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ABSTRACT: This paper outlines an approach to Bayesian semiparametric regression in multiple equation
models which can be used to carry out inference in seemingly unrelated regressions or simultaneous equations
models with nonparametric components. The approach treats the points on each nonparametric regression
line as unknown parameters and uses a prior on the degree of smoothness of each line to ensure valid posterior
inference despite the fact that the number of parameters is greater than the number of observations. We
derive an empirical Bayesian approach that allows us to estimate the prior smoothing hyperparameters
from the data. An advantage of our semiparametric model is that it is written as a seemingly unrelated
regressions model with independent Normal-Wishart prior. Since this model is a common one, textbook
results for posterior inference, model comparison, prediction and posterior computation are immediately
available. We use this model in an application involving a two-equation structural model drawn from the
labor and returns to schooling literatures.



1 Introduction

Despite the proliferation of theories for semiparametric and nonparametric regression, the use of these tech-

niques remains relatively rare in empirical practice. Increased computational difficulty and mathematical

sophistication, and perhaps most importantly, the curse of dimensionality - the unfortunate reality wherein

the rate of convergence of the nonparametric regression estimator slows with the number of variables treated

nonparametrically - all seem to provide barriers which prevent the widespread use of nonparametric tech-

niques.

The rapid increase in computing power and growth in nonparametric routines found in statistical software

packages has helped to mitigate computational concerns. To combat the curse of dimensionality problem,

many researchers have adopted the use of partially linear or semilinear regression models. This model,

though not fully nonparametric, provides a convenient generalization of the standard linear model which

is not as susceptible to the curse of dimensionality since only one, or perhaps a few, variables are treated

nonparametrically. Finally, some studies (e.g. Blundell and Duncan (1998), Yatchew (1999), and DiNardo

and Tobias (2001)) have tried to bridge the gap between theory and practice, and make these techniques

accessible to applied researchers.

In this paper we continue in this tradition, and describe and implement simple and intuitive Bayesian methods

for semiparametric and nonparametric regression. Importantly, the methods we describe can be used in the

context of multiple equation models, thus generalizing the scope of models for which simple nonparametric

methods have been described. In our discussion, we focus primarily on the Seemingly Unrelated Regression

(SUR) model. This model is of interest in and of itself, but is also of interest as the (possibly restricted)

reduced form of a semiparametric simultaneous equations model (or the structural form of a triangular

simultaneous equations model).

Before describing the contributions of this paper, it is useful to briefly outline the method we used in related

work (e.g. Koop and Poirier (2003a)) in the single equation partially linear regression model. This partially

linear model divides the explanatory variables into a set which is treated parametrically, z, and a set which

is treated nonparametrically, x, and relates them to a dependent variable y as:

yi = z′iβ + f(xi) + εi,

for i = 1, .., N where f () is an unknown function. Because of the curse of dimensionality, xi must be of low

dimension and is often a scalar (see Yatchew, 1998, for an excellent introduction to the partial linear model).

In this model we assumed εi
iid∼ N

(
0, σ2

)
for i = 1, ..., N , and all explanatory variables were fixed or

exogenous. Observations were ordered so that x1 < x2 < ... < xN . Define y = (y1, ..., yN )′, Z = (z1,..., zN )′

and ε = (ε1, ..., εN )′. Letting γ = (f(x1), ..., f(xN ))′, W = (Z : IN ) and δ = (β′, γ′)′, we showed that you
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could write the previous equation as:

y = Wδ + ε.

Thus, the partially linear model can be written as the standard Normal linear regression model where the

unknown points on the nonparametric regression line are treated as unknown parameters. This regression

model is characterized by insufficient observations in that the number of explanatory variables is greater

than N . However, Koop and Poirier (2003a) showed that, if a natural conjugate prior is used, the posterior

is still well-defined. In fact, we showed that the natural conjugate prior did not even have to be informative

in all dimensions and that prior information about the smoothness of the nonparametric regression line

was all that was required to ensure valid posterior inference. Thus, for the subjective Bayesian, prior

information can be used to surmount the problem of insufficient observations. Furthermore, for the researcher

uncomfortable with subjective prior information, the required amount of prior information was quite small,

involving the selection of a single prior hyperparameter which we called η that governed the smoothness

of the nonparametric regression line. In Koop and Poirier (2003b), we went even further and showed how

(under weak conditions) empirical Bayesian methods could be used to estimate η from the data.

The advantages of remaining within the framework of the Normal linear regression model with a natural

conjugate prior are clear. This model is very well understood and standard textbook results for estima-

tion, model comparison and prediction are immediately available. Analytical results for posterior moments,

marginal likelihoods and predictives exist and, thus, there is no need for posterior simulation. This means

methods which search over many values for η (e.g. empirical Bayesian methods or cross-validation) can be

implemented at a low computational cost. Furthermore, as shown in our previous work, the partial lin-

ear model can serve as a component in numerous other models which do involve posterior simulation (e.g.

semiparametric tobit and probit models or the partial linear model with the errors treated flexibly by using

mixtures of Normals). The ability to simplify the estimation of the nonparametric component in such a

complicated empirical exercise may provide the researcher a great computational benefit.

In this paper we take up the case of Bayesian semiparametric estimation in multiple equation models, and

adopt a similar approach for smoothing the regression functions. In particular, we consider the estimation

of a semiparametric SUR model of the form:

yij = z′ijβj + fj(xij) + εij , (1.1)

where yij is the ith observation (i = 1, .., N) on the jth endogenous variable (j = 1, .., m), zij is a kj×1 vector

of observations on the exogenous variables which enter linearly, fj(xij) is an unknown function which depends

on a vector of exogenous variables, xij , and εij is the error term. For equations which have nonparametric

components, zij does not contain an intercept since the first point on a nonparametric regression line plays

the role of an intercept.

The approach we describe for the estimation of this model is simple and intuitive, and hopefully will appeal to

practitioners seeking to add degrees of flexibility to their multiple equation analyses. As in our previous work,
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we employ a prior which serves to smooth the nonparametric regression functions. It is important to recognize

that for the (parametric) seemingly unrelated regressions model (and the reduced form of the simultaneous

equations model), the natural conjugate prior suffers from well known criticisms (see Rothenberg, 1963, or

Dreze and Richard, 1983). On the basis of these, Dreze and Richard (1983, page 541) argue against using

the natural conjugate prior (except for certain noninformative limiting cases not relevant for our class of

models). Their arguments carry even more force in the present semiparametric context since it can be shown

that the natural conjugate prior places some undesirable restrictions on the way smoothing is carried out

on nonparametric regression functions in different equations (i.e. the nonparametric component in each

equation is smoothed in the same way). Thus, in the present paper we do not adopt a natural conjugate

prior, but rather use an independent Normal-Wishart prior.

The basic ideas behind our approach are straightforward extenstions of standard textbook Bayesian methods

for the SUR model (see, e.g., Koop, 2003, pages 137-142). Thus, textbook results for estimation, model

comparison (including comparison of parametric to nonparametric models) and prediction are immediately

available. This, we argue, is an advantage relative to the relevant non-Bayesian literature (see, e.g., Pagan and

Ullah, 1999, chapter 6) and to other, more complicated, Bayesian approaches to nonparametric seemingly

unrelated regression such as Smith and Kohn (2000). Nevertheless, the notation for our most general

semiparametric model is, admittedly, a bit messy.

We illustrate the use of our methods by estimating a two-equation simultaneous equations model in parallel

with the development of our theory. This application takes data from the National Longitudinal Survey of

Youth (NLSY) and involves estimating the returns to schooling, job tenure, and ability for a cross-sectional

sample of white males. Our triangular simultaneous equations model has two equations, one for the (log)

wage and the other for the quantity of schooling attained. After estimating standard parametric models that

have appeared in the literature, we first extend them to allow for nonparametric treatment of an exogenous

variable (weeks of tenure on the current job) in the wage equation (Case 1). Subsequently, we consider Case

2 where single explanatory variables enter nonparametrically in each equation. In this model we additionally

allow a measure of cognitive ability to enter the schooling equation nonparametrically. We complete our

empirical work with Case 3 by giving cognitive ability a nonparametric treatment in both the wage and

schooling equations (with tenure on the job also given a nonparametric treatment in the wage equation).

Our results reveal the practicality and usefulness of our approach. In some cases, our semiparametric

treatment yields results which are very similar to those from simple parametric nonlinear models (e.g.

quadratic). However, one advantage of a semiparametric approach is that a particular functional form such

as the quadratic does not have to be chosen, either in an ad hoc fashion or through pre-testing. Furthermore,

in some cases our semiparametric approach yields empirical results that could not be easily obtained using

standard parametric methods. In terms of our application, our results reveal the empirical importance of

controlling for nonlinearities in ablility in both the wage and schooling equations when trying to estimate

the return to education.
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The outline of our paper is as follows. In the next section, we outline our basic semiparametric SUR

model, describe our data, and obtain parametric results and semiparametric results where job tenure is

treated nonparametrically. In section 3, we describe the process of estimating a model with nonparametric

components in both equations, and estimate the model in Case 2. Finally, in section 4, we describe how to

handle the estimation of additive models and provide estimation results for our most general Case 3. The

paper concludes with a summary in section 5.

2 Case 1: A Single Nonparametric Component in a Single Equa-
tion

We begin by considering a simplified version of (1.1) where a nonparametric component enters a single

equation (chosen to be the mth equation) and the explanatory variable which receives a nonparametric

treatment, xim, is a scalar. In later sections, we consider cases where several equations have nonparametric

components each depending on a different explanatory variable (or variables).

We assume that the data is ordered so that x1m < ... < xNm and define γi = fm(xim) for i = 1, .., N to be

the unknown points on the nonparametric regression line in the mth equation. We also let γ = (γ1, .., γN )′

and ζi be the ith row of IN . With these definitions, we can write the model as:

yi = Wiδ + εi, (2.1)

where yi = (yi1, .., yim)′ , εi = (εi1, .., εim)′ ,

Wi =

⎡⎢⎢⎢⎢⎣
z′i1 0 . . . 0
0 z′i2 . . . .
. . . . . .
. . 0 z′i,m−1 0 0
0 . . 0 z′im ζi

⎤⎥⎥⎥⎥⎦
and δ = (β′

1, .., β
′
m, γ′)′ is a K + N vector where K =

∑m
j=1 kj . For future reference, we define the partition

Wi =
[
W

(1)
i : W

(2)
i

]
where W

(1)
i is an m× (K + 2) matrix and W

(2)
i is m× (N − 2). The likelihood for this

model is defined by assuming εi
iid∼ N (0,Σ).

We define smoothness according to second differences of points on the nonparametric regression line. In light

of this, it proves convenient to transform the model. Define the (N − 2) × N second-differencing matrix as:

D =

⎡⎢⎢⎢⎢⎣
1 −2 1 . . . . 0
0 1 −2 1 0 . . 0
. . . . . . . .
. . . . . . . .
0 0 . . . 1 −2 1

⎤⎥⎥⎥⎥⎦ , (2.2)

so that Dγ is the vector of second differences, ∆2γi. Prior information about smoothness of the nonparametric

regression line will be expressed in terms of Rδ, where the (N − 2) × (K + N) matrix R =
[
0(N−2)×K : D

]
.
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For future reference, we partition R = [R1 : R2] where R1 is an (N − 2)×(K + 2) matrix and R2 is (N − 2)×
(N − 2) (i.e. the nonsingular matrix R2 is D with the first two columns deleted). Note that other degrees

of differencing can be handled by re-defining (2.2) as appropriate (see, e.g., Yatchew, 1998, pages 695-698 or

Koop and Poirier, 2003a).

Using standard transformations (see, e.g. Poirier, 1995, pages 503-504), (2.3) can be written as:

yi = V
(1)
i λ1 + V

(2)
i λ2 + εi = Viλ + εi, (2.3)

where λ = (λ′
1, λ

′
2)

′, λ1 = (β′
1, .., β

′
m, γ1, γ2)

′, λ2 = Dγ, V
(1)
i = W

(1)
i − W

(2)
i R−1

2 R1 and V
(2)
i = W

(2)
i R−1

2 .

Note that λ2 is the vector of second differences of the points on the nonparametric regression line and it is

on this parameter vector that we place our smoothness prior.

We use an independent Normal-Wishart prior for λ and Σ−1 which is a common choice for the parametric

SUR model (see, e.g., Chib and Greenberg, 1995 or 1996). Thus,

λ ∼ N (λ, V λ) (2.4)

and

Σ−1 ∼ W
(
V −1

Σ , ν
)
, (2.5)

where W (V Σ, ν) denotes the Wishart distribution (see, e.g., Poirier, 1995, page 136).

Our empirical work is based on a Gibbs sampler involving p
(
λ|y, Σ−1

)
and p

(
Σ−1|y, λ

)
. Straightforward

manipulations show these to be:

λ|y, Σ−1 ∼ N
(
λ, V λ

)
(2.6)

and

Σ−1|y, λ ∼ W
(
V

−1

Σ , ν
)

, (2.7)

where

ν = ν + N, (2.8)

V
−1

Σ =

[
V Σ +

N∑
i=1

(yi − Viλ) (yi − Viλ)′
]−1

, (2.9)

V λ =

(
V −1

λ +
N∑

i=1

V ′
i Σ−1Vi

)−1

(2.10)

and

λ = V λ

(
V −1

λ λ +
N∑

i=1

V ′
i Σ−1y

)
. (2.11)

Of course, many values may be selected for the prior hyperparameters, λ, V λ, V −1
Σ and ν. Here we describe

a particular prior elicitation strategy that requires a minimal amount of subjective prior information. We

assume

V λ =
[

V 1 0
0 V (η)

]
(2.12)
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where V 1 and V (η) are the prior covariance matrices for λ1 and λ2, respectively. We set V −1
1 = 0, the

noninformative choice. Since λ2 = Dγ is the vector of second differences of points on the nonparametric

regression line, V (η) controls its degree of smoothness. We assume V (η) depends on a scalar parameter, η.

As discussed in Koop and Poirier (2003a), several sensible forms for V (η) can be chosen. In this paper, we

set V (η) = ηIN−2. We also set λ = 0K+N . Note that these assumptions imply we are noninformative about

λ1 = (β′
1, .., β

′
m, γ1, γ2)

′, but have an informative prior for the remaining parameters which reflect the degree

of smoothness in the nonparametric regression line. Our information about this smoothness is of the form:

∆2γi ∼ N (0, η) for i = 3, .., N .1

In this paper we adopt an empirical Bayesian approach where η is chosen so as to maximize the marginal

likelihood. However, it is worth noting that η could be treated either as a prior hyperparameter to be

selected by the researcher or as a parameter in a hierarchical prior. If the latter approach were adopted, η

could be integrated out of the posterior. Our empirical Bayesian approach is equivalent to this hierarchical

prior approach using a noninformative flat prior for η (and plugging in the posterior mode of η instead of

integrating out this parameter).2

The results of Fernandez, Osiewalski and Steel (1997) imply that an informative prior is required for Σ−1

in order to ensure propriety of the posterior. However, in related work with a single equation model (see

Koop and Poirier, 2003b), we found that use of a proper, but relatively noninformative prior yielded sensible

(and robust) results. Accordingly, we set ν = 10 in our application. Using the properties of the Wishart

distribution, we obtain the prior mean E(σ−1
ij ) = νV −1

Σij , where σ−1
ij and V −1

Σij are the ijth elements of

Σ−1 and V −1
Σ , respectively. To center the prior correctly, we calculate the OLS estimate of Σ based on a

parametric SUR model where all variables (including xim) enter linearly. We set νV −1
Σ equal to the inverse

of this OLS estimate.

In order to compare models or estimate/select η in our empirical Bayesian approach, the marginal likelihood

(for a given value of η) is required. No analytical expression for this exists. However, we can estimate the

marginal likelihood using Gibbs sampler output and the Savage-Dickey density ratio (see, e.g., Verdinelli and

Wasserman, 1995). Define M1 to be the semiparametric SUR model given in (2.3) with prior given by (2.4)

and (2.5) and a particular value for η selected. Define M2 to be M1 with the restriction λ2 = 0N−2 imposed

(with the same prior for λ1 and Σ−1). Using the Savage-Dickey density ratio, the Bayes factor comparing

M1 to M2 can be written as:

BF (η) =
p (λ2 = 0|M1)

p (λ2 = 0|y, M1)
, (2.13)

where the numerator and denominator are the prior and posterior, respectively, of λ2 in the semiparametric

SUR model evaluated at the point λ2 = 0N−2. This Bayes factor may be of interest in and of itself since it
1This approach to prior elicitation does not include any information in xim other than order information (i.e. data is

ordered so that x1m < ... < xNm). If desired, the researcher could include xim by eliciting a prior, e.g., of the form ∆2γi ∼
N

�
0, η∆2xim

�
.

2Further motivation for our approach can be obtained by noting that our framework is similar to a state space model and,
in such a model, a parameter analogous to η would be the error variance in the state equation and be estimated from the data.
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compares the semiparametric SUR model to a sensible parametric alternative.3 However, it can also be used

in an empirical Bayesian analysis to select η. That is, since η does not enter the prior for M2, BF (η) will

be proportional to the marginal likelihood for the semiparametric SUR model for a given value of η. The

empirical Bayes estimate of η can be implemented by running the Gibbs sampler for a grid of values for η

and choosing the value which maximizes BF (η). Alternative methods for selecting η include cross-validation

or extensions of the reference prior approach discussed in van der Linde (2000).

Note that BF (η) can be calculated in the Gibbs sampler in a straightforward manner. The quantity

p (λ2 = 0|M1) can be directly evaluated using the Normal prior given in (2.4), while p (λ2 = 0|y, M1) can be

evaluated in the Gibbs sampler in the same way as any posterior function of intterest. That is, if we define

p̂ (λ2 = 0|y, M1) =
1
S

S∑
s=1

p
(
λ2 = 0|y, Σ(s)

)
,

where Σ(s) for s = 1, .., S denotes draws from the Gibbs sampler (after discarding initial burn-in draws),

then

p̂ (λ2 = 0|y, M1) → p (λ2 = 0|y, M1)

as S → ∞. Note that the posterior conditional p
(
λ2 = 0|y, Σ(s)

)
is simple to evaluate since it is Normal (see

equation 2.6).

This semiparametric SUR model can be used as a restricted reduced form of a semiparametric simultaneous

equations model and, thus, the methods described above allow for Bayesian inference in the latter model.

That is, our Gibbs sampler provides us with draws from the posterior of the reduced form parameters.

Provided the model is identified, the structural form parameters will be a transformation of the the reduced

form parameters and the draws of the latter can be be transformed into draws of the former. The triangular

structure of the model in our application means we do not have to adopt such an approach. However, it is

useful to note that our approach can be used with more general simultaneous equations models.

Before introducing our application, we briefly discuss related (parametric) work on simultaneous equations

models. The literature on Bayesian analysis of simultaneous equations models is voluminous. Dreze and

Richard (1983) surveys the literature through the early 1980s, while Kleibergen (1997), Kleibergen and van

Dijk (1998) and Kleibergen and Zivot (2003) are recent references. The more recent literature focusses on

issues of identification and prior elicitation which are of little relevance for our work. For instance, some of

this recent work discusses problems with the use of noninformative priors at points in the parameter space

which imply non-identification (and show how noninformative priors based on Jeffreys’ principle overcome

these problems). However, these problems are less empirically relevant if the posterior is located in regions of

the parameter space away from the point of non-identification or if informative priors are used. Furthermore,

parameters in the reduced form model do not suffer from these problems. Hence, we feel some of the problems
3Note that λ2 = 0 implies the nonparametric regression line is perfectly smooth (i.e. is a straight line). Thus, M2 is nearly

equivalent to a SUR model with an intercept and xim entering linearly. It is not exactly equivalent since we are only using
ordering information about xim.
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discussed in, e.g., Kleibergen and van Dijk (1998) are not critical for our work. In some sense, these problems

all involve prior elicitation and, with moderately large data sets, data information should predominate.4 In

practice, we argue that our approach should be a sensible one for practitioners and that the advantage of

being semiparametric outweighs any costs associated with not eliciting priors directly off of structural form

parameters.

2.1 The Parametric SEM

In this section we provide an empirical example to illustrate how our techniques can be applied in practice.

Our specific example, though primarily illustrative in nature, simultaneously addresses several topics of

considerable interest in labor economics. Specifically, we will introduce and estimate a two equation structural

simultaneous equations model and permit various nonparametric specifications within this system. The two

endogenous variables in our system will be the log hourly wage received by individuals in the labor force and

the quantity of schooling attained by those individuals. While many studies have recognized the potential

endogeneity of schooling in standard log wage equations (see e.g. Card, 1999, for a review of recent IV

studies on this issue), these studies do not typically estimate the full underlying structural model, and have

not allowed for nonparametric specifications within these systems.

To fix ideas, the fully parametric version of our model may be written as:

si = zC′
i αS

1 + zS′
i αS

2 + uS
i

wi = α0 + ρsi + zC′
i αW

1 + zW ′
i αW

2 + +uW
i ,

(2.14)

with [
us

i

uw
i

]
iid∼ N

[(
0
0

)
,

(
σ2

s σsw

σsw σ2
w

)]
≡ N(0, Σ).

In the above equation zC
i is a kC−vector of exogenous variables common to both equations, zS

i is a kS−vector

of exogenous variables which enter only the schooling equation (i.e. these are the instruments) and zW
i is

a kW−vector of exogenous variables which enter only the wage equation. The parameters in (2.14) are

structural, with ρ being the returns to schooling parameter that is often of central interest. The triangular

structure of (2.14) implies that the Jacobian is unity, so that we can directly estimate the structural form

using the methods we have developed in the previous section for the semiparametric SUR model.

In our empirical work we generalize this fully parametric structural model by permitting nonparametric

specifications for a few variables in this system. We divide our empirical analysis into three models, with

each case adding a new nonparametric component. In Case 1 we add a nonparametric specification to our

wage equation and treat tenure on the job nonparametrically. Several studies in labor economics (e.g. Altonji

and Shakotko 1987, Topel 1991, Light and McGarry, 1998 and Bratsberg and Terrell, 1998) have addressed

4This statement should be qualified by noting that the case where unbounded uniform priors over the structural parameters
should be avoided. In this case, local non-identification issues can imply impropriety of the posterior.
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the issue of separating the effects of on-the-job tenure and total labor market experience, with all of these

studies specifying parametric (typically quadratic) specifications for each of these variables. In Case 1, we

include a linear experience term and a nonparametric tenure term to flexibly investigate the shape of the

relationship between job tenure and labor market experience. In Case 2, we add a nonparametric component

to the education equation and treat the “ability” variable nonparametrically. In this analysis, “ability”

refers to measured cognitive ability, and is proxied by a (continuous) test score that is available in our data

set. Finally, in Case 3 we also treat this ability variable nonparametrically in our wage equation.5 Before

discussing our models and results in more detail, we first describe the data used in this analysis.

2.2 The Data

To estimate our models we take data from the National Longitudinal Survey of Youth (NLSY). The NLSY

is a widely-used panel study containing a wealth of demographic information regarding a young cohort of

U.S. men and women. Survey information from the NLSY begins in 1979, at which point the respondents

range in age from 14 and 22. Sample participants are re-interviewed annually until 1994, and then additional

biennial interviews were conducted.

To illustrate the use of our methods and remain consistent with the models described in section 2, we abstract

from the panel aspect of the NLSY and focus only on cross-sectional wage outcomes in 1992. We choose this

year since key variables of interest are directly available in that year, and since the NLSY participants range

in age from 27-35 in 1992 and thus are likely to have completed their education and possess a reasonable

degree of labor market experience. In keeping with this literature and to abstract from selection issues into

employment, we also focus exclusively on the outcomes of white males in the NLSY.

Key to identification of this simultaneous equations model is the availability of an instrument or exclusion

restriction. In the context of our application we need to find some variable that affects the quantity of

schooling attained, yet has no direct structural effect on wages given the other controls we employ. To this

end, we depart from the usual supply-side IV literature (e.g. Card 1999) and use the quantity of schooling

attained by the respondent’s oldest sibling (SIBED) as our instrument.6 The argument behind the use of this

instrument is that sibling’s education should be strongly correlated with one’s own schooling. This correlation

could arise, for example, from unobserved family attitudes toward the importance of education, or credit

constraints faced by the family. However, we argue that the only channel through which sibling’s education

affects one’s own wages is an indirect one (through the quantity of schooling attained), since conditioned

on the schooling of the respondent himself and added controls for family background, the education of the
5In related work, Cawley, Heckman and Vytlacil (1999) argue that ability enters the wage equation nonlinearly, and Blackburn

and Neumark (1995), Heckman and Vytlacil (2001) and Tobias (2003) examine if returns to schooling vary with ability. The
latter two of these studies obtain results by allowing for flexible specifications of the relationship between ability and log wages.

6In the base year of the NLSY survey, participants are asked to report the highest grade completed by the oldest sibling.
To ensure that the oldest sibling had completed his/her education, we restrict our attention to those observations where the
oldest sibling was at least 24 years of age. Thus, our analysis conditions on the white males in the NLSY with an older sibling
who is at least 24 years old.
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sibling should play no structural role in the wage equation.7

To estimate our models of interest we also need to obtain information about the actual labor market expe-

rience of the individual as well as his tenure on the current (CPS) job in 1992. The job tenure (TENURE)

variable is readily available, as the NLSY directly provides information on the total tenure (in weeks) with

the current employer. As for total labor market experience, in each year of the survey the NLSY constructs

the total number of weeks worked since the previous interview date. Since information for some weeks is

occasionally missing, the NLSY also has a companion question that provides the percentage of weeks unac-

counted in each year in the construction of this weeks of work variable. As such, we confine our attention

to only those individuals whose weeks are fully accounted for in each year, and aggregate these experience

variables across years to obtain our measure of total labor market experience (EXPERIENCE).8

In both the schooling and wage equations, we include the respondent’s Armed Forces Qualifying Test (AFQT)

score which is standardized by age (denoted ABILITY), highest grade completed by the respondent’s mother

(MOMED) and father (DADED), and a dummy variable equal to 1 if the respondent lives with both of his

parents at age 14 (NON-BROKEN). In the wage equation, we also include weeks of actual labor market

experience (EXPERIENCE), weeks of tenure at the current job (TENURE), a dummy for residence in an

urban area (URBAN), and a continuous measure of the local unemployment rate (UNEMP). When measured

in weeks, both EXPERIENCE and TENURE can be regarded as approximately continuous variables. Our

sample restrictions are quite strict, and produce a clean, but relatively small data set. We limit our focus

to white men in 1992 with older siblings at least 24 years of age in the base year of the survey and with

complete information on the remaining variables. In addition, we exclude several extra observations for those

individuals who report to be currently enrolled in school in 1992, who are in the military subsample, whose

hourly wage exceeds $100 or is less than $1 per hour or who report to have completed less than 9 years of

schooling. This leaves us with a total of N = 303 observations, for which an exact finite-sample Bayesian

analysis seems particularly useful.

2.3 Parametric Results

Before moving on to present results from our elaborated semiparametric models, we briefly present results

using two standard parametric approaches. The first of these simply estimates the structural wage equa-

tion ignoring potential endogeneity problems. In this model we include an intercept, linear terms in the

explanatory variables described above and a quadratic in TENURE. We estimate this model using a fully

noninformative prior so that our results can be interpreted as the Bayesian counterpart to using OLS tech-
7Simple regression analyses that included sibling’s education along with the other controls found no significant role for

SIBED in the log wage equation.
8This definition is not without controversy, with many researchers (e.g. Wolpin 1992, and Bratsberg and Terrell 1998) only

considering labor market experience after the completion of high school (or looking at only “terminal” high school graduates).
Light (1998) investigates this issue and finds sensitivity of results to the definition of the career starting point. In this analysis,
we do not make a distinction between pre-high school and post-high school labor market experience.
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niques on the structural wage equation, for now, ignoring potential endogeneity issues. The second of our

parametric models estimates the two equation structural model in (2.14). The prior for all of the regression

coefficients is noninformative, and for Σ−1 we use the same prior as for the semiparametric model (see the

discussion of the prior in Section 2.1).

Table 1 presents empirical results for the coefficients in these parametric models. The results are mostly

sensible. The coefficient on our instrument SIBED is positive, as expected, with a posterior standard

deviation considerably smaller than its posterior mean.9 We also note that results from single equation

estimation of the wage equation (which ignores the endogeneity problem) are quite similar to results obtained

the two equation system. For instance, in both cases the point estimate of the return to schooling parameter

is roughly 8 percent, and the results for the remaining coefficients are highly similar. The main differences

in results occur with the posterior standard deviations for the coefficients on the highly correlated variables

SCHOOL and ABILITY, which are much larger in the two equation model. This reduction in precision

can be explained by the fact that although the point estimate of the correlation between the errors in

the two equations is not far from zero (i.e. it is 0.054), it is relatively imprecisely estimated with this

modest sample size (i.e. the posterior standard deviation of this coefficient is 0.252). Although the point

estimate suggests that endogeneity is not a problem in this data set (and, hence, point estimates of key

parameters do not change much when we control for endogeneity), the posterior for Σ is quite dispersed and

allocates appreciable probability to regions of the parameter space where endogeneity is a problem. Given

this uncertainty regarding the empirical importance of endogeneity, the standard errors associated with these

parameters tend to increase relative to the model which ignores endogeneity concerns.

The finding that appreciable posterior probability is allocated to regions where the correlation between

the errors in the two equations is near zero or small in magnitude is consistent with some of the other

empirical work in this literature.10 That is, it has often been either assumed or more formally argued that

after controlling for a rich set of explanatory variables, endogeneity problems are likely to be mitigated.

Our analysis lends some additional credence to this claim, as we “test down” from a structural model that

permits endogeneity, and find little evidence that endogeneity is a serious empirical issue for this model.

As we show in later sections, however, we find evidence against this basic parametric model, and in our

generalized model specifications, there is some indication of a need to control for endogeneity of schooling.
9In fact, we find a “significant” role for this instrument in all of our model specifications.

10Blackburn and Neumark (1995) using NLSY data argue that once ability is controlled for, there is little evidence that
schooling remains endogenous.
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Table 1: Posterior Results for Parametric Models
Single Equation Model Two Equation Model

Wage Equation Wage Equation Schooling Equation
Explanatory
Variable Mean St. Dev. Mean St. Dev. Mean St. Dev.

INTERCEPT 0.571 0.296 0.566 0.662 9.255 0.714
ABILITY 0.020 0.038 0.022 0.098 1.253 0.136
MOMED −0.015 0.013 −0.015 0.017 0.107 0.053
DADED 0.019 0.010 0.019 0.011 0.043 0.037
NON-BROKEN −0.077 0.076 −0.077 0.080 0.190 0.297
SIBED −− −− −− −−− 0.116 0.049
EXPERIENCE 8.7 × 10−4 2.7 × 10−4 8.7 × 10−4 2.7 × 10−4 −− −−
TENURE 1.4 × 10−3 4.3 × 10−4 1.4 × 10−3 4.3 × 10−4 −− −−
TENURE2 −1.3 × 10−4 6.4 × 10−5 −1.3 × 10−4 6.4 × 10−5 −− −−
URBAN 0.119 0.061 0.119 0.061 −− −−
UNEMP −6.6 × 10−3 0.010 −6.6 × 10−3 0.010 −− −−
SCHOOL 0.081 0.015 0.080 0.068 −− −−

2.4 Case 1: Application

In this model, we elaborate (2.14), and allow the variable TENURE to enter the log wage equation nonpara-

metrically.11 Formally, in Model 1 we specify:

si = zC′
i αS

1 + zS′
i αS

2 + uS
i

wi = ρsi + zC′
i αW

1 + zW ′
i α2W + f(xi) + uW

i ,

where xi denotes the number of weeks of work on the current job (TENURE) and zW
i no longer contains

TENURE. In our analysis, we set η = 5 × 10−9, which is the empirical Bayes estimate that maximizes

the marginal likelihood (see Figure 2). Figure 1 plots the fitted nonparametric regression line against the

data (after removing the effect of the other explanatory variables). That is, Figure 1 plots the posterior

mean of the nonparametric regression line (and +/- two standard deviation bands) and the “data” points

have coordinates xi and wi − ρsi − zC′
i αW

1 − zW ′
i αW

2 for i = 1, .., N where all parameters are evaluated

at their posterior means. Figure 2 plots the log of the Bayes factor in favor of the semiparametric model

over the parametric model with a linear TENURE term across alternate choices of η (see equation 2.13).

It can be seen that the maximum of the log Bayes factor is 0.026. Thus, there is only slight support for

our semiparametric model over the parametric model with a linear tenure term. Note that as η → 0, the

nonparametric and linear models become equivalent and the log Bayes factor is zero. The value of η that

maximizes the marginal likelihood is quite close to this case. However, Figure 2 does indicate an interior

maximum, so a model with slight nonlinearities that suggest a concave tenure profile is preferred over the

parametric model with a linear TENURE term.
11We found little evidence to support nonlinear relationships between total labor market experience and log wages.
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Table 2: Posterior Results for the Case 1 Semiparametric Model
Two Equation Model

Wage Equation Schooling Equation
Explanatory
Variable Mean St. Dev. Mean St. Dev.

INTERCEPT −− −− 9.271 0.688
ABILITY 0.009 0.093 1.252 0.131
MOMED −0.017 0.016 0.108 0.054
DADED 0.019 0.010 0.042 0.036
NON-BROKEN −0.079 0.079 0.195 0.296
SIBED −− −−− 0.116 0.050
EXPERIENCE 8.5 × 10−4 2.6 × 10−4 −− −−
URBAN 0.118 0.061 −− −−
UNEMP −6.5 × 10−3 0.010 −− −−
SCHOOL 0.090 0.064 −− −−

The results in Table 2 are very similar to the two equation results in Table 1 which differ in that TENURE

and TENURE2 are included parametrically. The point estimate of returns to schooling, at 9.0%, is slightly

higher than with the parametric models. However, relative to its posterior standard deviation this difference

is minor. The posterior mean of the correlation between the errors in the two equations is also very similar to

that of the parametric model (i.e. its posterior mean 0.031 and standard deviation is 0.231). Overall, we find

our nonparametric function of TENURE to be playing a nearly identical role to the quadratic specification

of this variable in the parametric model.

A comparison between a parametric SUR with TENURE entering quadratically to the semiparametric SUR

can be done by first calculating the Bayes factor in favor of the quadratic SUR model of Table 1 against

the parametric SUR with TENURE entering linearly (call this Bayes factor BF ∗ to distinguish it from

BF (η) defined in equation 2.13).12 That is, BF (η) compares the semiparametric SUR against a linear

SUR (subject to the qualification of footnote 2), and thus the two Bayes factors BF ∗ and Bf(η) will be

comparing a nonlinear (either quadratic or nonoparametric) specification to the linear one. However, Bayes

factor calculation requires an informative prior over parameters which are not common to both models.

Thus, to calculate BF ∗ we require an informative prior for the coefficient on TENURE2 which we choose to

be N
(
0, vq

)
. With this prior, BF ∗ can be calculated using the Savage-Dickey density ratio with the strategy

discussed above (see the discussion around equation 2.13). The elicitation of prior hyperparameters such as

vq can be difficult (which is a further motivation for our empirical Bayesian analysis of a semiparametric

model). In our application, values of vq greater that 10−10 indicate support for the linear model (i.e.

BF ∗ < 1). This apparently informative choice of prior variance is actually not that informative relative to

the data information (note that the posterior standard deviation of this coefficient in Table 1 is 6.4× 10−5).

For vq < 10−10, the quadratic model is supported (i.e. BF ∗ > 1). However, there is no value for vq for which

the quadratic model receives overwhelming support. The maximum value for BF ∗ is 2.77 which occurs when
12Of course, given the Bayes factor of the semiparametric SUR against the linear model, and the Bayes factor of the quadradic

model against the linear model, one can calcuate the Bayes factor of the semiaparametric SUR against the quadratic model.
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vq = 10−12.13

This prior sensitivity analysis for the quadratic model can be interpreted in various ways, but regardless

of how it is interpreted it is clear that the performance of the semiparametric and quadratic models (as

measured by their marginal likelihoods) is similar. This is despite the fact that there is a strong support

for parsimony implicit in Bayes factors. In the quadratic parametric model, deviations from linearity are

modelled by adding a single extra parameter, but in our semiparametric model deviations from linearity

are modelled by adding N − 2 extra parameters. Hence, we would expect our semiparametric model to be

penalized relative to the quadratic model. In any empirical exercise, if the researcher knows the correct

functional form of the nonlinearity then it is best to work with the parametric model which captures this

functional form. However, the advantage of the nonparametric approach is that the data can be used to

decide the (here roughly quadratic) functional form. With the parametric model, preliminary estimation

and pretesting were required to select “down” to the quadratic functional form. Hence, in our case it is not

advisable to compare the quadratic model to the semiparametric model using a Bayes factor which ignores

the model selection issues involved with the quadratic model.
13The Bayes Factor in favor of the quadratic model becomes larger if the prior mean of the quadratic coefficient is located

closer to the posterior mean. However, we do not consider this case since it is common practice to center the prior over the
restriction being tested.
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Figure 2: Log of Bayes Factor in Favor of Semiparametric Model
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3 Case 2: A Single Nonparametric Component in Several Equa-
tions

In this section, we consider the more general semiparametric SUR model given in (1.1) where a nonparametric

component potentially exists in every equation. That is, γij = fj(xij) for j = 1, .., m is the ith point on

the nonparametric regression line in the jth equation. We maintain the assumption that xij is a scalar.

Simple Bayesian methods for this model can be developed similarly to those developed for Case 1. We

adopt the same strategy of treating unknown points on the nonparametric regression lines as unknown

parameters and, hence, augment each equation with N new explanatory variables (as in equation 2.1). We

then use a smoothness prior on each nonparametric regression line (analogous to equations 2.4 and 2.12).

The resulting posterior can be handled using a Gibbs sampler (analogous to equations 2.6 and 2.7). Note,

however, that we expressed our smoothness prior in terms of the second-differencing matrix D given in (2.2).

This prior required the data to be ordered so that x1m < ... < xNm. However, unless each equation has its

nonparametric component depending on the same explanatory variable (i.e. xij = xim for j = 1, ..,m − 1),

the data in the jth equation (for j = 1, .., m−1) will not be ordered in such a way that a smoothness prior can

be expressed in terms of D. However, this can be corrected for by redefining the explanatory variables. This

requires some new, somewhat messy, notation. Unless otherwise noted, all other assumptions and notation

are as for Case 1. For future reference, define γj = (γ1j , ..., γNj)
′
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In Case 1, the inclusion of the nonparametric component implied that the identity matrix, IN , was included

as a matrix of explanatory variables (see equation 2.1 and the surrounding definitions). Here we define I∗j
which is a rearranged version of the identity matrix to correspond to the ordering of the data in the jth

equation for j = 1, .., m. Thus, since x1m < ... < xNm, I∗m is simply IN , but the other equations potentially

involving a reordering of the columns of IN . Also define ζij to be the ith row of I∗j .

A concrete example of how this works might help. Suppose we have N = 5 observations and the explanatory

variables treated nonparametrically in the m = 2 equations have values in the columns of the following

matrix: ⎡⎢⎢⎢⎢⎣
3 1
4 2
1 3
2 4
5 5

⎤⎥⎥⎥⎥⎦ .

The data has been ordered so that the second explanatory variable is in ascending order, x12 < ... < x52

and, hence, a smoothness prior using D can be directly applied in the second equation. However, the first

explanatory variable is not in ascending order. However, we can reorder the identity matrix

I∗1 =

⎡⎢⎢⎢⎢⎣
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎦ .

It can be seen that with I∗1 used to define the nonparametric explanatory variables for the first equation, γ11

is the first point on the nonparametric regression line, γ21 is the second point, etc.. Thus, the smoothness

prior can be expressed as restricting Dγ1.

In Case 1, we noted that the smoothness prior was only an N − 2 dimensional distribution for the N points

on each nonparametric regression line. Implicitly, this prior did not provide any information about the

initial conditions (i.e. what we called γ1 and γ2 in Case 1), but only the second differences of points on the

nonparametric regression line, γi − 2γi−1 + γi−2. For the initial conditions, we used a noninformative prior.

This need to separate out initial conditions necessitates the introduction of more notation. Define the 2× 1

vector of initial conditions in every equation as γ0
j for j = 1, .., m. Let γ∗

j be γj with these first two elements

deleted. Similarly, let I∗∗j be I∗j with its first two columns deleted and I∗∗∗j be the two deleted columns. Also

define ζ∗ij to be ζij with the first two elements deleted and ζ0
ij be the two deleted elements. Analogously,

partition D = [D∗∗D∗] where D∗∗ contains the first two columns of D.

With all these definitions, we can write the Case 2 semiparametric SUR as (2.1) with

Wi =

⎡⎢⎢⎢⎢⎣
z′i1 ζ0

i1 0 . . . . . 0 ζ∗i1 0 . . 0
0 0 z′i2 ζ0

i2 . . . . . 0 ζ∗i2 . . .
. . . . . . . . . . . . . .
. . . . 0 z′i,m−1 ζ0

i,m−1 0 0 . . 0 ζ∗i,m−1 0
0 . . . . . 0 z′im ζ0

im 0 . . . ζ∗im

⎤⎥⎥⎥⎥⎦ , (2.15)
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where δ =
(
β′

1, γ
0′
1 , .., β′

m, γ0′
m, γ∗′

1 , .., γ∗′
m

)′ is a K + mN vector of coefficients.

Prior information about smoothness of the nonparametric regression lines will be expressed in terms of Rδ,

where the m (N − 2) × (K + mN) matrix R is given by

R =

⎡⎢⎢⎢⎢⎣
0 D∗∗ 0 . . . . 0 D∗ 0 . . 0
. 0 D∗∗ . . . . 0 D∗ . . .

. . . . . . . . . . .

. . . D∗∗ 0 0 . . . D∗ 0

. . . 0 0 D∗∗ 0 . . 0 D∗

⎤⎥⎥⎥⎥⎦ . (2.16)

The remainder of the derivations are essentially the same as for Case 1. Define the partitions Wi ==[
W

(1)
i : W

(2)
i

]
where W

(1)
i is an m× (K + 2m) matrix and W

(2)
i is m×m (N − 2) and R = [R1 : R2] where

R1 is an m (N − 2) × (K + 2m) matrix and R2 is m (N − 2) × m (N − 2). Transform the model as:

yi = V
(1)
i λ1 + V

(2)
i λ2 + εi = Viλ + εi, (2.17)

where λ = (λ′
1, λ

′
2)

′, λ1 =
(
β′

1, γ
0′
1 , .., β′

m, γ0′
m

)′, λ2 = Rδ =
[
(Dγ1)

′
, .., (Dγm)′

]′
, V

(1)
i = W

(1)
i − W

(2)
i R−1

2 R1

and V
(2)
i = W

(2)
i R−1

2 .

This model is now in the same form as Case 1. Given an independent Normal-Wishart prior as in (2.4) and

(2.5), posterior analysis can be carried out using the Gibbs sampler described in (2.6) through (2.11). As in

Case 1, we use a noninformative prior for λ1. The prior for Σ−1 uses the same hyperparameter values as in

Case 1. The smoothness prior relates to λ2 and, for this, we extend the prior of Case 1 (see equation 2.12)

to be:

V (η1, .., ηm) =

⎡⎢⎢⎢⎢⎣
η1IN−2 0 . . 0
0 η1IN−2 0 . .
. 0 . . .
. . . . 0
0 . . 0 ηmIN−2

⎤⎥⎥⎥⎥⎦ . (2.18)

Thus, the nonparametric component of each equation can be smoothed to a different degree. An empirical

Bayesian analysis can be carried out as described above (see equation 2.13). The computational demands

of empirical Bayes in this general case can be quite substantial since a search over m dimensions of the

smoothing parameter vector must be carried out.

3.1 Case 2: Application

For Case 2, we extend the Case 1 model to allow for an exogenous variable in the schooling equation to

receive a nonparametric treatment. The model we consider here is:

si = zC′
i αS

1 + zS′
i αS

2 + f1 (xi1) + uS
i

wi = ρsi + zC′
i αW

1 + zW ′
i αW

2 + f2 (xi2) + uW
i

, (2.19)

where all definitions are as for Case 1 except that xi1 is ABILITY and xi2 is TENURE and zC
i no longer

contains ABILITY in the schooling equation. Empirical Bayesian methods are used to select η1 and η2 which

17



smooth the nonparametric regression lines in the two equations. This leads us to set η1 = 5 × 10−6 and

η2 = 10−11.

Table 3 presents posterior results for the parametric coefficients in this semiparametric model. As found in

our previous results, the correlation between the errors in the two equations has a point estimate near to,

but now farther away from zero (i.e. its posterior mean is 0.102) and remains very imprecisely estimated

(i.e. its posterior standard deviation is 0.142). Thus, we have more evidence that endogeneity is an issue in

model specification. Other results can be seen to be similar as for Case 1.

Interestingly, this analysis finds rather strong evidence of nonlinearities in the relationship between ability

and schooling. The log of the Bayes factor of our semiparametric model against the linear-in-schooling

model is 4.645, which indicates significantly more support for departures from linearity than was found in

Case 1. Figures 3 and 4 plot the posterior means of the two nonparametric regression lines against the

data (after controlling for parametric explanatory variables). That is, the “data” points in Figure 3 plot

TENURE against wi − ρsi − zC′
i αW

1 − zW ′
i αW

2 for i = 1, .., N where all parameters are evaluated at their

posterior means. The comparable points in Figure 4 plot ABILITY against si − zC′
i αS

1 − zS′
i αS

2 (evaluated

at the posterior means for αS
1 and αS

2 ). Figure 3 looks very similar to Figure 1 and indicates some slight

nonlinearities that appear quadratic. Figure 4 indicates more interesting (and more precisely estimated)

nonlinear effects that would not be captured by simple parametric methods (e.g. including ABILITY in

a quadratic manner).14 Specifically, the graph suggests that marginal increments in ability for low ability

individuals does little to increase the quantity of schooling attained (i.e. the graph is quite flat to the left

of zero). However, for those individuals above the mean of the ability distribution, marginal increments in

ability significantly increase the likelihood of acquiring more schooling. The fact that ability is a strong

predictor of schooling has been well-documented (e.g. Heckman and Vytlacil, 2000), and here we add to

this result by finding that it is relatively high ability individuals whose schooling choices are most affected

by changes in ability.

It is also of interest to note that results for the returns for schooling parameter are slightly lower than what

we have seen in either the parametric model or Case 1, with a posterior mean of 0.058 and posterior standard

deviation of 0.038. We will now try to reconcile why this reduction has taken place. Our semiparametric

estimation results found strong evidence of a nonlinear (and convex) relationship between ability and the

quantity of schooling attained. To illustrate how this convex relationship may lead to a reduction of the

schooling coefficient, let’s suppose for the sake of simplicity that the actual relationship between schooling and

ability is quadratic, with a positive coefficient on the squared term. Since the correlation between the errors

of the structural equations of Case 2 is non-zero (or at least most of the posterior mass is concentrated away

from zero), this implies that the conditional mean of wages given schooling (i.e. the “reduced form” wage

equation from our structural model), will now contain the nonlinear ability term that enters the education

14If we add ABILITY2 to the parametric SUR in (2.14) its coefficient has posterior mean which is roughly one posterior
standard deviation from zero. Thus, a parametric analysis using a quadratic functional form for ABILITY would likely conclude
that no nonlinearities existed in the ABILITY/SCHOOL relationship.
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equation. This nonlinear term was, of course, not present in the conditional mean of Case 1 since that model

only contained a linear ability term. So, we can regard the differences between the conditional means of

Case 2 and Case 1 as essentially an omitted variable problem - in Case 2 we have an added quadratic ability

term that is positively correlated with education (see Figure 3) and also positively correlated with log wages

(we provide evidence of this in the next section). Using standard omitted variable bias formulas, we would

thus predict a reduction in the “reduced form” schooling coefficient upon controlling for this nonlinearity in

ability. This result has potentially significant implications for this literature, as it suggests the importance

of controlling for potential nonlinearities in ability (in both the schooling or wage equations) in order to

extract accurate estimates of the return to education. Despite this result, it is also important to recognize

that the shift in the posterior of this key parameter is small relative to its posterior standard deviation.

Table 3: Posterior Results for the Case 2 Semiparametric Model
Wage Equation Schooling Equation

Explanatory
Variable Mean St. Dev. Mean St. Dev.

SIBED −− −− 0.087 0.047
ABILITY 0.051 0.061 −− −−
MOMED −0.012 0.015 0.123 0.052
DADED 0.021 0.010 0.050 0.035
NON-BROKEN −0.068 0.077 0.045 0.287
EXPERIENCE 8.0 × 10−4 2.7 × 10−4 −− −−
URBAN 0.124 0.062 −− −−
UNEMP −6.4 × 10−3 0.010 −− −−
SCHOOL 0.058 0.038 −− −−

4 Case 3: Nonparametric Components Depend on Several Ex-
planatory Variables: Additive Models

To this point we have only considered cases where the nonparametric component in a given equation depended

on a single explanatory variable. That is, xij was assumed to be a scalar. In this section, we assume xij

to be a vector of p explanatory variables.15 The curse of dimensionality (see, e.g., Yatchew, 1998, pages

675-676) implies that it is difficult to carry our nonparametric inference (whether Bayesian or non-Bayesian)

when p is even moderately large. The intuition underlying our smoothness prior is that values of xij which

are near one another should have points on the nonparametric regression line which are near one another.

When xij is a scalar, the definition of “nearby” points is simple and is expressed through our ordering of

the data as x1m < ... < xNm. When xij is not a scalar, it is possible to order the data in an analogous way

using some distance metric. If it is sensible to order the data in this way, then the approach of Case 2 can

be applied directly. However, this approach is apt to be sensitive to choice of distance definition and which

point to choose as the first on each nonparametric regression line. In the single equation case, Yatchew (1998,
15The case where p varies across equations is a trival extension of what is done in this section. We do not consider this

extension to keep already messy notation from getting even messier.
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page 697) argues that the classical Differencing Estimator works well provided the dimension of xi does not

exceed 3. It is likely that such an approach could work well in our Bayesian semiparametric framework when

dimensionality is as low as this. Nevertheless, in this section we develop a different approach for this general

case.

The curse of dimensionality is greatly reduced if it is assumed that fj (xij) is additive. This is, of course, more

restrictive than simply assuming fj (xij) is an unknown smooth function, but it is much less restrictive than

virtually any parametric model used in this literature. Furthermore, by defining xij to include interactions of

explanatory variables, some of the restrictions imposed by the additive form can be surmounted. Accordingly,

in this section we develop methods for Bayesian inference in the model given in (1.1) with:

fj (xij) = fj (xij1, .., xjip) = fj1 (xij1) + .. + fjp (xijp) = γij1 + .. + γijp. (2.20)

The basic idea underlying our approach to this model is straightforward: define a smoothness prior for

each of the fjr (xijr) for j = 1, ..,m and r = 1, .., p and use the methods for Bayesian inference in the

semiparametric SUR model with independent Normal-Wishart prior described for Case 1. However, we

must further complicate notation to handle this general case. In the following material, the indices run

i = 1, .., N , j = 1, ..,m and r = 1, ..p.

For Case 2, we defined matrices, I∗1 , .., I∗m which were used as explanatory variables for the nonparametric

regression lines taking into account the fact that each nonparametric explanatory variable was not nec-

essarily in ascending order. For Case 3, we define analogously I∗jr which is the re-ordered identity matrix

corresponding needed to incorporate fjr (xijr) , taking into account that the data are not necessarily ordered

so that x1jr < .. < xNjr. All the other Case 2 definitions can be extended in a similar fashion. Divide

the vector of points on each nonparamatric regression line, γjr = (γ1jr, .., γNjr)
′, into the 2 × 1 vector of

initial conditions, γ0
jr, and the remaining elements, γ∗

jr. Similarly, let I∗∗jr be I∗jr with the first two columns

corresponding deleted and I∗∗∗jr be the two deleted columns. Furthermore, let ζ∗ijr be ζijr with the elements

corresponding to the initial conditions deleted and ζ0
ijr be the two deleted elements, where ζijr is the ith row

of of I∗jr. Further define ζ0
ij =

(
ζ0
ij1, ..ζ

0
ijp

)
and ζ∗im =

(
ζ∗ij1..ζ

∗
ijp

)
. Note that these last two definitions differ

from Case 2.

With all these definitions, we can write the Case 3 model as a semiparametric SUR as in (2.1) with

Wi as given in (2.15), except that the definition of some of the terms has changed slightly and δ =(
β′

1, γ
0′
11, .., γ

0′
1p, .., β

′
m, γ0′

m1, .., γ
0′
mp, γ

∗′
11, .., γ

∗′
1p, .., γ

∗′
m1, .., γ

∗′
mp

)′ is now a K + mpN vector of coefficients.

As before, our smoothness prior is expressed in terms of Rδ, where R is now an mp (N − 2) × (K + mpN)

matrix:

R =

⎡⎢⎢⎢⎢⎣
0 D∗∗

p 0 . . . . 0 D∗
p 0 . . 0

. 0 D∗∗
p . . . . 0 D∗

p . . .
. . . . . . . . . . .
. . . D∗∗

p 0 0 . . . D∗
p 0

. . . 0 0 D∗∗
p 0 . . 0 D∗

p

⎤⎥⎥⎥⎥⎦ ,
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where

D∗∗
p =

⎡⎢⎢⎣
D∗∗ 0 . 0
0 . . .
. . . 0
0 . 0 D∗∗

⎤⎥⎥⎦
is an p (N − 2) × 2p matrix and

D∗
p =

⎡⎢⎢⎣
D∗ 0 . 0
0 . . .
. . . 0
0 . 0 D∗

⎤⎥⎥⎦
is p (N − 2) × p (N − 2).

The remainder of the derivations are the same as for Cases 1 and 2. That is, the model can be transformed

as in (2.17). An independent Normal-Wishart prior for the transformed parameters is used with prior

hyperparameters selected as for Case 2. The Gibbs sampler described in (2.6) through (2.11) can be used

for posterior inference. The only difference is that it will usually be desireable to have a different smoothing

parameter for every nonparametric regression line in every equation. Thus, we choose the prior covariance

matrix for λ2 to be:

V (η11, .., η1p, .., ηm1, .., ηmp) =

⎡⎢⎢⎢⎢⎢⎢⎣
η11IN−2 0 . . . .
0 . . . . .
. 0 η1pIN−2 . . .
. . . . . .
. . . . . 0
. . . . 0 ηmpIN−2

⎤⎥⎥⎥⎥⎥⎥⎦ . (2.21)

There is an identification problem with this model in that constants may be added and subtracted to

each nonparametric component without changing the likelihood. For instance, the equations yij = z′ijβj +

fj1 (xij1)+fj2 (xij2)+εij and yij = z′ijβj+gj1 (xij1)+gj2 (xij2)+εij are equivalent if gj1 (xij1) = fj1 (xij1)+c

and gj2 (xij2) = fj2 (xij2) − c where c is an arbitrary constant. Insofar as interest centers on the shapes of

the fjr(xijr) for r = 1, .., p or the overall fit of the nonparametric regression line, the lack of identification

is irrelevant. If desired, identification can be imposed in many ways (e.g. by setting the intercept of the rth

nonparametric component in each equation to be zero for r = 2, .., p).

4.1 Case 3: Application

In Case 3 we extend Case 2 to also allow for a nonparametric treatment of ABILITY in the wage equation.

Thus, ABILITY is treated nonpaametrically in both equations and TENURE is treated nonparametrically

in the wage equation. The model is:

si = zC′
i αS

1 + zS′
i αS

2 + f11 (xi11) + uS
i

wi = ρsi + zC′
i αW

1 + zW ′
i αW

2 + f21 (xi21) + f22 (xi22) + uW
i

, (2.22)
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where definitions are as for Case 2 except that xi11 = xi22 is ABILITY and xi21 is TENURE and zC
i no

longer contains ability in either equation. We identify the model by setting the intercept of one of the

nonparametric functions in the wage equation to be zero, i.e. f22 (x122) = 0.

With three nonparametric components, empirical Bayesian methods involve a three-dimensional grid search

over the smoothing parameters η1, η2 and η3 for terms relating to ABILITY (in the schooling equation),

TENURE and ABILITY (in the wage equation), respectively. We find η1 = 10−6, η2 = 10−9 and η3 = 10−11.

With these values, the log of the Bayes factor in favor of the nonparmatric model is 3.837 indicating stronger

support for the semiparametric model over the parametric alternative of (2.14) than with previous cases.

Empirical results for the regression coefficients are presented in Table 4 and are found to be similar to those

for Case 2. In addition, the posterior mean of the correlation between the errors in the two equations is

0.138 (standard deviation 0.140), values similar to Case 2. Perhaps the most interesting finding is that the

posterior mean of the return to schooling parameter is, at 0.042, similar to but smaller than that found for

Case 2, and approximately one-half of the size of those reported in Case 1 and the parametric model. Again,

upon controlling for nonlinearities in the relationship between ability and log wages, we find even more

reduction in the return to schooling coefficient. However, the posterior standard deviation of this parameter

is still quite large.

Figures 5, 6 and 7 plot the fitted nonparametric regression lines (after controlling for other explanatory

variables in the same manner as for previous cases). Figure 7 indicates the same non-quadratic nonlinearities

in the relationship between ABILITY and SCHOOL (after controlling for other explanatory variables) as

Figure 4, while Figure 5 is similar to Figures 1 and 3. Figure 6 also appears to exhibit a slightly nonlinear

regression relationship between log wages and ABILITY of a non-quadratic form (although the pattern is

much weaker than in Figure 7). Specifically, Figure 6 suggests that marginal increments in ability does little

to increase the log wages of individuals of low to moderate ability, but does begin to have a reasonable

effect on the log wages of those already above the mean of the ability distribution (i.e. increasing returns to

ability). It is also important to recognize that we are obtaining this result after controlling for the potentially

endogenous education variable and also controlling for nonlinearities in the education-ability relationship.

The fact that +/- two posterior standard deviation bands in Figure 6 are very tight for the lowest values

of ABILITY is due to the identification restriction and the fact that there are very few observations in this

region.
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Table 4: Posterior Results for the Case 3 Semiparametric Model
Wage Equation Schooling Equation

Explanatory
Variable Mean St. Dev. Mean St. Dev.

SIBED −− −− 0.163 0.049
MOMED −0.010 0.015 0.202 0.056
DADED 0.022 0.010 0.047 0.039
NON-BROKEN −0.080 0.079 0.257 0.308
EXPERIENCE 6.8 × 10−4 2.7 × 10−4 −− −−
URBAN 0.112 0.063 −− −−
UNEMP −0.010 0.010 −− −−
SCHOOL 0.042 0.039 −− −−

5 Conclusions

In this paper, we have developed methods for carrying out Bayesian inference in the semiparametric seemingly

unrelated regressions model and showed how these methods can also be used for semiparametric simultaneous

equations models. There are, of course, other methods for carrying out Bayesian inference in semi- or

nonparametric extensions of SUR models (e.g. Smith and Kohn, 2000). A distinguishing feature of our

approach is that we stay within the simple and familiar framework of the SUR model with independent

Normal-Wishart prior. Thus, textbook results for Bayesian inference, model comparison, prediction and
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posterior computation are immediately available. The focus of this paper is on prior information about the

degree of smoothness in the nonparametric regression lines (although, of course, prior information about

other parameters can easily be accommodated). We show how empirical Bayesian methods can be used to

estimate smoothing parameters, thus minimizing the need for subjective prior elicitation.

The practicality of our approach is demonstrated in a two-equation application involving returns to school-

ing. In addition to parametric models, we estimate models with a single nonparametric component in one

equation and a single nonparametric component in both equations. Our most general model contained an

additive specification in the wage equation and a nonparametric ability component in the schooling equation.

Although our semiparametric results are, in some cases, similar to those from simpler parametric nonlinear

models (e.g. where explanatory variables enter in a quadratic fashion), in other cases our semiparametric

approach yields empirical results which could not be easily obtained using standard parametric methods.

Using our approach, we found suggestive evidence of nonlinearities in the relationships between ability and

the quantity of schooling attained, and that estimates of the return to schooling were sensitive to control-

ling for these nonlinear relationships. Furthermore, we stress that one clear advantage of a semiparametric

approach is that a particular functional form such as the quadratic does not have to be chosen, either in an

ad hoc fashion or through pre-testing.

Finally, it is worth noting that it is very easy to incorporate the semiparametric SUR model developed

here in a more complicated multiple equation model. For instance, Bayesian inference in a multinomial

semiparametric probit can be done by adding a data augmentation step in the Gibbs sampler outlined in

this paper as in, e.g., McCulloch and Rossi (1994). Bayesian inference in a semiparametric multiple equation

model where one (or more) of the dependent variables is censored can be handled in a similar manner.

We have assumed Normal errors, but this assumption can easily be relaxed through the use of mixtures

of Normals. In short, Bayesian inference in semiparametric variants of a wide range of multiple equation

models can be handled in a straightforward manner.
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