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We develop a reversible jump Markov chain Monte Carlo approach to estimating the posterior distribution of
phylogenies based on aligned DNA/RNA sequences under several hierarchical evolutionary models. Using a proper,
yet nontruncated and uninformative prior, we demonstrate the advantages of the Bayesian approach to hypothesis
testing and estimation in phylogenetics by comparing different models for the infinitesimal rates of change among
nucleotides, for the number of rate classes, and for the relationships among branch lengths. We compare the relative
probabilities of these models and the appropriateness of a molecular clock using Bayes factors. Our most general
model, first proposed by Tamura and Nei, parameterizes the infinitesimal change probabilities among nucleotides
(A, G, C, T/U) into six parameters, consisting of three parameters for the nucleotide stationary distribution, two
rate parameters for nucleotide transitions, and another parameter for nucleotide transversions. Nested models include
the Hasegawa, Kishino, and Yano model with equal transition rates and the Kimura model with a uniform stationary
distribution and equal transition rates. To illustrate our methods, we examine simulated data, 16S rRNA sequences
from 15 contemporary eubacteria, halobacteria, eocytes, and eukaryotes, 9 primates, and the entire HIV genome of
11 isolates. We find that the Kimura model is too restrictive, that the Hasegawa, Kishino, and Yano model can be
rejected for some data sets, that there is evidence for more than one rate class and a molecular clock among similar
taxa, and that a molecular clock can be rejected for more distantly related taxa.

Introduction

Reconstruction of evolutionary relatedness among
biological entities is a powerful tool in evolutionary bi-
ology and health care provision. For example, identifi-
cation of bacterial pathogens and HIV strains by evo-
lutionary relatedness may greatly increase the efficiency
of therapeutic interventions (Rudolph et al. 1993;
McCabe et. al. 1995; Nerurkar et al. 1996; Relman et
al. 1996; Crandall 1999). Incorrect evolutionary models
and reconstruction methods may lead to inconsistent re-
sults or may include unrealistic constraints on the pro-
cess, sacrificing model accuracy in favor of computa-
tional ease and speed (Rzhetsky and Sitnikova 1996;
Swofford et al. 1996; Durbin et al. 1998).

Likelihood ratio tests for evolutionary models (for
a review, see Huelsenbeck and Rannala 1997) can be
remiss in that the topology space of evolutionary relat-
edness is discrete, data are sparse, parameter estimates
may lie on the boundaries, and standard likelihood
asymptotics may not apply (Navidi, Churchill, and von
Haeseler 1991, 1993; Goldman 1993; Sinsheimer, Lake,
and Little 1996; Lange 1997; Whelan and Goldman
1999). Using Markov chain Monte Carlo (MCMC)
methods (Gilks, Richardson, and Spiegelhalter 1996) to
approximate posterior distributions allows us to broach
evolutionary model selection in a computationally fea-
sible manner, with topology determination as an appli-
cation of reversible jump MCMC (Green 1995). Al-
though MCMC methods have previously been used in
the reconstruction of evolutionary relatedness (Kuhner,
Yamato, and Felsenstein 1995, 1998; Rannala and Yang
1996; Mau and Newton 1997; Yang and Rannala 1997;
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Larget and Simon 1999; Mau, Newton, and Larget 1999;
Li, Pearl, and Doss 2000), our methods differ from these
in being fully Bayes with a proper, yet nontruncated and
uninformative, prior in modeling assumptions, in like-
lihood computation, in proposal kernels, and in the
range of hypotheses tested. The Bayesian hypothesis-
testing approach we propose in this paper provides a
framework to simultaneously infer evolutionary rela-
tionships and test a large set of modeling hypotheses, of
which we illustrate only a few.

In the Materials and Methods section, we describe
the data upon which evolutionary relatedness is deter-
mined and models for reconstructing evolutionary trees,
we introduce a reversible jump MCMC approach to es-
timate these relationships, and we show that Bayes fac-
tor comparison of evolutionary models is possible using
vague but proper priors and can be used without con-
ditioning on a particular topology. To illustrate, in the
Results section, we compare several hierarchical evolu-
tionary models, examine the appropriateness of a mo-
lecular clock, and test the existence of multiple rate
classes.

Materials and Methods
Evolutionary Relationships and Models
Data and Evolutionary Relationships

We examined aligned deoxyribonucleic acid
(DNA) or ribonucleic acid (RNA) sequences to deter-
mine the relatedness among N organisms. Letting i in-
dex the organism and j index the site along a given
sequence, each position in the data Xij contained either
a nucleotide base or an alignment gap. For simplicity,
we first removed all insertion/deletion sites from these
alignments to end up with ordered nucleotide sequences
of length l, such that Xij ∈ (A, G, C, T/U) for all i 5
1,2, . . . , N and j 5 1,2, . . . , l.

We assumed that nucleotide sites were independent
and identically distributed (iid) within a set of sites
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evolving under the same evolutionary constraints (rate
class r). Consequently, the likelihood of observing a
given pattern X1jrX2jr · · · XNjr within r was multinomially
distributed, where the probability was determined by an
unknown bifurcating topology t describing the evolu-
tionary relatedness of the organisms, a set of branch
lengths tb ∈ T for b 5 1, 2, . . . , 2N 2 3, and a Mar-
kovian model for evolutionary change along this topol-
ogy (Sinsheimer, Lake, and Little 1996). The set T did
not necessarily maintain consistent definition between
different topologies. As a result, N-taxon topologies
were nonnested models, each supported on separate pa-
rameter spaces T(t).

Models of Evolution

A popular class of evolutionary models are contin-
uous-time Markov chain models, parameterized in terms
of a 4 3 4 infinitesimal rate matrix of nucleotide change
Q and branch lengths that correspond to the expected
number of changes between nodes per site. The matrix
Q satisfies the condition Q1 5 0, leaving 12 nonnega-
tive, off-diagonal parameters in the most general form
of Q. The transition matrix

tQP(t) 5 e 5 {p (t)}s s0 1
(1)

defines the transition probabilities from state s0 to state
s1 where s0, s1 ∈ (A, G, C, T/U) in time t. The data
allow only for the estimation of the product tQ, so with-
out loss of generality, we constrain Trace(Q) 5 21.

We explore three nested evolutionary models
which reduce the parameterization of Q. The most gen-
eral, TN93 (Tamura and Nei 1993), allows for differing
evolutionary rates between purine-to-purine transitions
(a), pyrimidine-to-pyrimidine transitions (g), and trans-
versions (purine-to-pyrimidine or pyrimidine-to-purine;
b) and allows the general stationary distribution of the
nucleotides (p) to vary subject to the constraints pm $
0, S pm 5 1 for m ∈ (A, G, C, T/U) and detailed bal-
ance, Qp 5 p. The resulting infinitesimal rate matrix is

2 ap bp bp G C T

ap 2 bp bp A C TTN93Q 5 , (2) 
bp bp 2 gpA G T 
bp bp gp 2 A G C

where the minus sign in each row represents minus the
sum of the remaining elements in that row. Letting
Trace(Q) 5 21 leads to b 5 [1 2 a(pA 1 pG) 2 g(pC
1 pT)]/2 and (a, g) ∈ [0, 1) 3 [0, 1). TN93 is a gen-
eralization of the HKY85 model (Hasegawa, Kishino,
and Yano 1985), where a 5 g, and of the K80 model
(Kimura 1980), where pm 5 1/4 and a 5 g.

Previous evolutionary reconstructions from nucleic
acid data using some MCMC methods fix the stationary
distribution at either an empirical estimate from the ob-
served data (Li, Pearl, and Doss 2000) or at values de-
termined by preliminary MCMC sampling (Mau, New-
ton, and Larget 1999). Like Larget and Simon (1999),
we have not adopted either of these approaches. Empir-
ical estimates give equal weight to all taxa and may

therefore be biased when taxon selection oversamples
certain subgroups, while fixing parameters can lead to
underestimation of the variance of other parameters. In-
stead, our MCMC approach samples all model
parameters.

For all three models, the position of the root, the
most recent common ancestor (MRCA) of all N taxa, is
not estimable without further parameter restrictions (Fel-
senstein 1981), such as a molecular clock. If we can
identify an outgroup taxon on the same branch as the
root, a molecular clock among the remaining N 2 1 taxa
is a nested submodel in our framework and thus can be
tested. A molecular clock allows for a computationally
advantageous parameterization (Mau, Newton, and Lar-
get 1999) and reduces by half the number of branch
lengths to be estimated.

We extend the HKY85 parameterization to a mix-
ture model containing R infinitesimal rate matrices Qr

and R sets of branch lengths Tr, where r 5 1, . . . , R,
R is the number of different site classes present in the
data, and each site in the data is assigned a priori to
belong to class r. We choose HKY85 as an example for
comparison with previous work (Yang 1995; Larget and
Simon 1999) and note that such mixture models are eas-
ily implemented for TN93 or K80 as well. This mixture
model is applicable when the reading frame of the DNA
sequence is known and rate assignments are based on
codon position in the reading frame or when data from
different genes known to evolve under different selec-
tive pressures are combined. The model is a generaliza-
tion of the Bayesian computation of Larget and Simon
(1999), in which they estimate multiple Qr matrices but
not multiple branch lengths, and of the work of Yang
(1995), where he assumes that the branch lengths be-
tween different classes are scalar multiples. Multiple Qr

matrices allow for different transition/transversion ratios
and stationary distributions across classes, and multiple
Tr sets allow for varying rates of evolution both across
classes and between species. Yang’s (1995) scalar mul-
tiple branch lengths assume that the relative rates of evo-
lution between classes are constant across species.

Bayesian Computation
Priors

Priors must remain proper to estimate Bayes fac-
tors. We employ flat or vague but completely proper
priors over the entire parameter space (t, u(t)), where u(t)

5 (p, a, g, T, m) and m is a hyperparameter to help
define the prior for tb in T. When we employ multiple
site classes, a 5 (a1, . . . , aR), p 5 (p1, . . . , pR), T
5 (T1, . . . , TR), and m5 (m1, . . . , mR). We assume a
prior for all parameters that is independent of topology
such that q(u(t) z t) 5 q(u) and that all components of u
are, a priori, independent. For the TN93 model, we set

t ; Uniform over topologies,

p ; Dirichlet(1, 1, 1, 1),

q(p) 5 G(4) on 0 # p # p 5 1,Om m
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a ; Uniform[0, 1), q(a) 5 1{0 # a , 1},

g ; Uniform[0, 1), q(g) 5 1{0 # g , 1},
1

2(1/m)tbt z m ; Exponential(m), q(t z m) 5 e ,b b m
t $ 0,b

and

m ; Inv-gamma(2.1, 1.1),
(2.1)(1.1)

2(2.111) 21.1/mq(m) 5 m e , m . 0. (3)
G(2.1)

Except for branch lengths, these prior probabilities are
uninformative. The uniform distribution on t is over the
discrete space of (2N 2 5)!/2N23(N 2 3)! possible to-
pologies for N taxa (Felsenstein 1978). Branch lengths
are iid given m. We take m to have expectation 1 and
variance 10, as, a priori, we know little about its ten-
dencies. The prior for tb, supported on [0, `), is vague
but integrable. The usual Jeffreys’ prior on tb ∈ [0, `)
is 1/tb (Jeffreys 1998). This prior is not integrable and
precludes testing a molecular clock. The inverse-gamma
density allows computation of the reciprocal moments
of m, which are also needed to test for a molecular clock
(see appendix B).

Computation

We employ a Metropolis-within-Gibbs (Tierney
1994) sampler using reversible model jumping (Green
1995) among topologies. The parameter space dimen-
sion remains constant across topology models, although
interpretation of portions of T is model-dependent. Each
new state of the Markov chain is proposed via a Gibbs
cycle. In each step within the cycle, a single parameter
block is updated conditional on the remaining blocks
using a Metropolis-Hastings algorithm (Metropolis et al.
1953; Hastings 1970). We use the following update cy-
cle:

t, T z a, g, p, m

m z t, T, a, g, p

T z t, a, g, p, m, and

a, g, p z t, T, m. (4)

Previous MCMC approaches have updated t and T
simultaneously (Larget and Simon 1999; Mau, Newton,
and Larget 1999); however, these approaches consider,
at most, proportional rates of evolution between rate
classes. Here, we include an extra T-only block to im-
prove mixing within different sets of branch lengths for
each class. We give our transition kernels for each Me-
tropolis-Hastings step in appendix A. Where possible,
we employ transition kernels that are symmetric to de-
crease computational complexity and are supported on
the same bounded or discrete space as the kernel’s un-
derlying parameters to increase acceptance probabilities.

Each run of our MCMC chain consists of 500,000
full update cycles, and we disregard the first 100,000
steps as burn-in. For the starting state, we draw t, m,
T z m, a, and g directly from the prior distributions and

set p equal to observed nucleotide frequencies in each
class. We estimate functions of the chain’s posterior by
subsampling every 40 steps after burn-in. Multiple
chains are run to insure adequate convergence. We use
D 5 S tb, representing the total divergence between all
taxa, m, a, g, and p, to assess convergence within and
across topologies. These parameters retain their inter-
pretation as the sampler moves between topologies and
may be used effectively to monitor how well the MCMC
sampler is performing (Brooks and Guidici 1999).

We calculate the likelihood of the data given t, T,
a, g, and p by integrating out the unknown states of the
internal nodes using the pruning algorithm of Felsen-
stein (1981).

Model Comparisons

We make comparisons among models using Bayes
factors (Kass and Raftery 1995). The Bayes factor in
favor of model M1 against model M0, given the data Y,
can be expressed as

f (Y z M )1B 5 , (5)10 f (Y z M )0

where f(Y z Mi) 5 # f(Y z ui, Mi)q(ui) dui, ui are the param-
eters under model Mi, f(·) are sampling densities, and
q(·) are priors. Different densities are distinguished by
their arguments in a common abuse of notation.

If model M0 is nested within another model M1
such that the parameter space of M1 is u1 5 (v, f) and
the parameter space of M0 is u0 5 (v0, f) where v0 is
a known constant with q0(f) } q1(v 5 v0, f), then B10
may be estimated via posterior simulation of M1 using
the Savage-Dickey ratio (Verdinelli and Wasserman
1995),

1 p(v 5 v z Y, M )0 15 B 5 , (6)01B q(v 5 v z M )10 0 1

where q(v 5 v0 z M1) is the prior and p(v 5 v0 z Y, M1)
is the posterior of v, both evaluated at v0. There exist
several methods for estimating the posterior density of
v from an MCMC simulation, including nonparametric
kernel density estimation methods and multivariate nor-
mal approximations. The priors induced by restrictions
of the infinitesimal rate matrices and by restrictions of
the number of classes are derivable. The restrictions and
induced priors are presented in the next two sections. In
contrast, the derivation of the priors induced by the mo-
lecular-clock restrictions is more involved. Analytical
results for some situations are presented in appendix B,
and a general numerical approximation is presented in
the Induced Priors on Coalescent Height Differences
section, below.

Restrictions on Evolutionary Rates

The HKY85 model is a restriction of TN93, and
the K80 model is a restriction of HKY85. To test the
appropriateness of the restricted models, we generate a
posterior sample of the joint (a, g, p) using our MCMC
sampler under our most general TN93 model. We then
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1004 Suchard et al.

FIG. 1.—Topology used for simulation under a molecular clock.
Taxon R is assigned as the outgroup (having diverged before the re-
maining taxa) to allow rooting at an arbitrary position along taxon R’s
branch.

estimate the Bayes factors in favor of TN93 against
HKY85 and in favor of TN93 against K80. We then
generate a posterior sample of the joint (a, p) under
HKY85 to estimate the Bayes factor in favor of HKY85
against K80.

We approximate the posterior densities of (a, g, p)
and (a, p) using a normal approximation with the esti-
mated posterior mean and posterior covariance evalu-
ated at the joint restriction a 5 g and at (pm 5 1/4, a
5 g) (in the former case) and at pm 5 1/4 (in the latter
case). We directly calculate the appropriate prior den-
sities at these restrictions. When testing a 5 g, we recall
that this restriction is equivalent to a 2 g 5 0 and that
the difference of two Uniform[0, 1) random variables is
triangularly distributed on [21, 1] with a density of 1
at the restriction (Feller 1971). We then form the re-
spective Bayes factors using equation (6).

Multiple Classes

In data sets putatively containing multiple site clas-
ses, we estimate the Bayes factors in favor of multiple
Qr matrices under HKY85 by first generating a posterior
sample of (a1, . . . , aR, p1, . . . , pR) using our MCMC
sampler. We approximate the posterior density at the re-
striction (a1 5 . . . 5 aR, p1 5 . . . 5 pR) using a
normal approximation based on the posterior mean and
posterior covariance of the sample reparameterized as

c 5 (a 2 a , . . . , a 2 a ,1 R R21 R

p 2 p , . . . , p 2 p ), (7)1 R R21 R

where the elements of pr are pm,r, r ∈ (1, . . . , R), m
∈ (A, G, C, U/T), evaluated at c 5 (0, . . . , 0).

We form the Bayes factor by dividing this posterior
density estimate by the prior evaluated at the joint re-
striction. The induced prior equals q(a1 2 aR, . . . , aR21
2 aR) 3 q(p1 2 pR, . . . , pR21 2 pR) by prior inde-
pendence. We identify that

(a 2 a , . . . , a 2 a )1 R R21 R

5 (a , . . . , a ) 2 (a , . . . , a ) 5 U 2 W, (8)1 R21 R R

where U and W are two independent, multidimensional,
random variables. We evaluate q(U 2 W) at U 2 W 50
using the convolution integral for the difference of two
random variables. This results in

q(a 2 a 5 0, . . . , a 2 a 5 0) 5 11 R R21 R (9)

given our prior on a. This calculation does not depend
on the number of classes R.

Following a similar derivation,
R21q(p 2 p 5 0, . . . , p 2 p 5 0) 5 6 .1 R R21 R (10)

Molecular-Clock Restrictions

To test the appropriateness of a molecular clock,
we condition on the posterior mode topology, identify a
known outgroup, and reparameterize the branch lengths
in terms of coalescent height differences, Dij. These pa-
rameters measure the difference in the sums of the

branch lengths between two contemporary taxa i and j
and their MRCA. Under a molecular clock, Dij 5 0.

Given the outgroup R in the topology illustrated in
figure 1, a molecular clock constrains

D 5 0 5 t 2 (t 1 t 1 t ),AB 1 2 5 6

D 5 0 5 t 2 (t 1 t 1 t ),AC 1 3 5 6

D 5 0 5 t 2 (t 1 t ),AD 1 4 6

D 5 0 5 t 2 (t 1 t ),DB 4 2 5

D 5 0 5 t 2 (t 1 t ), andDC 4 3 5

D 5 0 5 t 2 t . (11)BC 2 3

Each constraint may be considered marginally as a di-
agnostic to identify portions of the topology which vi-
olate or support a molecular clock, or all constraints may
be examined jointly. The ability to simultaneously con-
sider each constraint marginally is an advantage of our
framework over previous molecular-clock tests and al-
lows for testing of a local molecular clock (Hillis, Ma-
ble, and Moritz 1996; Huelsenbeck, Larget, and Swof-
ford 2000) within a subset of taxa.

Taken jointly, half of the constraints in equation
(11) are redundant, so we can reduce the joint restriction
dimensionality by employing a conditioning argument
to show that

Pr(D 5 0, D 5 0, D 5 0, D 5 0, D 5 0,AB AC AD DB DC

D 5 0) 5 Pr(D 5 0, D 5 0, D 5 0).BC AB DB BC (12)
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It is straightforward to extend the conditioning argument
to larger trees.

Induced Priors on Coalescent Height Differences

For two- or three-taxon rooted topologies and for
any arbitrary pair of taxa considered marginally in an
N-taxon topology given an outgroup, we derive exact ex-
pressions for the ordinate of the induced prior q(Dij 5 0)
in appendix B. To consider constraints jointly for N . 3,
we estimate , the ordinate of the induced joint priorĥ
q(Dij 5 0), via simulation. We draw n 5 50,000 samples
of m and T z m directly from our priors and form the
appropriate Dij from T. We calculate using the multi-ĥ
dimensional density estimator

n1
(k)ĥ 5 1 , (13)O {\D \#w}ijnv k51d

where is the kth sample, d is the dimension of Dij,(k)Dij

w is the radius of a hypersphere in Rd, vd 5 pd/2wd/
G[(d/2) 1 1] is its volume, and \·\ is the Euclidean norm.
For each simulation, we fix w at its smallest value such
that the hypersphere contains at least n of the simu-Ï
lation sample (Loftsgaarden and Quesenberry 1965). If
the true density q(Dij) is locally linear in the neighbor-
hood of 0, then this method is unbiased. For N 5 2 taxa,
q(D) does not satisfy the locally linear condition, as the
mode of D is 0 (see appendix B). For N $ 3, the mode
is no longer centered at 0, and the approximation’s bias
decreases.

Conditioning on vd and recalling that is the sumĥ
of independent Bernoulli random variables, the finite
sample variance is approximated by

ĥ(0)(1 2 v ĥ(0))dVar(ĥ) 5 . (14)
Nvd

As a diagnostic for these simulations and the esti-
mator, we compare with the analytic results developedĥ
in appendix B for n 5 2 and 3. For n 5 2, we calculate

5 1.0 6 0.1 (estimate 6 SD), and the exact resultĥ
equals 0.955. For n 5 3, 5 0.87 6 0.02, while theĥ
exact result equals 0.897. To evaluate the estimator in
higher dimensions, we drew 50,000 samples from a 12-
dimensional multivariate N(1, I), where 1 5 (1, . . . , 1)t

and I is the identity matrix, and obtained 5 3.5 3ĥ
1028 6 0.5 3 1028, while the theoretical density is 4.0
3 1028. These results return the theoretical densities to
within the same order of magnitude and show only small
simulation error or bias.

Results

To make our inference methods more concrete, we
examined four data sets: (1) simulated data, (2) repre-
sentative organisms from across all living kingdoms
(Tree of Life [TOL]), (3) primates, and (4) different HIV
isolates. Each of these data sets illustrates different as-
pects of Bayesian inference. The simulated data dem-
onstrated that a molecular clock will be accepted when
it is actually present. The primate data were used to test
for multiple rates and to test restrictions on the infini-

tesimal rate matrix without conditioning on topology.
The TOL data, the primates, and the HIV isolates dem-
onstrated the versatility of the Bayesian method in test-
ing the molecular-clock hypothesis. The TOL data also
demonstrated that our MCMC implementation is prac-
tical for as many as 15 taxa.

Simulated Data

To insure that our methods would support a mo-
lecular clock if one were present, we simulated sequenc-
es of length 1,500 under a molecular clock for four con-
temporary taxa (A, B, C, D) and an outgroup (R) using
the topology in figure 1. We imposed a molecular clock
by assigning branch lengths so that the evolutionary dis-
tances from MRCAs and contemporary taxa were equal.
The approximate posterior density of Dij 5 0 was
1,106.3. A log10 B10 value of 0 implies that both models
are equally likely, while values greater than 2 represent
very strong evidence in support of the general model
and values less than 22 represent very strong evidence
in support of the restricted model (Kass and Raftery
1995). The induced prior for Dij in this topology was
0.52, yielding a log10 B10 value of 23.32, which favors
a molecular clock.

Tree of Life

The TOL data set consisted of 15 16S ribosomal
RNA sequences (rRNA) (Lake 1988). There were 1,039
aligned nucleotides after removal of gaps, and pobs 5
(0.2408, 0.3157, 0.2464, 0.1971)t. The species were
drawn from four major classes of living organisms: eu-
karyotes, eubacteria, halobacteria, and eocytes, and also
included the chloroplastic sequence from a eukaryote,
Zea mays (chl.). Figure 2 (left) shows the modal topol-
ogy (86% 6 3%, posterior probability mean 6 SD de-
termined from 10 independent chains) and the condi-
tional posterior mean branch lengths estimated under the
TN93 model. The model correctly clustered the eukary-
otes, eocytes, halobacteria, and eubacteria into their ap-
propriate monophyletic groups (clades) based on organ-
ism morphology and clustered the chloroplastic se-
quence in the eubacterial clade. This result is consistent
with the endosymbiotic hypothesis of the origins of eu-
karyotic cellular organelles (Margulis 1981) and has
been demonstrated previously using rRNA (Lake 1988;
Bhattacharya and Medlin 1995). Table 1 lists the mar-
ginal posterior means and standard errors of a, g, p, m,
and D under TN93, HKY85, and K80.

Primates

The primate data comprised a portion of the mi-
tochondrial DNA from a human, a chimpanzee, a goril-
la, an orangutan, a gibbon, a macaque, a squirrel mon-
key, a tarsier, and a lemur (Brown et al. 1982; Hayasaka,
Gojobori, and Horai 1988) and had previously been an-
alyzed using MCMC methodology (Yang and Rannala
1997; Larget and Simon 1999). There were 888 sites
after removal of alignment gaps, and pobs 5 (0.3219,
0.1076, 0.3044, 0.2660)t. Figure 3 illustrates the two
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1006 Suchard et al.

FIG. 2.—The Tree of Life modal (87% 6 3%) topology under TN93 (left). Branch lengths are drawn to scale. Plots of the marginal posterior
(solid line), normal approximation to the posterior (dashed), and prior (dotted) for the three molecular-clock height differences (Dij) within the
Eukaryote clade are shown (right). The data do not support a molecular-clock restriction, as the posterior densities are less than the prior density
at Dij 5 0.

dominant topologies seen in the posterior of all models
and the conditional posterior mean branch lengths under
the TN93 model. In both topologies, the sampler prop-
erly clusters the apes, monkeys, and prosimians. Table
1 gives evolutionary parameters and divergence esti-
mates and their standard errors.

The posterior distribution of topologies was model-
dependent, with the relationship between humans,
chimps, and gorillas varying. Under TN93, humans and
chimps were topographically the most closely related
among the three species (90% 6 3%). Similarly, under
HKY85, the posterior mean was 84% 6 2% using one
rate class and 92% 6 3% using four rate classes. Under
K80, the posterior mean was 90% 6 3%. However, un-
der an even more restrictive model proposed by Jukes
and Cantor (1969) (JC69) in which a 5 g 5 b and pm

5 1/4, we found that chimps and gorillas were topo-
graphically the most closely related (88% 6 5%). Un-
conditional on topology, the distance (expected number
of changes per site) between humans and chimps was
0.41 6 0.05 (posterior mean 6 posterior SD) and the
distance between chimps and gorillas was 0.52 6 0.05

under TN93. Under JC69, these distances were 0.40 6
0.05 and 0.45 6 0.05, respectively.

HIV

The HIV data contained the complete HIV ge-
nomes of two subtype D isolates, eight subtype B iso-
lates, and one ADI subtype recombinant, MAL (Korber
et al. 1997). The subtype B isolates JRCSF and JRFL
were collected from the same patient. There were 7,969
sites after removing all gaps in the aligned genomes,
and pobs 5 (0.3698, 0.2365, 0.1708, 0.2229)t. Figure 4
displays the two topologies that account for virtually
100% of the posterior. These topologies were drawn
with their conditional posterior mean branch lengths un-
der TN93. One internal branch within the subtype B
clade was approximately zero. At zero, the two shown
topologies become equivalent. The sampler placed JRFL
and JRCSF as nearest neighbors and correctly clustered
the D and B subtypes. Table 1 gives the estimated evo-
lutionary parameters and divergence.
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Table 1
Parameter Estimates for the Tree of Life (TOL),
Primates, and HIV Under the TN93, HKY85, and K80
Models

TN93 HKY85 K80

TOL
m . . . .
D . . . .
a . . . .
g . . . .
pA . . .
pG . . .
pC . . .
pT . . .

0.356 (0.070)
8.900 (0.225)
0.400 (0.020)
0.702 (0.033)
0.246 (0.009)
0.309 (0.010)
0.242 (0.008)
0.203 (0.008)

0.349 (0.066)
8.757 (0.211)
0.530 (0.012)

5a
0.225 (0.008)
0.298 (0.009)
0.263 (0.008)
0.224 (0.008)

0.354 (0.070)
8.768 (0.212)
0.529 (0.012)

5a
¼
¼
¼
¼

Primates
m . . . .
D . . . .
a . . . .
g . . . .
pA . . .
pG . . .
pC . . .
pT . . .

0.421 (0.111)
5.664 (0.198)
0.580 (0.044)
0.744 (0.036)
0.323 (0.012)
0.110 (0.008)
0.290 (0.011)
0.277 (0.011)

0.425 (0.107)
5.755 (0.197)
0.675 (0.017)

5a
0.313 (0.011)
0.103 (0.007)
0.298 (0.011)
0.286 (0.010)

0.396 (0.101)
5.276 (0.176)
0.656 (0.016)

5a
¼
¼
¼
¼

HIV
m . . . . 0.136 (0.031) 0.133 (0.030) 0.129 (0.029)
D . . . .
a . . . .
g . . . .
pA . . .
pG . . .
pC . . .
pT . . .

1.639 (0.030)
0.633 (0.016)
0.806 (0.026)
0.374 (0.005)
0.232 (0.004)
0.177 (0.004)
0.217 (0.004)

1.565 (0.019)
0.696 (0.009)

5a
0.368 (0.005)
0.228 (0.004)
0.182 (0.003)
0.221 (0.004)

1.532 (0.024)
0.528 (0.006)

5a
¼
¼
¼
¼

NOTE.—Posterior means and standard deviations of the branch length hy-
perparameter (m), the total divergence (D), the infinitesimal rate parameters (a
and g), and the stationary distribution (p) are shown. The a and the fractions
in the final two columns indicate fixed-model restrictions.

FIG. 4.—Two topologies account for 100% of the posterior for
HIV under TN93. Branch lengths are drawn to scale. The two topol-
ogies converge as the circled internal branches approach zero.

FIG. 3.—The two dominant topologies for primates under TN93 using one rate class. The complete displayed topology has a posterior
probability of 90% 6 3%, while the alternate clade accounts for the remaining 10%. Branch lengths are drawn to scale.

TN93, HKY85, and K80 Comparison

The log10 Bayes factors for all examples and mod-
els are given in table 2. TN93 was strongly supported
by the TOL and HIV examples when comparing restric-
tions of a, g, and p; all log10 B10 values were $3. Sup-
port for TN93 over HKY85 was less conclusive when
restrictions of a and g were compared for the primate
example, for which the log10 B10 value was 0.3. HKY85
was strongly supported over K80 when restrictions of p
were compared.
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Table 2
Log10 Bayes Factors in Favor of the More General
Evolutionary Model Against a Nested Model for the Tree
of Life (TOL), Primates, and HIV

Data Set Log10 B10 HKY85 K80

TOL . . . . . . . . . TN93
HKY85

8
0

11
3

Primates . . . . . . TN93
HKY85

0.3
0

93
107

HIV . . . . . . . . . TN93
HKY85

4
0

163
167

Table 3
Parameter Estimates When Fitting Four Site Classes
Using the Primate Example Under the HKY85 Model

PROTEIN READING FRAME—CODON POSITION

First Second Third TRNA

m . . .
D . . .
a . . . .
pA . .
pG . .
pC . . .
pT . . .

0.42 (0.11)
5.28 (0.37)
0.61 (0.03)
0.37 (0.02)
0.13 (0.01)
0.27 (0.02)
0.23 (0.02)

0.25 (0.07)
2.54 (0.22)
0.79 (0.04)
0.18 (0.02)
0.12 (0.02)
0.30 (0.02)
0.40 (0.03)

4.16 (1.62)
65.0 (18.5)
0.92 (0.02)
0.38 (0.02)
0.05 (001)
0.39 (0.02)
0.18 (0.01)

0.30 (0.08)
3.22 (0.29)
0.74 (0.04)
0.34 (0.03)
0.14 (0.02)
0.22 (0.02)
0.30 (0.03)

NOTE.—Posterior means and standard deviations of the branch length hy-
perparameter (m), the total divergence (D), the infinitesimal rate parameter (a),
and the stationary distribution (p) are shown for each class.

Multiple Classes in the Primates

The mitochondrial sequences in the primate data
set comprised the coding region for two individual pro-
tein subunits with known reading frames and a transfer
RNA (tRNA) portion (Brown et al. 1982; Hayasaka, Go-
jobori, and Horai 1988). Following Yang (1995), we di-
vided the data into four classes, one for the tRNA (194
nt in length) and the remaining three for the first, sec-
ond, and third codon positions in the protein subunits
with lengths 232, 231, and 231 nt. In table 3, we report
the posterior means and the posterior standard devia-
tions of the parameters a p, m, and D for each class
under HKY85. The total divergence D serves as a sur-
rogate for reporting all branch lengths T. The posterior
of the ratio Di/Dj estimates the relative rates of evolution
between classes i and j. Between the first and second
codon positions, we found a posterior mean ratio of 0.49
(0.06 SD), between the first and third we found a pos-
terior mean ratio of 10.2 (2.2), and between the first
position and tRNA we found a posterior mean ratio of
0.62 (0.07). These estimates are comparable to those
determined by Yang (1995) and include measures of un-
certainty. An approximate 10-fold increase in mutation
was observed in the third codon position compared to
the first, consistent with the increased redundancy of the
genetic code in the third position. Furthermore, the evo-
lutionary rate parameters a and stationary distributions
p between classes were quite disparate. The log10 Bayes
factor in favor of multiple a and p across all four classes
was 43.7.

Testing a Molecular Clock

We examined the appropriateness of a molecular
clock conditional on the modal topology under TN93.
We chose the eocyte clade as the outgroup for TOL, as
using this clade offered the least support against a mo-
lecular clock. The ADI recombinant was assumed to be
the outgroup for the HIV example. For the primate ex-
ample, the lemurs represented the outgroup. In table 4,
we list the posterior means and standard deviations of
minimum sufficient sets of molecular-clock constraints
for these examples.

There were 9 constraints for HIV, 7 for the pri-
mates, and 11 for the TOL mode topologies. We further
give the number of nodes traversed between the taxa
and their MRCA, each Dij’s marginal prior density eval-
uated at 0 as determined by these numbers of nodes

(appendix B), and log10 B10 against a molecular clock
for each two-taxon comparison. Examined univariately,
all Dij’s supported a molecular clock within the B sub-
type clade for HIV, with the exception of the JRCSF-
JRFL constraint. Between clades, a molecular clock was
strongly rejected (SF2-ELI constraint, log10 B10 5 10.8).
Within the primates, a molecular clock was weakly sup-
ported by each constraint within the anthropoids (apes
and monkeys) (all log10 B10 # 20.5) but rejected be-
tween the anthropoids and prosimians (log10 B10 5 1.0).

Also in table 4, we calculate the joint posterior us-
ing a multivariate normal approximation and prior den-
sities via simulation evaluated at 0, and by taking the
ratio of these values, we report the joint log10 B10 for
each data set. The TOL and HIV examples offered
strong support against a molecular clock (log10 B10 5
31.8 and 12.3, respectively), while the primates offer
weaker support against a molecular clock (log10 B10 5
1.3).

We examined three subsets of our examples iden-
tified as interesting by the marginal diagnostics: (1) the
eight subtype B isolates, (2) the anthropoids, and (3) the
eukaryotes. Table 4 displays the corresponding joint
log10 posterior and prior densities and log10 B10 for these
subsets. As an illustration, figure 2 (right) plots the mar-
ginal posterior and prior distributions of the three coa-
lescent height differences among the eukaryotes. The
eukaryotes continued to offer strong support against a
molecular clock (log10 B10 5 14.0), while the much
more closely related B subtype isolates and anthropoids
offered strong support in favor of a local molecular
clock (log10 B10 5 23.7 and 22.4, respectively).

Discussion

We propose a reversible jump MCMC algorithm
for sampling from the posterior distribution of topolo-
gies and other parameters used to model the relatedness
among organisms. Individual topologies are separate
statistical models. While evolutionary parameters retain
definition across these models, some branch lengths do
not. For a fixed number of organisms, the dimension of
the parameter space spanned by the branch lengths with-
in a topology model remains constant, making reversible
model jumps convenient.
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Table 4
Molecular-Clock Estimates for the Tree of Life (TOL), Primates, and HIV

MOLECULAR-CLOCK HEIGHT

DIFFERENCE

POSTERIOR

Mean (SD)
Log10

f(Dij 5 0 z Y)

PRIOR

Traversed
Nodes

Log10

p(Dij 5 0)
Log10

B10

TOL data set, eocyte clade as outgroup
Homo sapiens–Artemia salina . . . . . . . . .
H. sapiens–Zea mays . . . . . . . . . . . . . . . .
Sacchoromyces cerevisiae–Z. mays . . . . .
Aspergillus nidulans–Z. mays (chl.) . . . . .
Z. mays (chl.)–Bacillus subtilis . . . . . . . .
B. subtilis–Eschericha coli . . . . . . . . . . . .
E. coli–Agrobacterium tumefaciens . . . . .
Halobacterium volacanii–Halococcus

morrhuae . . . . . . . . . . . . . . . . . . . . . . . .
H. volacanii–Halobacterium halobium . .
S. cerevisiae–H. halobium . . . . . . . . . . . .
H. halobium–A. nidulans . . . . . . . . . . . . .

20.108
0.195

20.443
20.270

0.146
20.323

0.122
20.016

0.071
0.705

20.643

(0.063)
(0.070)
(0.079)
(0.097)
(0.060)
(0.079)
(0.070)
(0.047)

(0.055)
(0.128)
(0.122)

0.16
20.91
26.22
21.07
20.45
22.98

0.09
0.90

0.49
26.14
25.11

1, 1
2, 1
1, 2
1, 3
1, 1
2, 2
1, 1
1, 1

2, 1
2, 3
2, 2

20.02
20.32
20.32
20.62
20.02
20.32
20.02
20.02

20.32
20.45
20.32

20.2
0.6
5.9
0.5
0.4
2.7

20.1
20.9

20.8
5.7
4.8

Joint log-densities . . . . . . . . . . . . . . . . . . . 231.66 0.18 31.8
Eukaryotes only . . . . . . . . . . . . . . . . . . . 214.18 20.18 14.0

Primate data set, lemur as outgroup
Human-chimpanzee . . . . . . . . . . . . . . . . .
Chimpanzee-gorilla . . . . . . . . . . . . . . . . . .
Gorilla-orangutan . . . . . . . . . . . . . . . . . . .
Orangutan-gibbon . . . . . . . . . . . . . . . . . . .
Gibbon-macaque . . . . . . . . . . . . . . . . . . . .
Macaque-squirrel monkey . . . . . . . . . . . .
Squirrel monkey-tarsier . . . . . . . . . . . . . .

20.070
0.078
0.076
0.105

20.047
0.160
0.398

(0.054)
(0.062)
(0.078)
(0.089)
(0.113)
(0.132)
(0.141)

0.51
0.47
0.50
0.35
0.51
0.16

21.28

1, 1
2, 1
2, 1
2, 1
2, 1
2, 1
2, 1

20.02
20.32
20.32
20.32
20.32
20.32
20.32

20.5
20.8
20.8
20.7
20.8
20.5

1.0
Joint log-densities . . . . . . . . . . . . . . . . . . . 21.61 20.33 1.3

Anthropoids only . . . . . . . . . . . . . . . . . . 1.89 20.46 22.4

HIV data set, MAL as outgroup
SF2-OYI . . . . . . . . . . . . . . . . . . . . . . . . . .
MN-ALA1 . . . . . . . . . . . . . . . . . . . . . . . . .
JRCSF-JRFL . . . . . . . . . . . . . . . . . . . . . . .
MN-JRCSF . . . . . . . . . . . . . . . . . . . . . . . .
NY5-MN . . . . . . . . . . . . . . . . . . . . . . . . . .
SF2-RF . . . . . . . . . . . . . . . . . . . . . . . . . . .
SF2-NY5 . . . . . . . . . . . . . . . . . . . . . . . . . .
ELI-Z2Z6 . . . . . . . . . . . . . . . . . . . . . . . . .
SF2-ELI . . . . . . . . . . . . . . . . . . . . . . . . . . .

20.013
0.011
0.030

20.004
20.017
20.011

0.032
0.028
0.276

(0.011)
(0.010)
(0.008)
(0.012)
(0.012)
(0.012)
(0.014)
(0.010)
(0.036)

1.27
1.34

21.44
1.50
1.08
1.33
0.20
0.01

211.42

1, 1
1, 1
1, 1
2, 2
1, 3
3, 1
2, 2
1, 1
4, 2

20.02
20.02
20.02
20.32
20.62
20.62
20.32
20.02
20.62

21.3
21.4

1.4
21.8
21.7
22.0
20.5

0.0
10.8

Joint log-densities . . . . . . . . . . . . . . . . . . . 212.39 20.08 12.3
B subtypes only . . . . . . . . . . . . . . . . . . . 3.64 20.04 23.7

NOTE.—Posterior means and standard deviations of molecular-clock height differences (Dij), posterior and prior log10 ordinates for Dij 5 0, and log10 Bayes
factors against a molecular clock restriction conditional on mode topology under TN93 are shown. Traversed nodes are the numbers of nodes connecting the two
taxa and their most common recent ancestor. The final rows for each example considers Dij jointly.

In allowing the sampler to explore the posterior
across topology models, we overcome a shortfall of tra-
ditional analysis used to compare different continuous-
time Markov evolutionary models. One can use a like-
lihood ratio test by maximizing the likelihood of the
general model and the likelihood of the restricted model
conditional on the same topology; however, the topol-
ogies that maximize the likelihood may differ under the
two models. Then, general and restricted evolutionary
models are no longer nested, and formal inference under
a likelihood ratio test is no longer possible. In effect,
our reversible jump MCMC sampler integrates out the
nonnested portions of the parameter space. The Bayes-
ian approach also allows us to effectively incorporate
the uncertainty in the topology into the variance of the
parameter estimates. Frequentist inference is forced to
condition on topology and therefore underestimates the
uncertainty.

The TOL example offers strong evidence against
the universal appropriateness of a molecular clock; how-
ever, the anthropoids and subtype B isolates demonstrate
that a local molecular clock for closely related taxa is a
reasonable model. This finding is quite insensitive to
prior choice. A molecular clock was originally em-
ployed in MCMC methods for evolutionary reconstruc-
tion to reduce computation (e.g., Mau and Newton 1997;
Yang and Rannala 1997; Mau, Newton, and Larget
1999; Li, Pearl, and Doss 2000), but numerous examples
of restriction violations exist (Ayala, Barrio, and Kwia-
towski 1996; Leitner et al. 1996; Hillis, Mable, and Mo-
ritz 1996; Simon et al. 1996; Holmes, Pybus, and Har-
vey 1999; Richman and Kohn 1999). Larget and Simon
(1999) show that eliminating the molecular clock by
doubling the number of estimable branch lengths does
not produce an intractable problem; we extend the com-
putation to allow for multiple sets of branch lengths that
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FIG. 5.—Local and global pendant leaf algorithms.

are not constrained by a molecular clock. In doing so,
we further the frameworks of Thorne, Kishino, and
Painter (1998) and Huelsenbeck, Larget, and Swofford
(2000) in several important ways. Thorne, Kishino, and
Painter (1998) introduce a Bayesian approach that does
not impose a molecular clock by first assuming that the
true relationship of the taxa under study is known with
complete certainty and employing empirical Bayes pri-
ors that use the data twice. However, they do not provide
a statistical test of the appropriateness of a molecular
clock. Huelsenbeck, Larget, and Swofford (2000) con-
tinue to assume that the true relationship is known and
formulate a likelihood ratio test that may become diffi-
cult to interpret when the data are sparse. We overcome
both shortfalls by providing a framework to statistically
test the appropriateness of a molecular clock while not
having to condition on a known a priori topology and
simultaneously make inference about the appropriate pa-
rameterization of the infinitesimal rate matrix. Addition-
ally, pairwise diagnostic Bayes factors we propose allow
the researcher to conveniently identify portions of an
evolutionary history that violate a molecular clock and
portions that support a local molecular clock. On the
other hand, Huelsenbeck, Larget, and Swofford (2000)
allow for the estimation of divergence times, while our
approach does not eliminate the confounding of time
and evolutionary rate.

To provide both large and small jumps among so
many branch lengths, we choose a 50/50 mixture of two
transition kernels—the first updating all branch lengths
simultaneously using a reflective normal driver with
small variance, and the second randomly selecting and

updating one branch length using a driver with large
variance. This mixture removed initially poor conver-
gence in the HIV data set that had small branch lengths
as compared with the other two examples. We find quick
convergence and sufficient mixing for up to at least 15-
taxon topologies without a molecular clock.

APPENDIX A

Transition Kernels
Joint Tree and Branch Length Proposals

We propose new trees and branch lengths using a
mixture of three transition kernels, local pendant leaf,
global pendant leaf, and leaf permutor, that perform both
small and large scale rearrangements with mixing prob-
abilities of 1/3 each.

Pendant Leaves (local and global variants)

Pendant leaf–type algorithms are described by Li,
Pearl, and Doss (2000). We employ two variants, one
(local) that moves a single taxon at a time from its pre-
sent location in a topology to a new location forming a
new topology, and one (global) that moves an entire
clade of taxa at a time. Figure 5 illustrates these
rearrangements.

These drivers are asymmetric. Let ty be the length
of the newly selected branch before the pendant leaf or
leaves bisect it, and let tx be the length of the original
branch bisected by the pendant leaf or leaves; then, we
choose a random location uniformly along ty. The ratio
of the densities of the transition kernel going from state
x to state y over that from state y to state x is tx/ty.
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Leaf Permutor

This algorithm randomly selects an internal node
(I) and then randomly permutes all leaves which are
descendants of I. This driver is symmetric, but it is not
ergodic for N $ 6 taxa. However, our mixture of the
three drivers remains ergodic as long as one member of
the mixture is itself ergodic. Li, Pearl, and Doss (2000)
show that pendant leaf algorithms are ergodic.

Branch Length, Stationary Distribution, Evolutionary
Parameters, and Hyperparameter Proposals

We propose a new set T using a 50/50 mixture of
two drivers. The first is a multivariate normal driver of
dimension 2N 2 3, and the second randomly selects and
updates one tb from T using a univariate normal driver.
As all branch lengths are restricted to be nonnegative,
both drivers update their respective elements of T by
reflecting about 0, such that 5 ztb 1 ejz, where*tb

ej ; N(0, ) for j 5 1, 2. We set 5 2.5 3 10242 2s sT,j T,1

and 5 0.1.2sT,2

We propose a new p using a trivariate normal driver
with diagonal variance 5 3 1025 and constrain S pm 5 1,
such that 5 zpm 1 ep,mz for m ∈ (A, G, C), where*pm

ep,m ; N(0, ), and 5 1 2 2 2 . We2 * * * *s p p p pp T/U A G C

reject all proposals in which ¸ [0, 1] for all m ∈*pm

(A, G, C, T/U). More efficient drivers for p exist, and
we are evaluating several different possibilities. We also
propose a new a and a new g using two independent
normal drivers with variance 5.0 3 1025 that are reflect-
ed about both ends of the support space [0, 1]. Finally,
we propose a new m using a normal driver with variance
0.1 and, again, we reflect about 0 such that m* 5 zm 1
ez. We choose all variances to allow for 20%–30% ac-
ceptance rates in each Metropolis-Hastings proposal
(Gelman, Roberts, and Gilks 1996).

APPENDIX B

Analytic Solutions of the Marginal Priors

Here, we determine the exact distribution of Dij for
two-taxon rooted topologies, the joint prior density
q(D1, D2) at (0, 0) for three-taxon rooted topologies, and
the univariate, marginal density q(Dij) at 0 for any ar-
bitrary pair of taxa in an N-taxon topology given an
outgroup using characteristic functions.

Two Taxa

One coalescent height difference, D 5 t1 2 t2, ex-
ists for two taxa A and B related by the rooted topology
(A : t1, B : t2), where t1 and t2 are the branch lengths con-
necting A and B to their MRCA. We find the distribution
of Dzm under the prior by letting f(s) be its characteristic
function. Then, f(s) 5 E{eisD} 5 1/(1 1 m2s2), as ti are
iid Exponential(m) random variables. By the uniqueness
theorem (Feller 1971), D z m ; Double-exponential(m),
where qDzm(x) 5 exp(2zxz/m)/(2m) and qDzm(0) 5 1/(2m).

Three Taxa

A sufficient set of coalescent height differences for
three taxa, A, B, and C, related by the rooted topology
(A : t4, (B : t1, C : t2) : t3) are

D 5 t 2 t and D 5 t 2 t 2 t , (15)1 1 2 2 4 3 1

where ti are branch lengths.
Let f(s1, s2) be the joint characteristic function of

(D1, D2) z m; then,
i(s D 1s D )1 1 2 2f(s , s ) 5 E{e }1 2

1 1 1 1
5 ,

1 2 im(s 2 s ) 1 1 ims 1 1 ims 1 2 ims1 2 1 2 2

(16)

as ti are iid Exponential(m) random variables.
To recover q(D1 5 0, D2 5 0 z m), we take the in-

verse Fourier transform of equation (16) evaluated at
(D1, D2) 5 (0, 0),

q(D 5 0, D 5 0 z m)1 2

2 ` `1
2(s 301s 30)1 25 e f(s , s ) ds ds . (17)E E 1 2 1 21 22p

2` 2`

We integrate equation (17) first with respect to s1.
Let

` 1 1
g(s ) 5 ds2 E 11 2 im(s 2 s ) 1 1 ims1 2 12`

p 1
5 , (18)

m m
1 1 i s22

calculated by expanding out the integrand and complet-
ing the square. Substituting the solution of equation (18)
back into equation (17) results in

q(D 5 0, D 5 0 z m)1 2

`1 1 1
5 ds . (19)E 22 24pm m 1 1 m s22` 1 1 i s22

Expanding equation (19) by partial fractions,

q(D 5 0, D 5 0 z m)1 2

` ` 1 2 2 2 ims 1 12 5 ds 2 dsE 2 E 22 24pm 3 1 1 m s 3 m 22` 2` 1 1 i s22 

1
5 .

26m
(20)

Marginal Constraint for Any Pair of Taxa

Here, we determine the prior density of a single Dij

at 0 for any arbitrary pair of taxa. Let n1 and n2 count
the numbers of internal nodes traversed from taxon i and
taxon j, respectively, to their MRCA, including the
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MRCA itself. Then, h1 and h2, the sums of branch
lengths from the taxa to the MRCA, are independent
Gamma(n1, 1/m) and Gamma(n2, 1/m) random variables.
Let Dij 5 h1 2 h2. Using characteristic functions, we
determine the distribution of Dij z m. Let f(s) be a char-
acteristic function of Dij z m; then,

2isD 2ish 1ishij 1 2f(s) 5 E(e ) 5 E(e )
2n 2n1 25 (1 2 ims) (1 1 ims)

2 2 2n 2(n 2n )2 1 25 (1 1 m s ) (1 2 ims) , (21)

where, without loss of generality, we assume n1 $ n2.
By the uniqueness theorem (Feller 1971),

n2

D z m ; D 1 G,Oij k
k51

where
D ; Double-exponential(m),k

1
2|x |/mf (x) 5 e , and

2m

1
G ; Gamma n 2 n , . (22)1 21 2m

We take the inverse Fourier transform of equation
(21) evaluated at Dij 5 0 to get the density q(Dij z m) at
0. For n1 5 n2, we find by direct integration

G n 2 1/21 221
q(D 5 0 z m) 5 . (23)ij m 2Ïp(n 2 1)!2

For n1 . n2, we use the recursion relationship
`

2n 2n1 2(1 2 ims) (1 1 ims) dsE
2`

`n 1 n 2 21 2 2(n 21) 2n1 25 (1 2 ims) (1 1 ims) dsE2(n 2 1)1 2`

(24)

n1 2 n2 times to reduce cases down to integrals of the
form solved in equation (23), where n1 5 n2. This results
in

q(D 5 0 z m)ij

(n 1 n 2 2)!G n 2 1/21 21 2 21
5 . (25)

(n 2n 11)1 2m 2 Ïp(n 2 1)!(2n 2 2)!1 2

Integrating Out m to Recover Marginal Densities
In two-taxon cases, we recover the exact distribu-

tion of D (qD(x)) and its density at 0 by forming the joint
distribution q(x, m) 5 q(x z m)q(m) and integrating out m,

` a1 b
2(a12) 2(1/m)(b1|x |)q (x) 5 m e dmD E2 G(a)0

1
a 2(a11)5 ab (b 1 |x |) , and

2

a
q (0) 5 . (26)D 2b

This argument can be generalized for the remaining cas-
es where we obtain the marginal densities evaluated at
0 by one final integration of q(Dij 5 0 z m) with respect
to m. Recalling that m ; Inv-gamma(2.1, 1.1), q(D 5
0) 5 0.955 and q(D1 5 0, D2 5 0) 5 0.897.
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