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Summary.

Motivated by the need to understand and predict early pregnancy loss using hormonal indicators of 

pregnancy health, this paper proposes a semiparametric Bayes approach for assessing the 

relationship between functional predictors and a response. A multivariate adaptive spline model is 

used to describe the functional predictors, and a generalized linear model with a random intercept 

describes the response. Through specifying the random intercept to follow a Dirichlet process 

jointly with the random spline coefficients, we obtain a procedure that clusters trajectories 

according to shape and according to the parameters of the response model for each cluster. This 

very flexible method allows for the incorporation of covariates in the models for both the response 

and the trajectory. We apply the method to post-ovulatory progesterone data from the Early 

Pregnancy Study and find that the model successfully predicts early pregnancy loss.
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1. Introduction

1.1. Hormonal Predictors of Pregnancy Loss

Our motivation is drawn from studies of the relationship between hormone trajectories and 

the occurrence of early pregnancy loss (EPL). EPL is the loss of a pregnancy within six 

weeks of the last menstrual period, so early that many women experience them without even 

knowing they had conceived. Pregnancies and losses can be detected through the 

examination of hormone profiles.

Data are drawn from the North Carolina Early Pregnancy Study (Baird et al., 1997), a 

prospective study of 221 women who collected daily urine samples while trying to conceive. 

These samples were assayed for metabolites of progestrone and human chorionic 

gonadotropin. Human chorionic gonadotropin (hCG) is a hormone released by the embryo 

upon implantation. hCG is usually not present in any detectable level unless a woman is 

pregnant. Based on examination of profiles of urinary hCG, the study investigators classified 
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cycles that did not result in clinical pregnancy (i.e. a pregnancy lasting beyond six weeks) as 

either early loss cycles or true non-conception cycles. A detectable rise in urinary hCG 

signaled implantation of the conceptus, and a subsequent decline indicated that the 

pregnancy was lost. The data consisted of 165 conception cycles, 47 of which resulted in 

early losses. Based on these data, Wilcox et al. (1988) reported that two-thirds of losses 

occurred before the pregnancy was likely to be clinically detected (i.e. before 6 weeks) and 

that nearly a third of all conceptions resulted in EPL. Other studies have reported similar 

incidence of EPL (Ellish et al., 1999; Zinaman et al., 1996; Wang et al., 2003).

Progesterone is produced in a woman’s body even when she is not pregnant. It is well 

known that progesterone levels rise at conception, remain high in ongoing pregnancies and 

decrease once the pregnancy is lost. It has also been noted that progesterone tends to be 

slightly lower in the early weeks of pregnancy in those cycles with EPL (Lower and Yovich, 

1992). This suggests that EPL, in many cases, may be the result of a pregnancy that was 

weak at the onset rather than the immediate result of some trauma. Motivated by this 

hypothesis, there has been an ongoing debate among clinicians about whether treatment with 

exogenous progesterone may be beneficial in terms of reducing the risk of EPL.

In the recent literature, there has been considerable interest in assessing hormonal predictors 

of EPL. In a prospective study of Chinese textile workers, Venners et al. (2006) measured 

estrogen and progesterone metabolites in daily urine samples, assaying hCG to identify early 

pregnancy losses. Using generalized estimating equations to adjust for within-woman 

dependence, they assessed differences between hormone levels within clinical pregnancies 

(pregnancies lasting more than six weeks beyond the last menstrual period) and EPLs 

through stratifying on phase of the cycle. Although the hormone trajectory is most naturally 

viewed as a random curve, it is common practice in the epidemiologic and clinical literature 

to simplify the analysis by dividing time into bins. In a population-based prospective study 

in thirty rural Bolivian communities, Vitzthum et al. (2006) used a related approach to assess 

their hypothesis that EPLs are associated with (1) inadequate post-ovulatory progesterone 

and (2) elevated pre-ovulatory progesterone. Although their sample size was modest, they 

found significant evidence of (2).

The typical strategy of dividing time into bins and testing for differences within each bin has 

a number of drawbacks, including sensitivity to the chosen bins, issues in multiple testing if 

the number of bins is chosen to be high, and focus on a mean difference. Since EPL is not 

always caused the mother’s inability to sustain the pregnancy, but can also be the result of 

problems with the fetus, it is likely that the progesterone trajectory close to ovulation may be 

predictive only in certain cycles, suggesting that analyses based on a mean shift may be 

overly-conservative and produce misleading results.

Our goal to to use the post-ovulatory progesterone trajectory curve as a functional predictor 

in a flexible joint model for EPL, then use the resulting model to predict EPL in a set of 

reserved cycles. A joint model relating progesterone and early loss should provide new 

insight into possible mechanisms of EPL. In some cases, the drop in progesterone may 

signal the mother’s inability to continue the pregnancy. In other cases, it may be a response 
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to developmental problems in the embryo. Progesterone levels and EPL are likely to be 

causally associated.

1.2. Relevant Statistical Literature

In assessing relationships between functional predictors and a scalar response, a challenging 

issue is interpretation of the results. A common strategy in applications is to define several 

summaries of the function, such as the rate of change, average value across a region, etc. 

These summaries can then be plugged in as predictors in a generalized linear model (GLM) 

for the response. Unfortunately, it is typically not clear how to best choose summaries of the 

function, and multicolinearities can arise if many summaries are chosen. In addition, the 

plug-in approach cannot easily accommodate missing data or differences among subjects in 

locations of measurements along the function. Such problems can be solved by fitting a joint 

model of the function and scalar response.

James (2002) extends GLMs to incorporate functional predictors, using functional principal 

components for interpretation. His method relies on modeling the function with a cubic 

spline and then characterizing the relationship with the response by using a weighted 

integral of the function. James and Silverman (2005) later proposed a more general class of 

models, which extends GLMs, generalized additive models and projection pursuit regression 

to handle functional predictors. Muller and Stadtmuller (2005) proposed an alternative 

generalized functional linear model framework, developing functional estimating equations 

and associated theory. Brown et al. (2001) instead use a Bayes wavelet-based approach to 

include a discretized functional predictor in a linear regression model. Ratcliffe et al. (2002) 

describe a logistic model for a binary response where one of the covariates is functional. 

They model fetal heart-rate traces using a set of Fourier basis functions, using the model to 

predict high-risk pregnancies. Escabias et al. (2005) proposed a functional principal 

component logistic regression method motivated by environmental data.

Although functional principal components are useful in interpreting results, they may be 

counter-intuitive for clinicians. An alternative strategy is to develop a flexible clustering 

methodology, in which clusters are defined by the functional predictor and level of response. 

For example, progesterone trajectories in early pregnancy could be clustered jointly with an 

indicator of early pregnancy loss. Careful examination of the resulting clusters could identify 

trajectories in progesterone that are predictive of EPL, with such trajectories being of 

substantial clinical interest. For example, women could potentially monitor progesterone 

levels in urine using a home device, which recommends a visit to the woman’s clinician if 

the trajectory shape is similar to one of the clusters indicative of EPL. Early identification of 

pregnancies at risk of EPL would aid in the development and testing of interventions, such 

as treatment with exogenous progesterone.

A variety of methods have been proposed for clustering functional data. James and Sugar 

(2003) propose a flexible model-based approach for clustering sparsely sampled functional 

data. Zhou and Wakefield (2006) and Heard et al. (2006) applied Bayesian methods for 

clustering of time course gene expression data. Ray and Mallick (2006) proposed a 

nonparametric Bayes wavelet model for clustering functional data, relying on a Dirichlet 

process (DP) prior (Ferguson (1973), Ferguson (1974)) for the distribution of the wavelet 
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coefficients. Bigelow and Dunson (2005) proposed an approach that allows both the basis 

functions and their coefficient distributions to be unknown. These methods are related to the 

common strategy of clustering functions through clustering of the coefficients in a basis 

function expansion. However, simple methods for clustering the basis coefficients, such as k-

means, tend to suffer from a lack of robustness (Garcia-Escudero and Gordaliza (2005)). In 

addition, the Bayesian nonparametric approach generates a full posterior distribution for the 

clusters instead of a single set of clusters. This posterior distribution can be used to assess 

uncertainty in the clustering process.

Our interest focuses on clustering the progesterone trajectories and treating them as 

functional predictors in a model for early pregnancy loss. To address this problem, we 

propose a semiparametric Bayes approach. The functional predictor is characterized using 

an adaptive spline model. We then model the joint distribution of the basis coefficients and a 

random intercept in the outcome model as unknown using a DP prior, which also induces 

clustering. A number of authors have used DP priors for unknown random effects 

distributions (Bush and MacEachern (1996), Mukhopadhyay and Gelfand (1997), Kleinman 

and Ibrahim (1998), Brown and Ibrahim (2003) among others), but only Bigelow and 

Dunson (2005) consider cases in which the number of basis functions is unknown, so that 

the random effects have varying dimension. Here, we extend Bigelow and Dunson (2005) to 

allow joint modeling of functional data with a response variable.

2. Semiparametric Joint Models

2.1. Basic Structure

For subject i, (i = 1,…,N), let zi denote the response, let yi = yi1, …, yi, ni
′ denote a vector of 

ni error-prone observations of the functional predictor, fi(·), and let xi = xi1, …, xini
′ denote 

covariates describing the locations of these observations. For example, in a simple case, 

fi:ℝ+ ℝ is a time-varying predictor and xij is the time of the jth observation of this 

predictor for subject i. We focus on the general case in which xij is a vector of covariates.

We assume the following basic modeling structure:

zi g ξi, ϕ andyij N fi(xij), τ−1 , (1)

where g(ξi, ϕ) is an exponential-family density, with canonical parameter ξi and scale 

parameter ϕ. In order to allow the functional predictor for subject i, fi(·), to be predictive of 

the response variable, zi, we consider flexible models for the joint probability measure of {fi, 

ξi}.

Because fi is a random function defined at infinitely-many points, modeling is facilitated by 

considering a finite representation of fi in terms of a basis function expansion:

fi xij = ∑
ℎ = 1

kM

bMiℎμMℎ xij = HMi
bMi

, (2)
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where μM = μM1, …, μM, kM
 denotes a set of kM basis functions specific to model M ∈ ℳ, 

with ℳ denoting the model space. In addition, bMi
= bMi1, …, bMikM

′ are basis coefficients 

specific to subject i and model M. The space of models, ℳ, corresponds to a chosen class of 

basis functions, while a particular model, M, corresponds to a selection of kM basis 

functions in this class. For example, we focus on ℳ corresponding to the class of 

multivariate linear splines, with the different models in this class selecting different numbers 

and locations of knots. Using model averaging to allow uncertainty in knot selection, 

multivariate piecewise linear splines can approximate any smooth surface. However, the 

methods are general and different classes of basis functions can be incorporated without 

complications. In order to flexibly characterize the hormone trajectories without 

incorporating large numbers of basis functions, we allow uncertainty in basis function 

selection.

2.2. Joint Models and Clustering

To allow the response distribution to vary systematically according to the shape of the 

functional predictor, it is necessary to specify a joint model for fi and zi. For sake of 

interpretability and flexibility, it is appealing to group the random functions into trajectory 

clusters, with the cluster identifier included as a categorical predictor in the response model. 

For example, in the hormone application, the progesterone trajectories in early pregnancy 

could be grouped into k clusters, with the early loss probability varying systematically 

across these clusters, adjusting for covariates within a generalized linear model (GLM).

This is accomplished by first specifying a GLM for the conditional distribution of the 

response:

ℎ E zi ai, γ, ui = ai + ui′γ, (3)

where h(·) is a monotone link function, ai is a random effect for subject i, ui is a vector of 

known covariates, and γ is a vector of fixed effects. Usually h() is the canonical link so that 

ai + ui′γ = ξi, the canonical parameter. For example, in the early pregnancy loss application, 

expression (3) will be chosen as a logistic regression model, where ai will characterize the 

baseline log odds of early loss for woman i adjusting for covariates.

We then induce a joint model on the functional predictor, fi, and response, zi, through a 

hierarchical model for the joint distribution of the random effect, ai, and subject-specific 

basis coefficients, bMi
:

bMi
, ai GM = ∑

ℎ = 1

∞

pℎδΘMℎ, pℎ = V ℎ ∏
l < ℎ

1 − V l , ∀M ∈ ℳ, (4)

where GM is the joint distribution (or, more formally, the joint probability measure) under 

model M, pℎ ℎ = 1
∞  is an infinite sequence of probability weights, δΘ is a probability 
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measure concentrated at Θ, and V ℎ
iid beta(1, α) are stick-breaking random probabilities that 

are mutually independent of the atoms ΘMℎ = βMℎ, ψℎ
iid

G0M, for h = 1,…,∞.

Note that (4) is the Sethuraman (1994) stick-breaking representation of the DP, implying that 

GM ~ DP(αG0M) within each model M ∈ ℳ. The vector ΘMh corresponds to the value of 

the kM basis coefficients and random effect under model M for cluster h, with h = 1,…,∞ 
across the infinitely many clusters represented in the population. As is clear from the stick-

breaking representation, the probability that a randomly selected subject is allocated to 

cluster h decreases stochastically as h increases, with the rate of this decrease higher for 

smaller α. This induces a prior on the random partition of the n subjects into r clusters, with 

the pairwise prior clustering probability being

Pr (bMi
, ai) = (bMi′, ai′) =

1
1 + α

, for i ≠ i′ .

We let SMi = h denote that subject i belongs to cluster h under model M, which implies that 

fi( ⋅ ) = ∑l = 1
kM

θMℎlμMl
( ⋅ ). In addition, all subjects with SMi = h have intercept ai = ψMh in 

the GLM (3) for the response variable. Suppose that zi is a binary response indicating 

occurrence of an adverse event, such as early pregnancy loss. Then, clusters having 

trajectory shapes predictive of an increased risk of the event will tend to have high values of 

ψMh relative to other clusters.

Note that this Dirichlet process-based joint clustering approach has important advantages 

over clustering methods based on finite mixture models. First, allowing infinitely many 

clusters in the general population, the DP prior allows new clusters to be introduced as a 

subjects are added to the sample, though allocation to existing clusters is increasingly 

favored as the sample size increases. This allows incoming women to have rare conditions 

not yet observed in the sample. Second, the approach avoids the possibility of over-fitting 

through generating the cluster-specific parameters from a parametric base distribution G0M a 

priori. As clusters are added and the number of subjects per cluster decreases, the fit will 

increasingly resemble that of a parametric hierarchical model. Hence, to allow deviations 

from the parametric model, it is necessary to favor fewer clusters.

2.3. Uncertainty in Basis Functions

Without uncertainty in the basis functions, the model specified in subsections 2.1 and 2.2 is 

quite similar to previous Bayesian hierarchical models that have incorporated DP priors to 

allow random effects distributions to be unknown (refer to Section 1 for references). In the 

setting of parametric models for a single function, there is a rich literature on methods that 

allow uncertainty in basis function selection. Refer, for example, to Biller (2000), Lindstrom 

(2002) Hansen and Kooperberg (2002), Wood et al. (2002), and Holmes and Mallick (2003). 

Posterior computation in such models typically relies on one of two Markov chain Monte 

Carlo (MCMC) strategies: (1) reversible jump MCMC (RJMCMC) (Green (1995)); or (2) 

embedding all the models in a single encompassing model having very many basis 
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functions, with a subset of the bases selected by allowing zero basis coefficients (Smith and 

Kohn (1996)).

In our setting, efficient posterior computation is much more challenging, since we have a 

nonparametric prior on a collection of curves that are characterized in terms of an unknown 

set of basis functions. Fortunately, the specification in (4) facilitates efficient posterior 

computation by inducing a prior that can be factorized as a prior on the allocation of subjects 

to clusters multiplied by a prior on the coefficients within each cluster. Bigelow and Dunson 

(2005) provide details on this factorization and propose an efficient Metropolis-Hastings 

algorithm for moving between models, with a nested Gibbs sampler for updating the model 

parameters. The Bigelow and Dunson (2005) paper was motivated by the problem of 

functional clustering, but did not consider joint modeling with a response variable. In 

Section 3, we outline an approach to generalize the Bigelow and Dunson (2005) MH-nested 

Gibbs algorithm to the joint modeling setting.

3. Posterior Computation

3.1. Model and Prior Specification

We focus on multivariate linear basis functions, with the prior over the model space 

depending only on the number of basis functions in each model, 

p(M) ∝ p kM =
T

kM − 1

−1
K

−1, where K is the maximum number of basis functions allowed 

in a model and T is very large. From (2), we have

yi = HMibMi + ϵMi, M ∈ ℳ, (5)

where yi and ϵMi are the ni × 1 vectors of trajectories and random errors, bMi is the kM × 1 

vector of random basis coefficients for subject i, and the design matrix HMi contains the 

basis function transformations of the covariate vectors for subject i under model M.

The data consist of n trajectory × response pairs, yi, zi i = 1
n . Following the specification 

described in Section 2, the joint likelihood can be factored as a product of:

L y bM, τM, M, SM ∝ τM
N /2exp −

τM

2 ∑
i = 1

n

yi − HibMi ′ yi − HibMi

L z aM, γM, ϕM, U ∝ ∏
i = 1

n

g zi; ξi, ϕ ,

(6)

Where N = ∑i = 1
n

ni and a canonical link is used so that ξi = ai + ui′γ. The prior under model 

M is

Bigelow and Dunson Page 7

J Am Stat Assoc. Author manuscript; available in PMC 2020 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



bMi

ai

iid
GM, i = 1, …, N

GM DP αGM0

GM0 = NkM + 1
βM

0
,

τMΔM 0

0 ν

−1

ΔM = diag δM

βM NkM
0, τM

−1λM
−1

IkM

π τM, λM, δM ∝ τ
M

aτ − 1
exp −bττM λ

M

aλ − 1
exp −bλλM ∏

l = 1

kM

δ
Ml

aδ − 1
exp −bδδMl

π(ν) ∝ ν
aν − 1exp −bνν

where α, aν, bν, aτ, bτ, aλ, bλ, aδ and bδ are pre-specified hyperparameters constant across 

models. The prior specification is completed with a prior on γ, which can follow as for a 

typical GLM.

3.2. Metropolis-Hastings with Nested Gibbs Algorithm

The approach described in Bigelow and Dunson (2005) considered the model specified as 

above, but without the response component. It involves a Metropolis-Hastings (Hastings, 

1970) step for moving between models, with a nested Gibbs sampler used to update the 

model parameters. In particular, the algorithm alternates between the following steps: (1) 

propose a move from model M → M′ according to the proposal density T(M′, M); (2) 

accept this move with probability Q(M′, M); and (3) update the unknowns within the current 

model, including the clustering configuration, SM, the unique values, θM, the parameters 

within GM0, the residual precision, τM, and the regression coefficients, γ. Conditionally on 

the selected basis functions implied by M, posterior computation for the model unknowns 

can proceed via previously proposed MCMC algorithms for DP mixture models. Hence, we 

leave out the details on step (3), relying on the collapsed Gibbs sampler (Bush and 

MacEachern, 1996) in the implementation.

In step (1), we propose to change M by either adding, removing or altering a basis function 

with equal probability. The key to our approach is the choice of acceptance probability, Q(M

′, M), which we take as:

Q M′, M = min 1,
p y, z M′, SM, δadj, λM

p y, z M, SM, δadj, λM
× R (7)

where (7) is conditional on the current values SM, the cluster configuration, and λM, a 

component of the prior precision of βM. Recalling that the dimension of δM is equal to the 

dimension of the model, we let δadj be a subvector of δM with number of elements equal to 

the minimum of the dimensions of M and M′. The acceptance probability in the joint 

modeling setting simplifies to that in the trajectory-only model in Bigelow and Dunson 

(2005). Details and an analytic form are given in the appendix.
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3.3. Clustering and Prediction

The proposed model allocates women to clusters that are defined in terms of the woman’s 

progesterone trajectory and risk of EPL. Because the approach allows uncertainty in the 

number of clusters and the allocation of women to clusters, one encounters a label-switching 

problem in which the meaning of the clusters varies across the posterior samples. This label 

switching does not present a problem in obtaining model-averaged estimates of a woman’s 

trajectory and predictions of risk of EPL. Indeed, accounting for uncertainty in the choice of 

basis functions, number of clusters and allocation to clusters in performing prediction is a 

major advantage of our proposed approach.

However, in interpreting the results it is appealing to obtain a single estimate of the cluster-

specific trajectories and risk of EPL. Several approaches have been proposed for estimating 

clusters based on the MCMC output in DP mixture models. Dahl (2006) and Lau and Green 

(2007) proposed approaches for estimating an optimal partition of clusters. We instead 

implement an earlier approach proposed by Medvedovic and Sivaganesan (2002), which 

estimates clusters by thresholding the pairwise posterior probabilities that two subjects are 

grouped together.

We used a posterior probability of 0.40 as the threshold. The threshold choice is necessarily 

subjective, with high values leading to inappropriate grouping of scientifically distinct 

trajectories and low values producing too many groups. We find 0.40 to be a good 

compromize based on simulations and examination of clusters produced in data analyses.

The DP precision parameter, α is a key hyperparameter, since the number of clusters is 

proportional to α log(N). Following common practice for DP mixture models, we set α = 1 

to encourage clusters to be introduced slowly with increasing sample size. This favors a 

sparser representation of the data, though the data play a strong role in the determination of 

the posterior distribution of the number of clusters.

4. Simulated Data Example

Data were simulated as six groups of 25 trajectories, where each trajectory consisted of 

noisy observations around a smooth mean curve and was paired with a 0/1 response. Figure 

1 shows the simulated data, the mean trajectories, and the 0/1 response for each of the 6 

groups. There were 10 measurements along each curve collected at varied timepoints. Of the 

25 trajectories in each group, 5 were truncated to contain only 5 measurements in the first 

half of the time scale.

We collected 50,000 samples after a 5,000 iteration burn-in. Examination of trace plots of 

precision parameters and the number of basis functions showed no evidence against 

convergence. The samples were first used to assess whether the algorithm had correctly 

clustered the trajectories based on their mean functions and accurately estimated the 

probability of success. We clustered observations that appeared in the same cluster in 40% or 

more of the samples. Based on the posterior distributions for subjects within each of these 

groups, we estimated the trajectory for each cluster and the probability that a member of 

each cluster had response equal to 1. Figure 2 illustrates the performance of the model in 
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correctly identifying clusters. In addition, it provides means and 95% credible intervals for 

the response probabilities.

The approach correctly identified trajectories of similar shapes and clustered them together. 

The clusters were identified as simulated, with two exceptions. The trajectories in groups 1 

and 2 were classified together. This misclassification is understandable, as groups 1 and 2 

had rather high variability around their mean function at the start of the trajectory, and a 

similar shape to group 6 in the latter part. Four of the most unusual trajectories from group 4 

were not classified with the others in group 4. A look at the estimated means of each group 

in the final plot in Figure 2 shows that the algorithm sorted out four trajectories where the 

trajectory decreased at the start then rose steeply to a peak from those where the response 

began to rise immediately.

Within the MCMC samples, observations were misclassified very rarely. This simulation 

shows that the model discriminated among trajectories of different shapes and provided an 

accurate estimate of the response probability for each cluster. Of specific interest is the first 

cluster, where the model did not distinguish the similar mean functions of the first two 

groups from the sixth group, but the success probability for that cluster was correctly 

estimated to be about 1/3.

Our primary goal is prediction. When a new trajectory is presented, we wish to be able 

classify it and predict the response probability. A new set of 150 trajectories was simulated 

in the same way as the first set. The new trajectories were then classified according to the 

MCMC samples reserved from the original run, and the probability of success was estimated 

as well. In summary, the trajectories from groups 1 and 2, which had a true success 

probability of 1/2 in the original data, had a predicted success probability of 0.47, with a 

95% credible interval [0.25, 0.71]. The trajectories from groups 3 and 5, which had a success 

probability of 1, had an predicted probability of success of 0.96 [0.88, 1.00]. Groups 4 and 6 

had a true success probability of zero, and the predicted success probability was 0.05 [0.00, 

0.15].

5. Early Pregnancy Study

With the goal of distinguishing between cycles with high and low probability of early 

pregnancy loss, we applied our approach to conception cycles from the NC-Early Pregnancy 

study. In those cycles labeled clinical pregnancies, the investigators, based on hCG, 

concluded that the embryo had survived at least six weeks beyond the last menstrual period. 

Cycles in which a detectable hCG rise occurred but did not last more than six weeks beyond 

the last menstrual period (LMP) were labeled ‘early losses’. The hCG assay was highly 

accurate, and hCG does not typically occur in measurable levels outside of pregnancy, so 

there should be very little error in the identification of EPL. The data consisted of 165 

conception cycles, 47 of which resulted in early losses. We randomly selected 10 early loss 

and 10 clinical pregnancy cycles to reserve for prediction, then fit the joint model to the 

remaining 145 cycles.
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To illustrate the joint model for a trajectory and a response, we apply it to progesterone data 

for the early losses and the clinical pregnancies, with early loss status serving as the binary 

response for each cycle. The trajectory was defined to begin at the hormonally-determined 

day of ovulation and to last for up to 40 days. In most cases data collection was truncated 

before 40 days due to either the start of a menstrual period (in early losses) or a clinically 

identified pregnancy. To simplify presentation of results to clinicians, we purposely avoided 

adjusting for covariates in our analysis. Figure 3 presents some of the data from early losses 

and clinical pregnancies. It shows how PdG tends to rise when conception occurs and then 

drop off if the pregnancy is lost.

Using the methods applied in Section 4, the 145 women were grouped into clusters. There 

were 31 of these clusters, though 18 contained only one observation. We calculated the mean 

trajectory for each cluster and the mean probability that a cycle in that cluster was an early 

loss. Figures 4 and 5 show the data for each of the 31 clusters, pointwise means and credible 

intervals for the trajectories in each cluster, and the model-estimated probabilities and 

credible intervals that a cycle in a given cluster was an early loss.

With the exception of the 8th cluster, which contained one early loss and two clinical 

pregnancies (though both clinical pregnancies had no PdG measurements after day 16, 

before the early loss occurred), every cluster was homogeneous with respect to early loss 

status. The early loss status of each cluster is apparent from the point estimate of the early 

loss probability below each graph. The second cluster was the largest, consisting of 59 

clinical pregnancies, so that 55% of all clinical pregnancies were grouped together. While 

both the early loss and clinical groups had outliers, the early losses were more spread out 

among several clusters. Ignoring the 10 early loses and eight clinical pregnancies classified 

alone, the remaining 27 early losses were spread out among 9 clusters, whereas the 100 

remaining clinical pregnancies were in only 5 clusters.

The 20 trajectories reserved for prediction were then analyzed. We wish to be able to predict 

the early loss status of a future observed trajectory. It would be most desirable to predict the 

early loss before it occurs, based on a short sequence of PdG measurements, so that any 

appropriate action (e.g. progesterone supplementation) could be taken. In order to examine 

the utility of PdG trajectories for estimating the potential for early loss, we truncated each of 

the reserved cycles, estimated the probability of early loss, then added additional days and 

examined how the probability changed. The estimated probabilities as a function of the 

number of days used to predict are given in Figure 6. With a few exceptions, the model 

assigned high probabilities of early loss to the early loss cycles, and low probabilities to the 

clinical pregnancies.

Figure 7 shows the average predicted probabilities of early loss for the reserved cycles, 

comparing early loses to clinical pregnancies. The embryo implants 6–10 days after 

ovulation, which is when the curves begin to diverge. Shortly after implantation, the model 

accurately discriminated between EPL and non-EPL cycles.
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6. Discussion

This article has applied a flexible semiparametric Bayes Dirichlet-proces based joint 

modeling approach, with the goal of using post-ovulatory progesterone measurements to the 

predict early pregnancy loss. Progesterone acts to maintain the pregnancy, so there is thought 

among clinicians that treatment with exogenous progesterone may prevent certain early 

losses. In order to implement such an intervention, it is necessary to accurately identify 

women at risk of loss before the loss is irreversible. Our results suggest that is should be 

possible to identify at-risk pregnancies a few days after implantation. Affordable home 

devices are now available to measure the progesterone metabolite PdG, so a clinical trial 

could potentially be designed in which the devices are programmed to predict impending 

loss and signify the need for treatment.

The trajectory shapes in Figures 4 and 5 are quite interesting to reproductive biologists 

hypothesizing mechanisms of pregnancy loss, as well as to clinicians considering use of 

exogenous progesterone treatments to prevent fetal death. It is certainly the case that 

substantial heterogeneity exists in the shapes of the trajectories among both early losses and 

surviving pregnancies. This is in contrast to the idealized trajectories presented in medical 

training, and has an important impact on the use of progesterone data in targeted 

interventions.

Our proposed approach jointly grouped subjects into clusters based on both the predictor and 

response data. For functional predictors and a univariate response, there tends to be much 

more data in the predictor component, so that the subject’s response data has minimal 

impact on the posterior distribution of the cluster allocation. This is appealing from an 

interpretability standpoint, since it tends to be counter-intuitive to epidemiologists to have 

the functional clusters dependent on the response. However, if we are interested in allowing 

the response data to inform more about the clusters, a possible strategy is to weight the 

response likelihood in allocating subjects to clusters. For example, a weight of zero would 

correspond to unsupervised clustering, a weight of one to supervised clustering (our focus), 

and weights greater than one to response-driven clustering. This is an interesting area for 

future work.
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Appendix A

Acceptance Probability

At each iteration we propose a change to the current model. If the current model is of 

dimension k (suppressing the model indicator subscript for notational convenience), we 

propose to add a new basis (birth) with probability bk, we propose to remove a basis (death) 

with probability dk, and we propose to alter a basis with probability 1−dk−bk. All acceptable 
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move types are assigned equal probability, so bk = dk = 1/3 for all k except that b1 = dK = 

1/2, and bK = d1 = 0.

We specified the prior on model M as a function of the dimension of model M, where 

p(M) ∝ p kM =
T

kM − 1

−1
K

−1.

The following acceptance probability is discussed in Bigelow and Dunson (2005) for the 

trajectory-only model:

Q M′, M = min [1,
p y M′, V p V M′ p M′ S M, M′

p(y M, V)p(V M)p(M)S M′, M
(A.1)

where V is a set of model parameters and S(M′, M) is the proposal density for model M′ 
conditional on the current model, M. A MCMC sampler with this acceptance probability and 

the proposal and prior structure described above has limiting distribution p(M |V, y).

The term R =
p M′ S M, M′
p(M)S M′, M

 simplifies to a known constant. Let T be the very large set of all 

basis functions we wish to consider for the piecewise linear model. Generating a new basis 

function corresponds to randomly sampling from T. Since the proposal distribution is 

discrete, the need for a Jacobian in the acceptance probability is eliminated. If T, the number 

of elements in T, is so large compared to the number of iterations that the probability of 

ever proposing the same basis function twice throughout the course of the algorithm is 

effectively zero, then this discrete process is equivalent to random proposal of new basis 

functions through a continuous process.

The acceptance probability for the joint modeling example is therefore,

Q M′, M = min [1,
p y, z M′, V p V M′

p(y, z M, V)p(V M)
× R (A.2)

To maximize sampler efficiency, we would prefer that V be empty so that the chain 

converges to give us samples from p(M|y, z), the posterior over the model space. In the 

model described in this paper, choosing V to be empty renders Q intractable, so we resort to 

conditioning on the current values of a few model parameters and sampling from the 

conditional posterior distribution over the model space. If we alternate updating the elements 

of V from their full conditionals in a Gibbs sampler and updating the model using the 

acceptance probability Q, we obtain samples over the marginal posterior distribution of the 

model space.

The quantity p(y, z|M, S, δ, λ) can be computed directly, where all parameters are model-

dependent but the model indicator M is suppressed for notational simplicity, so p(y, z|M, S, 

δ, λ) = ∫ p(z, y|a, γ, S, b, τ, λ, M)p(a, γ, b, τ, β|S, δ, λ, M) db dβ dτ da dγ, = ∫ p(z|a, γ, 

S, M)p(a, γ|S, M)da dγ × ∫ p(y|S, b, τ, λ, M)p(b, τ, β|S, δ, λ, M) db dβ dτ and the first 

integral is the same for all M ∈ ℳ, thus for the purposes of model comparison
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p(y, z M, S, δ, λ) ∝ ∫ p(y S, b, τ, λ, M)p(b, τ, β S, δ, λ, M)dbdβdτ = p(y M, S, δ, λ)

where p(y|β, b, τ, δ, λ, M) is the trajectory data likelihood under model M, and p(b, τ, β|δ, 

λ, M) is the joint prior of b, β, and τ under model M. Note that the acceptance probability 

depends on the trajectory data alone and not on the response data. This is useful in that the 

acceptance probability need not be derived separately for various functional forms of the 

likelihood of z.

This integral has a closed form, so that the likelihood can be written:

p(y M, δ, λ) = C(λ, k) R |−
1
2 bτ +

α

2

−
n

2
+ aτ

∏
l = 1

k

δ
l

m

2 ∏
i = 1

m

Ui

1
2 (A.3)

where

Ui = Δ + Hi′Hi
−1

R = λIk + mΔ − Δ( ∑
i = 1

m

Ui)Δ

α = y′y − ∑
i = 1

m

yi′HiUiHi′yi − ( ∑
i = 1

m

UiHi′yi)′ΔR
−1

Δ( ∑
i = 1

m

UiHi′yi)

C(λ, k) =
bτaτλ

k

2 Γ
n

2
+ aτ

Γ aτ (2π)
n

2

The final adjustment to the acceptance probability is to note that the appropriate dimension 

of δ varies among elements of ℳ. We define δadj to be the subvector of δ corresponding to 

the basis functions common to both M and M′ and use the acceptance probability

Q M′, M = min [1,
p y M′, S, δadj, λ

p y M, S, δadj, λ
× R (A.4)

Since M and M′ differ by at most one basis function, finding the marginal likelihood under 

each model will require either using (A.3) directly or integrating out one element of δ 
numerically (we used the Laplace method).
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Figure 1. 
Underlying population curves (black) and simulated trajectories (gray) for each of the six 

simulated groups along with the response (success or failure) for each group. The first two 

plots have the same underlying trajectories.
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Figure 2. 
The plot in the first quadrant is of the average trajectory of each of the final clusters. The 

five remaining plots contain all simulated data for the three final clusters. Also given are 

point estimates and credible intervals for the response probablitity corresponding to each of 

the identified clusters.
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Figure 3. 
Progesterone data beginning at the estimated day of ovulation for three early losses and three 

clinical pregnancies.
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Figure 4. 
PdG data from 16 of the 31 clusters, along with estimated trajectories and pointwise 99% 

credible intervals for ech cluster. Below each plot is the model-estimated probability of early 

loss for each cluster along with the 95% credible interval.
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Figure 5. 
PdG data for the 15 remaining clusters, along with estimated trajectories and pointwise 99% 

credible intervals for ech cluster. Below each plot is the model-estimated probability of early 

loss for each cluster along with the 95% credible interval.
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Figure 6. 
Predicted probability of early loss for the reserved cycles, as a function of number of days 

since ovulation. Actual early loss cycles are black and clinical pregnancies are gray.

Bigelow and Dunson Page 22

J Am Stat Assoc. Author manuscript; available in PMC 2020 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Average predicted probability of early loss as a function of number of days since ovulation 

for the early loss (black) and clinical pregnancy (gray) cycles.
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