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Abstract

We present a deep learning framework for probabilistic pixel-wise semantic segmen-

tation, which we term Bayesian SegNet. Semantic segmentation is an important tool

for visual scene understanding and a meaningful measure of uncertainty is essential for

decision making. Our contribution is a practical system which is able to predict pixel-

wise class labels with a measure of model uncertainty using Bayesian deep learning. We

achieve this by Monte Carlo sampling with dropout at test time to generate a posterior

distribution of pixel class labels. In addition, we show that modelling uncertainty im-

proves segmentation performance by 2-3% across a number of datasets and architectures

such as SegNet, FCN, Dilation Network and DenseNet.

1 Introduction

Semantic segmentation requires an understanding of an image at a pixel level and is an im-

portant tool for scene understanding. Previous approaches to scene understanding used low

level visual features [24]. We are now seeing the emergence of machine learning techniques

for this problem [20, 25]. While deep learning sets the benchmark on many popular datasets

[6, 9], we lack interpretability and understanding of these models. One way to understand

what a model knows, or does not no, is a measure of model uncertainty.

Uncertainty should be a natural part of any predictive system’s output. Knowing the con-

fidence with which we can trust the semantic segmentation output is important for decision

making. For instance, a system on an autonomous vehicle may segment an object as a pedes-

trian. But it is desirable to know the model uncertainty with respect to other classes such as

street sign or cyclist as this can have a strong effect on behavioural decisions. Uncertainty is

also immediately useful for other applications such as active learning [5], semi-supervised

learning, or label propagation [1].

The main contribution of this paper is extending deep convolutional encoder-decoder

neural network architectures [2] to Bayesian convolutional neural networks which can pro-

duce a probabilistic segmentation output [11]. In section 4 we propose Bayesian SegNet, a

c© 2017. The copyright of this document resides with its authors.

It may be distributed unchanged freely in print or electronic forms.



2 KENDALL, BADRINARAYANAN AND CIPOLLA: BAYESIAN SEGNET

Convolutional Encoder-DecoderInput
Segmentation

Model Uncertainty

Stochastic Dropout

Samples

Conv + Batch Normalisation + ReLU

Dropout Pooling/Upsampling Softmax

mean

variance

RGB Image

Figure 1: A schematic of the Bayesian SegNet architecture. This diagram shows the

entire pipeline for the system which is trained end-to-end in one step with stochastic gradient

descent. The encoders are based on the 13 convolutional layers of the VGG-16 network [27],

with the decoder placing them in reverse. The probabilistic output is obtained from Monte

Carlo samples of the model with dropout at test time. We take the variance of these softmax

samples as the model uncertainty for each class.

probabilistic deep convolutional neural network framework for pixel-wise semantic segmen-

tation. We use dropout at test time which allows us to approximate epistemic uncertainty by

sampling from a Bernoulli distribution across the network’s weights. This is achieved with

no additional parametrisation. In particular, we analyse which part of deep encoder decoder

models benefit from Bayesian modelling.

In section 5, we demonstrate that our Bayesian approach improves performance of a

number of baseline models on prominent scene understanding datasets, CamVid [3], SUN

RGB-D [28] and Pascal VOC [9]. In particular, we find a larger performance improvement

on smaller datasets such as CamVid where the Bayesian Neural Network is able to cope

with the additional uncertainty from a smaller amount of data. Moreover, we show that

this technique is broadly applicable across a number of state of the art architectures and

achieves a 2-3% improvement in segmenation accuracy when applied to SegNet [2], FCN

[20], Dilation Network [30] and DenseNet [15]. Finally in section 5.1 we demonstrate the

effectiveness of model uncertainty. We explore what factors contribute to Bayesian SegNet

making an uncertain prediction.

2 Related Work

Semantic pixel labelling was initially approached with TextonBoost [24], TextonForest [23]

and Random Forest Based Classifiers [25]. Deep learning architectures are now the standard

approach for pixel-wise segmentation, such as SegNet [2] Fully Convolutional Networks

(FCN) [20] and Dilation Network [30]. FCN is trained using stochastic gradient descent

with a stage-wise training scheme. SegNet was the first architecture proposed that can be

trained end-to-end in one step, due to its lower parametrisation. We have also seen methods

which improve on these core architectures by adding post processing tools. HyperColumn

[13] and DeConvNet [22] use region proposals to bootstrap their core segmentation engine.

DeepLab [4] post-processes with conditional random fields (CRFs) and CRF-RNN [32] use

recurrent neural networks. These methods improve performance by smoothing the output

and ensuring label consistency. However none of these segmentation methods generate a

probabilistic output with a measure of model uncertainty.

Neural networks which model uncertainty are known as Bayesian neural networks [7,
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21]. They offer a probabilistic interpretation of deep learning models by inferring distribu-

tions over the networks’ weights. They are often computationally very expensive, increasing

the number of model parameters without increasing model capacity significantly. Perform-

ing inference in Bayesian neural networks is a difficult task, and approximations to the model

posterior are often used, such as variational inference [12].

On the other hand, the already significant parametrization of convolutional network ar-

chitectures leaves them particularly susceptible to over-fitting without large amounts of train-

ing data. A technique known as dropout is commonly used as a regularizer in convolutional

neural networks to prevent over-fitting and co-adaptation of features [29]. During training

with stochastic gradient descent, dropout randomly removes units within a network. By do-

ing this it samples from a number of thinned networks with reduced width. At test time,

standard dropout approximates the effect of averaging the predictions of all these thinned

networks by using the weights of the unthinned network – referred to as weight averaging.

Gal and Ghahramani [11] have interpreted dropout as approximate Bayesian inference

over the network’s weights. [10] shows that dropout can be used at test time to impose a

Bernoulli distribution over the convolutional net filter’s weights, without requiring any addi-

tional model parameters. This is achieved by sampling the network with randomly dropped

out units at test time. We can consider these as Monte Carlo samples obtained from the pos-

terior distribution over models. This technique has seen success in modelling uncertainty for

camera relocalisation [17]. Here we apply it to pixel-wise semantic segmentation.

In particular, MC dropout is able to capture epistemic uncertainty, which accounts for un-

certainty in the model parameters – uncertainty which captures our ignorance about which

model generated our collected data [18]. Semantic segmentation models can typically only

capture aleatoric uncertainty, from the entropy of the class logits, which measures noise

inherent in the observations. Bayesian SegNet models epistemic uncertainty which is impor-

tant for safety applications because it is required to understand examples which are different

from training data [18].

3 SegNet Architecture

We briefly review the SegNet architecture [2] which we extend to produce Bayesian SegNet.

SegNet is a deep convolutional encoder decoder architecture which consists of a sequence

of non-linear processing layers (encoders) and a corresponding set of decoders followed by

a pixel-wise classifier. Typically, each encoder consists of one or more convolutional lay-

ers with batch normalisation and a ReLU non-linearity, followed by non-overlapping max-

pooling and sub-sampling. The sparse encoding due to the pooling process is upsampled in

the decoder using the max-pooling indices in the encoding sequence. This has the important

advantage of retaining class boundary details in the segmented images and also reducing the

total number of model parameters. The model is trained end to end using stochastic gradient

descent.

We take both SegNet [2] and a smaller variant termed SegNet-Basic [2] as our base

models. SegNet’s encoder is based on the 13 convolutional layers of the VGG-16 network

[27] followed by 13 corresponding decoders. SegNet-Basic is a much smaller network with

only four layers each for the encoder and decoder with a constant feature size of 64. We

use SegNet-Basic as a smaller model for our analysis since it conceptually mimics the larger

architecture.
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4 Bayesian Semantic Segmentation Model

To produce a probabilistic segmentation with Bayesian SegNet, we are interested in finding

the posterior distribution over the convolutional weights, W, given our observed training data

X and labels Y.

p(W | X,Y) (1)

In general, this posterior distribution is not tractable, therefore we need to approximate the

distribution of these weights [7].

We use Monte Carlo dropout samples to approximate inference in a Bayesian neural

network [10]. Typically, dropout [29] was used during training to sample thinner models

to regularise the network. During inference, these models were combined with weight av-

eraging. In this work, we propose to use dropout during inference to obtain samples from

the posterior distribution of models. Gal and Ghahramani [10] link this technique to varia-

tional inference in Bayesian convolutional neural networks, with Bernoulli distributions over

the network’s weights. We leverage this method to perform probabilistic inference over our

segmentation model.

This technique allows us to learn the distribution over the network’s weights, q(W), by

minimising the Kullback-Leibler (KL) divergence between this approximating distribution

and the full posterior;

KL(q(W) || p(W | X,Y)). (2)

where the approximating variational distribution q(Wi) for every convolutional layer i, with

units wi, j, is defined with Bernoulli distributed random variables and variational parameters,

ŵ, as: wi, j ∼ ŵi, jBernoulli(pi) for all units j. At the extreme case, if we have infinite units

for each layer our approximate model approaches a Gaussian process [10]. The dropout

probabilities, pi, could be optimised. However we fix them to the standard probability of

dropping a connection as 50%, i.e. pi = 0.5 [29].

In [10] it was shown that minimising the cross entropy loss objective function has the

effect of minimising the Kullback-Leibler divergence term. We use this loss and train the

network with stochastic gradient descent. This will encourage the model to learn a distribu-

tion of weights which explains the data well while preventing over-fitting.

We train the model with dropout and sample the posterior distribution over the weights at

test time using dropout to obtain the posterior distribution of softmax class probabilities. We

take the mean of these samples for our segmentation prediction and use the variance to output

model uncertainty for each class. We take the mean of the per-class variance measurements

as an overall measure of model uncertainty. We also explored using the variation ratio as a

measure of uncertainty (i.e. the percentage of samples which agree with the class prediction)

however we found this to qualitatively produce a more binary measure of model uncertainty.

Fig. 1 shows a schematic of the segmentation prediction and model uncertainty estimate

process.

4.1 Probabilistic Variants

A fully Bayesian network should be trained with dropout after every convolutional layer.

However we found in practice that this was too strong a regulariser, causing the network to

learn very slowly. We therefore explored a number of variants that have different config-

urations of Bayesian or deterministic encoder and decoder units. We note that an encoder

unit contains one or more convolutional layers followed by a max pooling layer. A decoder
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Weight Monte Carlo Training

Averaging Sampling Fit

Probabilistic Variants G C I/U G C I/U G C I/U

No Dropout 82.9 62.4 46.4 n/a n/a n/a 94.7 96.2 92.7

Dropout Encoder 80.6 68.9 53.4 81.6 69.4 54.0 90.6 92.5 86.3

Dropout Decoder 82.4 64.5 48.8 82.6 62.4 46.1 94.6 96.0 92.4

Dropout Enc-Dec 79.9 69.0 54.2 79.8 68.8 54.0 88.9 89.0 80.6

Dropout Central Enc-Dec 81.1 70.6 55.7 81.6 70.6 55.8 90.4 92.3 85.9

Dropout Center 82.9 68.9 53.1 82.7 68.9 53.2 93.3 95.4 91.2

Dropout Classifier 84.2 62.6 46.9 84.2 62.6 46.8 94.9 96.0 92.3

Table 1: Architecture Variants for SegNet-Basic on the CamVid dataset [3]. We compare

the performance of weight averaging against 50 Monte Carlo samples. We quantify perfor-

mance with three metrics; global accuracy (G), class average accuracy (C) and intersection

over union (I/U). Results are shown as percentages (%). We observe that dropping out every

encoder and decoder is too strong a regulariser and results in a lower training fit. The optimal

result across all classes is when only the central encoder and decoders are dropped out.

unit contains one or more convolutional layers followed by an upsampling layer. The vari-

ants are: Bayesian Encoder dropout after each encoder unit, Bayesian Decoder dropout

after each decoder unit, Bayesian Encoder-Decoder dropout after each encoder and de-

coder unit, Bayesian Center dropout after the deepest encoder, before the decoder stage,

Bayesian Central Four Encoder-Decoder dropout after the central four encoder and de-

coder units and Bayesian Classifier dropout after the last decoder unit, before the classifier.

For analysis we use the smaller eight layer SegNet-Basic architecture [2] and test these

Bayesian variants on the CamVid dataset [3]. We observe qualitatively that all six variants

produce similar looking model uncertainty output. That is, they are uncertain near the border

of segmentations and with visually ambiguous objects, such as cyclist and pedestrian classes.

However, Table 1 shows a difference in quantitative segmentation performance.

We observe using dropout after all the encoder and decoder units results in a lower train-

ing fit and poorer test performance as it is too strong a regulariser on the model. We find

that dropping out half of the encoder or decoder units is the optimal configuration. The best

configuration is dropping out the deepest half of the encoder and decoder units. We therefore

benchmark our Bayesian SegNet results on the Central Enc-Dec variant. For the full 26 layer

Bayesian SegNet, we add dropout to the central six encoders and decoders. This is illustrated

in Fig. 1.

In the lower layers of convolutional networks basic features are extracted, such as edges

and corners [31]. These results show that applying Bayesian weights to these layers does

not result in a better performance. We believe this is because these low level features are

consistent across the distribution of models because they are better modelled with determin-

istic weights. However, the higher level features that are formed in the deeper layers, such

as shape and contextual relationships, are more effectively modelled with Bayesian weights.

4.2 Comparing Weight Averaging and Monte Carlo Dropout Sampling

Monte Carlo dropout sampling qualitatively allows us to understand the model uncertainty

of the result. However, for segmentation, we also want to understand the quantitative dif-

ference between sampling with dropout and using the weight averaging technique proposed

by [29]. Weight averaging proposes to remove dropout at test time and scale the weights

proportionally to the dropout percentage. Fig. 2 shows that Monte Carlo sampling with
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Figure 2: Global segmentation accuracy against number of Monte Carlo samples for

both SegNet and SegNet-Basic. Results averaged over 5 trials, with two standard deviation

error bars, are shown for the CamVid dataset. This shows that Monte Carlo sampling out-

performs the weight averaging technique after approximately 6 samples, and converges after

approx. 40 samples.

dropout performs better than weight averaging after approximately 6 samples. We also ob-

serve no additional performance improvement beyond approximately 40 samples. Therefore

the weight averaging technique produces poorer segmentation results, in terms of global ac-

curacy, in addition to being unable to provide a measure of model uncertainty. However,

sampling comes at the expense of inference time, but when computed in parallel on a GPU

this cost can be reduced for practical applications.

5 Experiments

We implement Bayesian SegNet using the Caffe library [16]. We train the whole system

end-to-end using stochastic gradient descent with a base learning rate of 0.001 and weight

decay parameter equal to 0.0005. Following [2] we train SegNet with median frequency class

balancing using the formula proposed by Eigen and Fergus [8]. We use batch normalisation

after every convolutional layer [14].

We quantify the performance of Bayesian SegNet on three different benchmarks using

our Caffe implementation. Through this process we demonstrate the efficacy of Bayesian

SegNet for a wide variety of scene segmentation tasks which have practical applications.

CamVid [3] is a road scene understanding dataset which has applications for autonomous

driving. SUN RGB-D [28] is a very challenging and large dataset of indoor scenes which is

important for domestic robotics. Finally, Pascal VOC 2012 [9] is a RGB dataset for object

segmentation.

CamVid is a road scene understanding dataset with 367 training images and 233 testing

images of day and dusk scenes [3] with 11 classes. We resize images to 360x480 pixels for

training and testing of our system. We show our Bayesian method outperforms other models

in Table 2 with qualitative results in Fig. 5.

SUN RGB-D [28] is a challenging and large dataset of indoor scenes with 5285 training

and 5050 testing images. The images are captured by different sensors and are labelled with

37 indoor semantic classes. Table 2 and Fig. 4 compare to other models, including those

which use depth input. Our method outperforms all of these other techniques. We also note

that an earlier benchmark dataset, NYUv2 [26], is included as part of this dataset.
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Figure 3: Bayesian SegNet results on CamVid dataset [3]. From top: input image, ground

truth, Bayesian SegNet’s segmentation prediction, and overall model uncertainty averaged

across all classes (with darker colours indicating more uncertain predictions).

Figure 4: Bayesian SegNet results on the SUN RGB-D dataset [28]. Bayesian SegNet uses only RGB input

and is able to accurately segment 37 classes in this challenging dataset.

Figure 5: Pascal VOC 2012 dataset [9]. Ground truth is not publicly available for these test images.
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CamVid G C I/U

SegNet-Basic [2] 82.8 62.3 46.3

SegNet [2] 88.6 65.9 50.2

FCN 8 [20] 83.1 64.2 52.0

DeconvNet [22] 85.9 62.1 48.9

DeepLab-LargeFOV-DenseCRF [4] 89.7 60.7 54.7

DenseNet [15] 91.5 - 66.9

Bayesian SegNet Models in this work:

Bayesian SegNet-Basic 81.6 70.5 55.8

Bayesian SegNet 86.9 76.3 63.1

Bayesian DenseNet 91.9 - 67.2

SUN RGB-D G C I/U

RGB

Liu et al. [19] n/a 9.3 n/a

FCN 8 [20] 68.2 38.4 27.4

DeconvNet [22] 66.1 32.3 22.6

DeepLab-LargeFOV-CRF [4] 67.0 33.0 24.1

SegNet [2] 70.3 35.6 22.1

Bayesian SegNet (this work) 71.2 45.9 30.7

Table 2: Quantitative results for CamVid [3] (left) and SUN RGB-D [28] (right).

Pascal VOC12 segmentation challenge [9] consists of segmenting 20 salient object

classes from widely varying backgrounds. We train on the 12031 training images and 1456

testing images. Table 3 shows our results compared to other methods, with qualitative results

in Fig. 5.

To demonstrate the general applicability of this method, we also apply it to other deep

learning architectures trained with dropout; FCN [20] and Dilation Network [30]. We select

these state-of-the-art methods as they are already trained by their respective authors using

dropout. We take their trained, open source models off the shelf, and evaluate them using 50

Monte Carlo dropout samples. Table 3 shows the mean IoU result of these methods evaluated

as Bayesian Neural Networks, as computed by the online evaluation server. This shows the

general applicability of our method. By leveraging this underlying Bayesian framework our

method obtains 2-3% improvement across this range of architectures.

Parameters Pascal VOC Test IoU

Method (Millions) Non-Bayesian Bayesian

Dilation Network [30] 140.8 71.3 73.1

FCN-8 [20] 134.5 62.2 65.4

SegNet [2] 29.45 59.1 60.5

Table 3: Pascal VOC12 [9] test results evaluated from the online evaluation server. We

compare to competing deep learning architectures. Bayesian SegNet is considerably smaller

but achieves a competitive accuracy to other methods. We also evaluate FCN [20] and Di-

lation Network (front end) [30] with Monte Carlo dropout sampling. We observe a 2-3%

improvement in segmentation performance across all three deep learning models when us-

ing the Bayesian approach.

5.1 Understanding Model Uncertainty

Qualitative observations. Fig. 5 shows segmentations and model uncertainty results from

Bayesian SegNet on CamVid Road Scenes [3]. Fig. 4 shows SUN RGB-D Indoor Scene

Understanding [28] results and Fig. 5 has Pascal VOC [9] results. These figures show the

qualitative performance of Bayesian SegNet. We observe that segmentation predictions are

smooth, with a sharp segmentation around object boundaries. Also, when the model predicts

an incorrect label, the model uncertainty is generally very high. More generally, we observe

that a high model uncertainty is predominantly caused by three situations.

Firstly, at class boundaries the model often displays a high level of uncertainty. This

reflects the ambiguity surrounding the definition of defining where these labels transition.

The Pascal results clearly illustrated this in Fig. 5.
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(a) Performance vs. mean model uncertainty (b) Class frequency vs. mean model uncer-

tainty

Figure 6: Bayesian SegNet performance and frequency compared to mean model un-

certainty for each class in CamVid road scene understanding dataset. These figures show a

strong inverse relationships. We observe in (a) that the model is more confident with more

accurate classes. (b) shows classes that Bayesian SegNet is more confident at are more preva-

lent in the dataset. Conversely, for the more rare classes such as Sign Symbol and Bicyclist,

Bayesian SegNet has a much higher model uncertainty.

Secondly, objects which are visually difficult to identify often appear uncertain to the

model. This is often the case when objects are occluded or at a distance from the camera.

The third situation causing model uncertainty is when the object appears visually am-

biguous to the model. As an example, cyclists in the CamVid results (Fig. 5) are visually

similar to pedestrians, and the model often displays uncertainty around them. We observe

similar results with visually similar classes in SUN (Fig. 4) such as chair and sofa, or bench

and table. In Pascal this is often observed between cat and dog, or train and bus classes.

Quantitative observations. To understand what causes the model to be uncertain, we

have plotted the relationship between uncertainty and accuracy in Fig. 6(a) and between un-

certainty and the frequency of each class in the dataset in Fig. 6(b). Uncertainty is calculated

as the mean uncertainty value for each pixel of that class in a test dataset. We observe an

inverse relationship between uncertainty and class accuracy or class frequency. This shows

that the model is more confident about classes which are easier or occur more often, and less

certain about rare and challenging classes.

6 Conclusions

We have presented Bayesian SegNet, the first probabilistic framework for semantic segmen-

tation using deep learning, which outputs a measure of model uncertainty for each class.

We show that the model is uncertain at object boundaries and with difficult and visually

ambiguous objects.

We quantitatively show Bayesian SegNet produces a reliable measure of model uncer-

tainty, improving segmentation performance by 2-3% across a number of state of the art

architectures such as SegNet, FCN and Dilation Network, while requiring no additional pa-

rameters. We demonstrate how to apply our knowledge of uncertainty to active learning

which significantly reduces the requirement for expensive labelled data. For future work we

intend to explore how video data can improve our model’s performance.
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