior distribution of hyperparameters γ: By incor-

porating the prior and hyperprior of SΩ in (8), we show

that the posterior of γ is also factorized as independent

distributions of each entries (see Sec. 6 of Appendix), given

by

q(γ) =
∏

(i1,...,iN )∈Ω

Ga(γi1...iN |a
γi1...iN

M , b
γi1...iN

M ), (20)

whose posterior parameters can be updated by

a
γi1...iN

M = aγ0 +
1

2
, b

γi1...iN

M = bγ0 +
1

2
(S̃2

i1...iN
+ σ2

i1...iN
).

(21)

This indicates that the smaller Eq[S
2
i1...iN

] leads to larger

Eq[γi1...iN ] which enforces S̃i1...iN to be zero more strongly

by (19), and vice versa. In other words, the elements with

small magnitude are forced to be zero, while the elements with

large magnitude are further enhanced. It should be noted that

the sparsity on S is essentially important due to the fact that

Gaussian with individual hyperparameters can easily capture

the whole information of data.

5) Posterior distribution of hyperparameter τ : The infer-

ence of noise precision τ can be performed by receiving the

messages from observed data, and incorporating the messages

from its hyperprior. We can show that the variational posterior

is a Gamma distribution (see Sec. 7 of Appendix), i.e.,

q(τ) = Ga(τ |aτM , b
τ
M ) where the posterior parameters can be

updated by

a
τ
M = a

τ
0 +

1

2

∑

i1,...,iN

Oi1...iN ,

b
τ
M = b

τ
0 +

1

2
Eq

[

∥

∥

∥
O ⊛

(

Y − [[A(1)
, . . . ,A

(N)]]− S

)
∥

∥

∥

2

F

]

.

(22)

However, the posterior expectation of model residuals in the

above expression can not be computed straightforward, we

need to introduce the following results.

Lemma IV.2. Given a set of independent random matrices

{A(n)|n = 1, . . . , N}, we assume that ∀n, ∀in, the row

vectors {a
(n)
in

} are independent, then

E

[

∥

∥

∥
[[A(1), . . . ,A(N)]]

∥

∥

∥

2

F

]

=
∑

i1,...,iN

〈

E

[

a
(1)
i1

a
(1)T
i1

]

, . . . ,E
[

a
(N)
iN

a
(N)T
iN

]〉

. (23)

Proof. See Sec. 8 of Appendix for details.

By using Lemma IV.2, the posterior expectation in (22) can

be evaluated explicitly (see Sec. 9 of Appendix for details),

that is

Eq

[

∥

∥

∥
O ⊛

(

Y − [[A(1), . . . ,A(N)]]− S
)∥

∥

∥

2

F

]

=‖YΩ‖
2
F − 2vecT (YΩ)vec

(

[[Ã(1), . . . , Ã(N)]]Ω

)

+ vecT (O)

(

⊙

n

B
(n)

)

1R2 − 2vecT (YΩ)vec(S̃Ω)

+ 2vecT ([[Ã(1), . . . , Ã(N)]]Ω)vec(S̃Ω) + Eq[‖SΩ‖
2
F ].

(24)

Hence, the posterior expectation of τ can be updated by

Eq[τ ] = aτM/b
τ
M , where aτM is related to the number of

observations and bτM is related to the posterior expectation

of model residuals measured by squared Frobenius norm.

6) Lower bound of model evidence: We can also evaluate

the variational lower bound in (10) for our model. Since at

each step of the iterative re-estimation procedure the value of

this bound should not decrease, we can monitor the bound

in order to test for convergence. The lower bound on the log

marginal likelihood can be also written as

L(q) = Eq(Θ)[ln p(YΩ,Θ)] +H(q(Θ)), (25)

where the first term denotes the posterior expectation of joint

probability density, and the second term denotes the entropy

of q distribution. Taking the parametric form of q distributions

derived in the previous section, it can then be evaluated by an

explicit form (See Sec. 10 of Appendix for details).

The top level hyperparameters aγ0 , b
γ
0 , a

τ
0 , b

τ
0 , c0, d0 are usu-

ally fixed to be very small values leading to a noninformative

prior or set to zero leading to a Jeffrey’s prior. Note that

aγ0 , b
γ
0 are related to sparsity degree, we seek a strategy to

automatically adopt these hyperparameters to various types of

outliers. This can be easily achieved by maximizing the lower

bound w.r.t. aγ0 , b
γ
0 , expressed by

L(aγ0 , b
γ
0) = −M ln Γ(aγ0) +Maγ0 ln b

γ
0

+ (aγ0 − 1)
∑

(i1...iN )∈Ω

{

(ψ(a
γi1...iN

M )− ln b
γi1...iN

M )
}

− bγ0
∑

(i1...iN )∈Ω

a
γi1...iN

M

b
γi1...iN

M

. (26)

7) Initialization of model inference: The variational

Bayesian inference is only guaranteed to converge to a local

minimum. To alleviate getting stuck in poor local solutions,

it is important to choose an initialization point. In our model,

the top level hyperparameters including c0, d0, aτ0 , b
τ
0 , aγ0 , b

γ
0

are set to 10−6, resulting in a noninformative prior. Thus the

expectation of hyperparameters can be initialized by E[Λ] = I,

E[τ ] = 1 and ∀n, ∀in,E[γi1...iN
] = 1. For the factor matrices,

E[A(n)], ∀n ∈ [1, N ] can be initialized by two different

schemes. One is randomly drawn from N (0, I) for each row

vector {a
(n)
in

}. The other is set to A
(n) = U

(n)
Σ

(n)
1

2

, where

U
(n) denotes the left singular vectors and Σ

(n) denotes the

diagonal singular values matrix, obtained by SVD of mode-n
matricization of Y . V(n) is simply set to E[Λ−1]. For sparse

tensor S, E[Si1...iN ] is drawn from N (0, 1), while σ2
i1...iN

is

set to E[γ−1
i1...iN

]. The tensor rank R is usually initialized by

the maximum rank, i.e. R ≤ minn Pn, where Pn =
∏

i 6=n Ii.
For efficiency, we can also manually set the initialization value

of R.

The whole procedure of model inference is summarized in

Algorithm 1, where the posterior factors in (11) are updated in

an order that from bottom to top (see Fig. 2), which indicates

that the message passing is started from observed data.
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Algorithm 1 Bayesian Robust Tensor Factorization

Input: An N th-order incomplete tensor Y and an indicator

tensor O.

Initialization: Ã
(n),V

(n)
in
, ∀in ∈ [1, In], ∀n ∈ [1, N ],

S̃, σ2, hyperparameters λ,γ, τ , top level hyperparameters

c0, d0, a
γ
0 , b

γ
0 , a

τ
0 , b

τ
0 .

repeat

for n = 1 to N do

Update the posterior q(A(n)) by (13);

end for

Update the posterior q(λ) by (16);

Update the posterior q(τ) by (22);

Update the posterior q(S) by (19);

Update the posterior q(γ) by (21);

Evaluate the lower bound by (25);

Update aγ0 , b
γ
0 by maximizing (26);

Model reduction by eliminating zero-components in

{A(n)};

until convergence.

C. Predictive Distribution

The predictive distribution over missing entries, given ob-

served entries, is also analytically intractable. Hence, we

can approximate it by using the variational posteriors of all

parameters in Θ, yielding a Student-t distribution (see Sec. 11

of Appendix for details)

p(Y |YΩ) =
∏

i1,...,iN

T (Yi1...iN |Ỹi1...iN ,Ψi1...iN , νy) (27)

with its parameters given by

Ỹi1...iN =
〈

ã
(1)
i1

, · · · , ã
(n)
iN

〉

,

Ψi1...iN =

{

bτM

aτ
M

+
∑

n

{

(

⊛
k 6=n

ã
(k)
ik

)T

V
(n)
in

(

⊛
k 6=n

ã
(k)
ik

)

}}−1

,

and νy = 2aτM . Thus, the uncertainty of predictions can be

obtained by var(Yi1...iN ) =
νy

νy−2Ψ
−1
i1...iN

.

D. Computational Complexity

The computation cost of N factor matrices in (13) is

O(R2M
∑

n In + R3
∑

n In), where M denotes the number

of observations, R denotes model complexity and is generally

much smaller than the data size, i.e., R ≪ M . The compu-

tational costs are O(R2
∑

n In) for λ, O(R2M) for τ , and

O(MNR) for S. Therefore, the overall complexity of our

algorithm is O((R2M + R3)
∑

n In), which scales linearly

with the data size but polynomially with the tensor rank. Note

that due to the automatic model reduction, the excessive latent

components are pruned out in the first few iterations such

that R reduces rapidly in practice. The solution presented in

this paper mainly focuses on a general tensor factorization

problem. However, when data is extremely sparse or large

scale, an alternative strategy for approximate inference updated

by each observed entry can be developed correspondingly.

E. Case of Complete Tensor

For fully observed tensor data, we can simply define O

with all elements being 1 and apply the model inference as

described previously. However, several essentially different

properties arise during inference, which leads to the possibility

of more efficient computation for approximate posteriors. For

the inference of factor matrices shown in (13), since A
(\n)
in

are same for any in ∈ [1, In], such that {V
(n)
in

}Inin=1 are all

equivalent. Hence, only one V
(n) needs to be computed for

each mode-n, and {ã
(n)
in

}Inin=1 can be updated simultaneously

by

Ã
(n) = Eq[τ ]

(

Y(n) − Eq[S(n)]
)

Eq

[

A
(\n)
]

V
(n),

V
(n) =

(

Eq[τ ]Eq

[

A
(\n)T

A
(\n)
]

+ Eq[Λ]
)−1

,
(28)

where Y(n) denotes mode-n matricization of tensor Y . For

computational efficiency, we introduce another solution related

to Lemma IV.1.

Lemma IV.3. Given a set of matrices {A(n)|n = 1, . . . , N},

if the row vectors {a
(n)
in

}Inin=1 are independent and cov[a
(n)
in

] =

V
(n), ∀in ∈ [1, In], then

E

[

(

⊙

n

A
(n)
)T(⊙

n

A
(n)
)

]

=⊛
n

(

E

[

A
(n)T

A
(n)
])

,

where E[A(n)T
A

(n)] =
{

E
[

A
(n)T

]

E
[

A
(n)
]

+ InV
(n)
}

.

Proof. See Sec. 12 of Appendix for details.

According to Lemma IV.3, the term in (28) can be computed

efficiently by

Eq

[

A
(\n)T

A
(\n)
]

= ⊛
k 6=n

{

Ã
(k)T

Ã
(k) + IkV

(k)
}

. (29)

Hence the computational cost for factor matrices are reduced

to O(R2
∑

n In +NR3). For hyperparameters λ, the update

rules in (17) can be simplified by

dM =

N
∑

n=1

{

diag
(

Ã
(n)T

Ã
(n) + InV

(n)
)}

. (30)

The inference for S and γ are similar to the case of incom-

plete data. For hyperparameter τ , the posterior expectation

of squared Frobenius norm of CP approximation can be

computed more efficiently by introducing the following result.

Lemma IV.4. Given a set of independent random matrices

{A(n)|n = 1, . . . , N}, we assume that ∀in ∈ [1, In], the row

vectors {a
(n)
in

} are independent, then

E

[

∥

∥

∥
[[A(1), . . . ,A(N)]]

∥

∥

∥

2

F

]

=

〈

E

[

A
(1)T

A
(1)
]

, . . . ,E
[

A
(N)T

A
(N)
]〉

.

Proof. See Sec. 13 of Appendix for details.

Hence, the computational cost for τ is reduced to

O(R2
∑

n In). In addition, the computation of lower bound

and predictive distributions can be also simplified easily, which

would not been presented in details.
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V. ADVANTAGES

Since our model is based on a hierarchical probabilistic

framework and fully Bayesian treatment, several advantages

are gained and discussed as follows:

• Our method is characterized as a tuning parameter free

approach and all model parameters can be learned auto-

matically from observed data. By contrast, the existing

tensor factorization methods require either predefined

rank or penalty parameter and tensor completion methods

using nuclear norm need to tune regularization parame-

ters.

• The automatic rank determination enables us to dis-

cover the ground-truth of CP rank, while the automatic

sparsity model can adapt the model to various types of

outliers or non-Gaussian noises. Furthermore, the most

elegant characteristic is that the tradeoff between the low-

rank approximation and the sparse representation can be

learned automatically in the sense of maximizing the

model evidence.

• In contrast to point estimations by most existing tensor

methods, the uncertainty information over all model

parameters are taken into account, which can effectively

prevent overfitting problem. The full posteriors of factor

matrices and predicted missing entries can provide con-

fidence information regarding the solutions.

• An efficient and deterministic algorithm for Bayesian

inference is developed, which empirically shows a fast

convergence and its computational complexity scales lin-

early with the data size.

VI. EXPERIMENTAL RESULTS

A. Validation on Synthetic Data

We firstly assess the performance quantitatively on syn-

thetic data. The true low-rank tensor X of size 30 × 30 ×
30 was generated by rank-3 factor matrices, i.e., A

(n) ∈
R

30×3, n = 1, 2, 3. Three components of the nth factor matrix

are [sin(2π n
30 in), cos(2π

n
30 in), sgn(sin(0.5πin))], indicating

that the first two components possess different frequencies

related to n, and the third components are common in all

modes. A random fraction of tensor entries were corrupted

by outliers drawn from an uniform distribution U(−|H|, |H|).
To mimic more realistic settings, a small noise drawn from

N (0, 0.01) was also considered. Subsequently, a fraction of

entries were randomly selected to be observed tensor YΩ,

when missing data was considered. We utilized the root

relative square error (RRSE), defined by
‖X̂−X‖2

‖X‖2

, to evaluate

the performance of tensor recovery. As for recovering the

underlying factors, factor match error (FME) [10] between

the estimated factors and ground-truth was also evaluated. We

compared our Bayesian robust tensor factorization (BRTF)

with state-of-the-art methods including tensor factorization

(CP-ALS [1], HOSVD [7], CP-ARD [19]), tensor factorization

with missing data (CPWOPT [9] and CPNLS [10]), nonpara-

metric Bayesian tensor factorization (MGPCP [20]) and robust

tensor factorization with missing data (HORPCA [38]). It

should be emphasized that the tuning parameters are necessary

for most methods and have been carefully tuned based on

TABLE I
RESULTS ON A COMPLETE TENSOR Y OF SIZE 30× 30× 30 WITH

R = 50

BRTF HORPCA CP-ALS HOSVD CP-ARD

Rank 50 (Auto) N/A 48 (23,23,23) 68 (Auto)

RRSE 0.04 0.20 0.31 0.56 0.35

FME 0.02 0.96 0.29 0.96 0.20

Sensitivity N/A 0.32 0.20 0.14 N/A

Runtime 3s 10s 31s 5s 4s

ground-truth data, which is generally impractical for real ap-

plications. Specifically, CP-ALS, HOSVD, CPWOPT, CPNLS

need to tune the parameter of tensor rank, and HORPCA needs

to tune the penalty parameter. By contrast, BRTF, MGPCP and

CP-ARD can automatically estimate tensor rank and do not

require any tuning parameters. Two scenarios were considered:

1) tensor recovery from fully observed data, and 2) tensor

completion from partially observed data.
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(a) H = 10 · std(vec(X ))
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Fig. 3. Performance of recovering true tensor X and latent factors
{A(n)}Nn=1 under varying percentages of outliers. There are two types of
outliers: (a) the magnitude is much larger than that of true signals, and (b) is
within the range of true signals.

The results for fully observed tensor are shown in Fig. 3.

Rank R was initialized as maxn In for BRTF and CP-ARD.

Observe that CPALS, CP-ARD and HOSVD are non-robust

due to the sensitivity of L2-norm loss function to outliers.

HORPCA is shown to be robust when outliers are much larger

than true data, while it performs poorly when the magnitude

of outliers is within the range of true data. It should be noted

that BRTF significantly outperforms competing methods under

all conditions in terms of recovering the low-rank tensor and

latent factors, indicating that it is more robust to outliers and

TABLE II
THE RUNTIME (SECONDS) OF SIMULATIONS IN FIG. 4(B)

BRTF HORPCA CPWOPT CPNLS MGPCP

2 ± 0.4 26 ± 13 26 ± 8 91 ± 10 68 ± 34
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Hall

Water Surface

Hall

Shopping Mall

Fig. 5. Results of background modeling. Four frames from three video sequences are shown from top to bottom. For each frame, there are two rows
corresponding to background and foreground. From left to right, the results obtained by nine methods are shown in an order of the published years. The
inferred CP ranks from three video sequences by BRTF are 2, 3, 3 respectively.
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(b) H = max(vec(X ))

Fig. 4. Predictive performance on true tensor X and latent factors
{A(n)}Nn=1 against fraction of missing entries. The percentage of outliers
is fixed to 10%, and two different magnitudes are considered in (a), (b).

non-Gaussian noises. In addition, the performance of BRTF is

unaffected by the percentage and magnitude of outliers, which

confirms the capability of automatically adapting the model to

various types of outliers.

A special case when the true CP Rank is larger than data

dimensions, i.e., R > maxn In, was investigated under the

condition of 1% outliers and the detailed results are shown in

Table I. The initial rank was set to 100 for both BRTF and CP-

ARD. We observe that BRTF can correctly estimate rank R
while CP-ARD overestimates it due to the corruptions by out-

liers. For CP-ALS and HOSVD, the optimal rank was selected

from all possible values within [1, R] by multiple runs. The

sensitivity of tuning parameters is also reported by standard

deviation of RRSE under varying selections. Although ground-

truth data was used to tune parameters by other methods,

BRTF still significantly outperforms all other methods in

terms of RRSE and FME, while the runtime also shows

its high efficiency. It should be noted that this experiment

shows an essentially different property of tensor in contrast to

matrix where R ≤ minn In is always satisfied. Therefore, the

straightforward extension of many matrix based techniques is

not applicable to this situation, which has been demonstrated

by the low performance of HORPCA that employs the robust

matrix technique to each mode-n matricization of the tensor

alternately.

The results for partially observed tensor are shown in

Fig. 4. Several tensor factorization based completion methods

are compared under varying missing ratios. For computation
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efficiency, the rank R was initialized as 10 in BRTF and

MGPCP. Observe that HORPCA is more robust than MGPCP,

CWOPT and CPNLS, which cannot handle outliers explicitly,

only when outliers are much larger than true data. By con-

trast, BRTF achieves the best performance among competing

methods and its performances are quite stable under varying

missing ratios, which demonstrates its robustness to both

outliers and missing data. In addition, the results confirm

that BRTF can accurately estimate the ground-truth of tensor

rank in all cases. It should be emphasized that all competing

methods had multiple runs to tune the parameters and the

best possible predictive performance on missing data was

reported, while BRTF and MGPCP only needs to run once.

These results demonstrate that the superiorities of BRTF is not

only in automatic model selection, but also in the accuracy

of tensor factorization and completion. In addition, Table II

shows the mean and standard deviation of runtime under

different missing ratios, indicating the high efficiency of BRTF.

B. Video Background Modeling

Anomaly detection is another important ability of BRTF

which can model the local information explicitly. Hence, we

now consider a real-world application in surveillance video

sequences with aim to separate the foreground objects from the

background. Since the background is highly correlated along

the frames, thus can be modeled by a low-rank tensor, while

the foreground objects are moving along frames, thus can be

modeled by a sparse tensor. We conducted experiments on

the popular video sequences2 by extracting 100 frames from

Shopping mall sequence with frame size of 256 × 320, 300

frames from Hall sequence with frame size of 144 × 176
and 300 frames from WaterSurface sequence with frame

size of 128 × 160. The state-of-the-art methods for robust

matrix/tensor factorization and background modeling were

employed for comparisons. The matrix-based methods, includ-

ing PCP [26], GoDec [34], DRMF [30], RegL1ALM [31],

VBRPCA [43], PRMF [41], BRMF [42], and DECOLOR [46],

were performed on grayscale videos represented by matrices

(e.g., 81920×100 for Shopping mall) while HORPCA [38] and

BRTF were performed on original color videos represented by

tensors with an additional RGB mode (e.g., 81920× 3× 100
for Shopping mall). For competing methods, if necessary, the

tuning parameters were selected close to optimal by visual

quality due to the lack of ground-truth. The initialized rank in

BRTF is set to 10.

As shown in Fig. 5, BRTF successfully separates the

background and foreground on all the sequences. From one

frame of Hall, we observe that BRTF can completely separate

the person, who stands for a while and then moves away,

from the background, while all other methods capture this

person by both background and foreground. In another frame

of Hall, the ghosting effects are observed by all methods

except DECOLOR and BRTF. For the sequence of Shopping

Mall, VBRPCA, BRMF, DECOLOR and BRTF obtain clearer

background than those by other methods. For the sequence

of Water Surface, DECOLOR and BRTF are clearly superior

2http://perception.i2r.a-star.edu.sg/bk model/bk index.html

Original RegL1ALM PRMF HORPCA BRTF

Fig. 6. Background modeling when 90% pixels are missing. Four frames from
several sequences are shown and each frame has two rows corresponding
to background and foreground. The original frame in color and grayscale
forms are shown in the first column, followed by results obtained by different
methods. The inferred CP ranks from three video sequences by BRTF are
2, 1, 1 respectively.

to other methods. Note that DECOLOR obtains comparable

results with BRTF, since it incorporates the auxiliary informa-

tion that is specially designed for this application. By contrast,

BRTF, as a general tool for robust factorization, has shown

the superiorities not only in handling tensor data, but also

in more robustness than existing robust matrix factorizations.

An intuitive interpretation is that BRTF can be considered as

robust matrix factorizations on R, G, B matrices simultane-

ously with a constraint of common factors, which is more

effective to capture the low-rank structure than applying matrix

factorization independently.

To illustrate the property of simultaneous robust completion

and anomaly detection, we conducted additional experiments

on the same sequences by randomly dropping 90% pixels

and compared BRTF with RegL1ALM, PRMF and HOR-

PCA, which can handle both missing data and outliers. As

illustrated in Fig. 6, BRTF is significantly superior to matrix

based RegL1ALM and PRMF and tensor based HORPCA in

terms of recovering the background. We observe that in the

presence of missing pixels, the ghost effects are more severe by

other methods, while BRTF is unaffected, indicating its better

robustness to missing data and outliers. Although HORPCA is

also a robust tensor factorization method, it shows comparable

results with matrix based methods and cannot recover well

the color of background. It should be noted that all competing

http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html
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methods require tuning parameters whose selection is quite

time consuming, while BRTF works in a fully automatic

fashion.

C. Facial Image Denoising

In this section, we further investigate the model property

in terms of robustness to non-Gaussion noises. We use the

CMU-PIE face database [47] for multilinear model analysis

and evaluation. All the facial images are first aligned by their

eye position and then cropped to size 32 × 32. Next, we use

1500 facial images selected from the first 30 subjects with 5

poses and 10 illumination changes to construct a forth-order

tensor X ∈ R
1024×30×5×10. Two common types of noise that

arises in the images are salt-and-pepper noise (impulse noise)

and poisson noise (shot photon noise), which are both non-

Gaussian. We consider noise removal for the facial images

corrupted by both poisson and salt-and-pepper noise with ratio

of 10% (see Fig. 7) and compare BRTF with tensor based

methods including HORPCA, CP-ALS, Tucker-ARD [19],

and HOSVD. Note that the tuning parameters of HORPCA

were selected carefully by using the ground-truth of images

while BRTF and Tucker-ARD can automatically learn the

model parameters without requiring fine-tuning. The rank is

initialized as 300 in BRTF, while CP rank was finally inferred

as 297. CP-ALS was performed using the CP rank obtained

from BRTF and HOSVD was performed using the multilinear

rank obtained from Tucker-ARD.

Fig. 7 shows the qualitative results of some example images

including 2 people under 5 poses and 2 lighting variations.

We can observe that BRTF and HORPCA are robust to non-

Gaussian noises and obtain the satisfactory visual quality,

while CP-ALS, HOSVD and Tucker-ARD cannot perform

well for non-Gaussian noise removal. The detailed quantitative

evaluation results are shown in Table III which contains

recovery performance evaluated by RRSE and PSNR as well

as computational efficiency measured by runtime. BRTF and

HORPCA outperform the other methods significantly because

of robust property of their model assumptions. It should be

noted that although HORPCA tuned parameters by the ground-

truth, resulting in the best possible performance, BRTF still

outperforms HORPCA in terms of recovery performance.

Due to multiple runs for tuning parameter selections, the

computation of HORPCA is much more expensive than BRTF.

Tucker-ARD is another method that can achieve automatic

model selection, however, it cannot handle non-Gaussian noise

and its computational efficiency is quite low. These results

demonstrate the superiority of BRTF in terms of denoising

performance, robustness to non-Gaussian noise and compu-

tational efficiency. In summary, BRTF is a robust method

which is similar to HORPCA; BRTF can achieve automatic

rank determination which is similar to Tucker-ARD; BRTF

is based on CP factorization which is similar to CP-ALS.

The most significant characteristic of BRTF is the hierarchical

probabilistic tensor model and full posterior inference of all

unknown variables.

TABLE III
PERFORMANCE COMPARISONS ON FACIAL IMAGE DENOISING. R

DENOTES THE INFERRED RANK.

BRTF HORPCA CP-ALS Tucker-ARD HOSVD

RRSE 0.0892 0.1040 0.2551 0.2223 0.2109

PSNR 29.38 28.05 20.25 21.45 21.91

Runtime 234 s 1089 s 76 s 4528 s 0.7 s

R 297 N/A N/A [9, 29, 4, 9] N/A

VII. CONCLUSION

In this paper, we have proposed a fully Bayesian generative

model for robust tensor factorization, which can naturally

handle missing data and outliers, together with the corre-

sponding algorithm for efficient model inference. Our method

has several significant characteristics: 1) a general framework

for an arbitrary order tensor; 2) robustness to outliers, non-

Gaussian noises, and overfitting; 3) tuning parameters free due

to an automatic rank determination and automatic parameter

selection; 4) the closed-form posterior update for efficient and

deterministic inference. Comprehensive experiments and com-

parisons on synthetic and real-world datasets have confirmed

the superiorities of BRTF over state-of-the-art robust methods

and tensor factorization methods. Therefore, BRTF has proven

to be promising for robust tensor factorization, robust tensor

completion and outlier detection.

The Appendix, Matlab codes and demonstration videos are pro-

vided in supplementary materials.
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