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ABSTRACT. With survival data there is often interest not only in the survival time distribution

but also in the residual survival time distribution. In fact, regression models to explain residual

survival time might be desired. Building upon recent work of Kottas & Gelfand [J. Amer. Statist.

Assoc. 96 (2001) 1458], we formulate a semiparametric median residual life regression model

induced by a semiparametric accelerated failure time regression model. We utilize a Bayesian

approach which allows full and exact inference. Classical work essentially ignores covariates and is

either based upon parametric assumptions or is limited to asymptotic inference in non-parametric

settings. No regression modelling of median residual life appears to exist. The Bayesian modelling

is developed through Dirichlet process mixing. The models are fitted using Gibbs sampling. Re-

sidual life inference is implemented extending the approach of Gelfand & Kottas [J. Comput.

Graph. Statist. 11 (2002) 289]. Finally, we present a fairly detailed analysis of a set of survival

times with moderate censoring for patients with small cell lung cancer.
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1. Introduction

In analysing survival data there is often interest not only in the survival time distribution but

also in the residual survival time (or residual life) distribution, i.e. the distribution of survival

time given survival past some time say t0. Just as regression models are employed to explain

survival time, such models might be sought to explain residual survival time.

In modelling survival data in the presence of covariates x, typically, either a proportional

hazard (PH) model is adopted where the cumulative hazard H(t; x) ¼ H0(t) exp(x
Tb) or an

accelerated failure time (AFT) model is adopted where the cumulative hazard

H(t; x) ¼ H0(t exp(x
Tb)) (see e.g. Cox & Oakes, 1984). In either case a regression is induced

for the residual survival time distribution. The AFT setting is the focus of this paper but we do

devote section 6 to an alternative version arising under the PH specification.

More precisely, in the AFT setting, for a fixed x, the survival function

S(t; x) ¼ exp{)H0(t exp(x
Tb))} whence the random variable U ¼ H0(T exp(xTb)) is distri-

buted as Exp(1). More importantly, log T ¼ xT ~bb þ �, where � ¼ logðH�1
0 ðUÞÞ and ~bb ¼ �b.

If H0 is an arbitrary cumulative hazard function, � has an arbitrary distribution in R1. So, the

AFT specification is a natural candidate for a semiparametric regression model. That is, we

have a parametric component supplied by b in the linear regression and a non-parametric

component supplied by a class of distributions for �. For the PH specification, instead the

baseline cumulative hazard H0 (or perhaps the hazard function itself) belongs to a non-

parametric class of functions.

In the sequel, we formulate a semiparametric median residual life regression model in-

duced by a semiparametric AFT regression model. For a sufficiently rich class of distribu-

tions for �, the mean need not exist for all members. But then a mean regression for log

survival time is not well defined. As the median always exists a median regression for log

� Board of the Foundation of the Scandinavian Journal of Statistics 2003. Published by Blackwell Publishing Ltd, 9600 Garsington

Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden, MA 02148, USA Vol 30: 651–665, 2003



survival time is less restrictive. In the special case of no covariates we can supply a fully non-

parametric model under which the class of distributions for log T is dense within all dis-

tributions on R1.

In the classical literature, to fit a median regression model, the least squares criterion is

replaced by the least absolute deviations criterion, resulting in what is referred to as L1

regression. The computational difficulties of this method may partially explain its limited

usage as do the inferential limitations with smaller sample sizes (see e.g. Rousseeuw & Leroy,

1987, for a further discussion of L1 regression). Recently, in this literature, attention has been

focused on semiparametric inference procedures for median regression models under cen-

soring, providing models for survival data that are essentially alternatives to an AFT speci-

fication (see Ying et al., 1995; Yang, 1999). The estimation techniques are extensions of those

for the non-censored case and inference is asymptotic.

A Bayesian approach enabling exact inference given the data may be appealing. The

Bayesian literature on non-parametric methods has grown rapidly since the theoretical

background for the construction of priors on function spaces was developed, e.g. the work of

Ferguson (1973, 1974) on the Dirichlet process. Markov chain Monte Carlo (MCMC)

methods (Gelfand & Smith, 1990; Smith & Roberts, 1993; Tierney, 1994), made their practical

use feasible. Walker et al. (1999) provide a summary of some of the methods in Bayesian non-

parametrics. Semiparametric regression modelling is especially attractive in this context; see,

for instance, Brunner (1995) and Kuo & Mallick (1997) as well as Gelfand (1999) who offers a

review. For median regression modelling, there is only the work of Kottas & Gelfand (2001),

summarized below, as well as that of Walker & Mallick (1999), using a Pólya tree prior, and

Hanson & Johnson (2002), using a mixture of Pólya trees prior.

Kottas & Gelfand (2001) propose two classes of median regression models introducing two

fully Bayesian modelling approaches for the error distribution, a semiparametric and a fully

non-parametric one. Both models are based on mixtures with Dirichlet process priors placed

on the mixing distributions. The resulting families of error distributions are rich enough to

allow for extra variability, skewness and general tail behaviour. Posterior inference, for both

models, is carried out through the use of Gibbs sampling. Furthermore, using ideas from

Gelfand & Kottas (2002), they demonstrate how full inference for rather general functionals of

the underlying error distribution can be achieved. The methodology can be extended to in-

corporate censoring by introducing latent variables. However, in the presence of moderate to

substantial censoring, fitting the more general fully non-parametric error model becomes

unstable relative to the semiparametric error model as illustrated in Kottas & Gelfand (2001).

As censoring is arguably the most distinguishing feature of survival data, we employ here the

semiparametric specification.

The primary contribution of this paper is to show how the approach of Kottas & Gelfand

(2001), applied to survival data, can accommodate the induced median residual life regression.

As a result, in a flexible semiparametric modelling framework, exact inference about essen-

tially all features of the residual survival distribution can be obtained.

Estimation approaches for the mean residual life and median residual life functions do exist

in the classical literature (see e.g. Alam & Kulasekera, 1993; Kochar et al., 2000, where further

references can be found). However, these are either based on parametric assumptions or are

limited to asymptotic inference in non-parametric settings. Moreover, essentially all the ex-

isting work ignores covariate information with the exception of Maguluri & Zhang (1994)

where a mean residual life regression model is studied. In the Bayesian literature, we have only

found Johnson (1999), which provides an expression for the posterior expectation of mean

residual life for a specific type of interval data under a Dirichlet process prior for the survival

distribution.
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Hence the paper is organized as follows. In section 2, we review the basics of residual life

distributions. In section 3, we review Dirichlet process mixing, which we use to model random

distributions. Section 4 considers the special case of residual life with no covariates. Section 5

brings in covariate information. Section 6 presents an alternative modelling formulation,

based on the PH specification, modelling the baseline cumulative hazard using a Gamma

process. Section 7 explicitly details the modelling, the fitting approach and computational

issues. Section 8 considers a set of survival times with moderate censoring for patients with

small cell lung cancer. The paper ends with a summary and brief discussion in section 9.

2. The residual life distribution

Let S(t) denote the survival function for the continuous random variable T with support on

R+, i.e. S(t) ¼ P(T > t), t > 0. We define the residual survival function at t0 as

St0ðtÞ ¼ PðT > t j T > t0Þ ¼
SðtÞ
Sðt0Þ

; t > t0:

Equivalently, the conditional distribution of residual life T ) t0 ŒT > t0 is defined. If S(t) is

differentiable the associated residual survival density function at t0 is ft0(t) ¼ (S(t0))
)1()dS(t)/

dt), t > t0.

The mean residual life at t0 is

EðT j T > t0Þ ¼
Z 1

t0

tft0ðtÞdt ¼ t0 þ ðSðt0ÞÞ�1

Z 1

t0

SðtÞdt; ð1Þ

provided tS(t) fi 0 as t fi 1. The right-most expression in (1) shows immediately that the

mean residual life need not exist. On the other hand, the median residual life gt0 satisfiesZ 1

gt0

ft0ðtÞdt ¼ 0:5

equivalently 0.5 ¼ St0(gt0) ¼ S(gt0)/S(t0). So formally gt0 ¼ S)1(0.5S(t0)). Strictly speaking, the

mean and median residual life should have t0 subtracted from the given expressions. However,

in the sequel, we suppress this known translation.

We note that the set of functionals {gt0 : t0 ‡ 0} does not uniquely determine S(t) (Gupta &

Langford, 1984). This is not a problem for us as we are modelling S(t) to begin with and

inferring about the induced St0 and gt0.
For the general PH model given in section 1, H(t; x) ¼ H0(t) exp(x

Tb), it is immediate that

gt0ðxÞ ¼ H�1
0 ðH0ðt0Þ þ ðlog 2Þ expð�xTbÞÞ ð2Þ

while for the general AFT model in section 1, H(t; x) ¼ H0(t exp(x
Tb)), we have

gt0ðxÞ ¼ expð�xTbÞH�1
0 ððlog 2Þ þ H0ðt0 expðxTbÞÞÞ: ð3Þ

It is evident that in either case we still have a linear regression for the median residual life but

on a transformed scale.

If H0 is known in (2) or in (3) the link function for the regression is known. For instance, in

the special case of a Weibull hazard, the only example of both a PH and an AFT specification,

gt0ðxÞ ¼ ðtc0 þ ðlog 2Þ expð�xTbÞÞ1=c; ð4Þ

where c is the shape parameter of the Weibull distribution with survival function

parameterized as S(t; x) ¼ exp()tc ex
Tb).
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Of course in the semiparametric context, either the cumulative hazard or the error distri-

bution is modelled non-parametrically so that the link function is unknown. As we propose to

model the distribution directly, rather than the hazard, we now turn to our approach for non-

parametric specifications for the distribution of T. From the Bayesian perspective if this

distribution is unknown it is assumed to be random from a class of distributions and a prior is

specified over this class. The priors we propose arise through Dirichlet process mixing. In the

case of no covariates we can place this prior on a dense class within the class of all distri-

butions on R1 by modelling the distribution of log T. When the regression is introduced we

are modelling the error distribution. In order to define a median regression for log T a median

zero distribution is required for the errors. As noted in section 1, we consider a flexible family

of median zero distributions proposed in Kottas & Gelfand (2001).

3. Dirichlet process mixture models

Following Ferguson (1973), a distribution G on H follows a Dirichlet process DP(mG0) if,

given an arbitrary finite measurable partition, B1, . . . ,Br of H, the joint distribution of

(G(B1), . . . ,G(Br)) is Dirichlet (mG0(B1), . . . ,mG0(Br)), where G(Bi) and G0(Bi) denote the

probability of set Bi under G and G0, respectively. Here, G0 is a specified distribution on H and

m > 0 is a precision parameter. Let K(Æ; h) be a parametric family of distribution functions

(c.d.f.’s), indexed by h 2 H, with associated densities, k(Æ; h). If G is proper we define the

mixture distribution

F ð	;GÞ ¼
Z

Kð	; hÞGðdhÞ: ð5Þ

In (5) it is useful to think of G(dh) as the conditional distribution of h given G. Differentiating

both sides of (5) with respect to (Æ) defines f(Æ; G) ¼ � k(Æ; h)G(dh).

If G is random say G 
 DP(mG0), then F(Æ; G) is random. Letting D ¼ {Yi, i ¼ 1, . . . ,n}

denote a sample from F(Æ; G) and using the bracket notation of Gelfand & Smith (1990), we

write its posterior as [F(Æ; G) ŒD]. Functionals of F(Æ; G), for which we use the generic notation

Q(F(Æ; G)), are of interest with posteriors denoted by [Q(F(Æ; G)) ŒD].
In the context of (5), suppose for each Yi, i ¼ 1, . . . ,n we introduce a latent hi and

assume that, given the hi’s, the Yi’s are conditionally independent, distributed as k(Æ; hi).

Assume further that the hi’s are conditionally independent and identically distributed given

G. As a result, marginalizing over the hi’s, the Yi’s are still independent, now conditionally

on G, with joint density
Qn

i¼1 f ðyi;GÞ ¼
Qn

i¼1

R
kðyi; hiÞGðdhiÞ. Adding G 
 DP(mG0),

possibly along with hyperpriors on m (see Escobar & West, 1995) and/or the parameters of

G0, completes the Bayesian model specification. Such Dirichlet process mixture models

were originally studied by Antoniak (1974) and Lo (1984). In particular, Antoniak (1974)

noted that this Bayesian model can be marginalized over G; a result that forms the basis

of several MCMC algorithms (Escobar, 1994; West et al., 1994; Escobar & West, 1995;

Bush & MacEachern, 1996; MacEachern & Müller, 1998; Neal, 2000) which can be im-

plemented to obtain samples from the posterior [h1, . . . ,hn ŒD] resulting after the margi-

nalization over G.

Gelfand & Mukhopadhyay (1995) describe how to use these samples to infer about linear

functionals associated with F(Æ; G). They show how posterior expectations of linear functionals

and products of linear functionals can be computed. Restriction to posterior moments of

linear functionals severely limits inference. Gelfand & Kottas (2002) provide a computational

approach to obtain the entire posterior distribution for more general functionals. Hence, full

inference is available for many population features and for comparing a feature across
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populations. Briefly, note that for a linear functional Q, Q(F(Æ; G)) ¼ � Q(K(Æ; h0))G(dh0).

Now, instead of marginalizing over G in [h0, h, G ŒD] / [D Œh][h0, h ŒG][G], observe that

½h0; h;G j D / ½h0 j G½G j h½h j D:

Hence given the posterior sample h�b ¼ ðh�b1; . . . ; h�bnÞ, b ¼ 1, . . . ,B, for each h�b draw

G�
b 
 ½G j h�b which is an updated Dirichlet process DPðm0G0

0bÞ, where m¢ ¼ m + n and

G0
0b ¼ ðm þ nÞ�1ðmG0 þ

Pn
i¼1 dh�bi

Þ, with da a degenerate distribution at a (Ferguson, 1973).

Then draw independent h�0lb 
 G�
b, for l ¼ 1, . . . ,L. Finally, Q�

b � QðF ð	;G�
bÞÞ ¼

L�1
PL

l¼1 QðKð	; h�0lbÞÞ is a Monte Carlo integration for a realization from [Q(F(Æ; G)) ŒD].
To obtain an approximate realization from ½G j h�b we use the constructive definition of

Sethuraman (1994) with a partial sum approximation that we justify through certain con-

vergence results. A practical rule to choose the number of terms in the partial sum approxi-

mation is also provided. Sampling from the posterior of the ‘c.d.f.-at-a-point’ functional

F(y0; G), for a grid of points, we can invert to obtain samples from the posterior of any

quantile functional. Other functionals of interest can also be handled.

If we write h ¼ (h(1), h(2)), we might place a Dirichlet process prior on h(1), i.e. h(1) 
 G

where G 
 DP(mG0) with a parametric prior on h(2), yielding F(Æ; G, h(2)) ¼
� K(Æ; h(1), h(2))G(dh(1)), a semiparametric specification.

4. The case of no covariates

Following the development of the previous section, we seek to create a random residual life

distribution for T given t0, which we denote by F T
t0 ð	;GÞ. In fact, we model Y ¼ log T given

y0 ¼ log t0, i.e. F Y
y0 ð	;GÞ. The closure of the family of densities corresponding to distributions

F Y ð	;GÞ ¼
Z

U
	 � l

r

� �
Gðdl; drÞ; ð6Þ

where U is the standard normal distribution function, contains all densities on R1 (Ferguson,

1983; Lo, 1984). Hence if G 
 DP(mG0), (6) provides a random realization from a class of

distributions that is dense in the entire class of distributions on R1.

Then, extending the notation of section 2, SYy0ð	;GÞ ¼ SY ð	;GÞ=SY ðy0;GÞ, on (y0, 1), where

SY(Æ; G) ¼ 1 ) FY(Æ; G) and gy0ðGÞ ¼ ðSYy0Þ
�1ð0:5;GÞ. Straightforwardly, gt0(G) ¼ exp(gy0(G))

and STt0 ð	;GÞ ¼ ST ð	;GÞ=ST ðt0;GÞ where ST(t; G) ¼ SY(log t; G).

How can the methodology of Gelfand & Kottas (2002), described briefly at the end of the

previous section, be used to obtain full inference regarding STt0 ðt; GÞ, for fixed t, and gt0(G), i.e.
the posteriors given data D, ½STt0 ðt;GÞ j D and [gt0(G) ŒD]? Following section 3, for a grid of t

values say t(1) < t(2) < 	 	 	 < t(K) and a posterior sample G�
b; b ¼ 1,2, . . . ,B, we can create a

K · B matrix say V where Vkb ¼ F Y ðyðkÞ;G�
bÞ is a realization from [FY(y(k); G) ŒD] with

y(k) ¼ log t(k). But thenW ¼ J ) V, where J is the K · B matrix with all its elements equal to

1, is such that Wkb is a realization from [SY(y(k); G) ŒD] and hence a realization from

[ST(t(k); G) ŒD]. In fact, the kth row ofW provides a posterior sample from [ST(t(k); G) ŒD]. But
also, the bth column of W provides K points on a random posterior realization of the curve

ST(Æ; G). With interpolation, we obtain essentially a posterior realization of this curve.

Next, suppose we divide all rows of W by the first row resulting in a matrix W (1). Now the

entries in the kth row of W (1), k > 1, are posterior samples from ½STtð1Þ ðtðkÞ;GÞ j D and the

entries in the bth column of W (1) provide K ) 1 points on a random posterior realization of

STtð1Þ ð	; GÞ. Again, interpolation enables essentially a posterior realization of this curve. But

then, appropriate inversion of this curve supplies essentially a realization from [gt(1)(G) ŒD].
The B columns of W(1) provide B posterior realizations of ½STtð1Þ ð	; GÞ j D and B samples from

Scand J Statist 30 Regression for median residual life 655

� Board of the Foundation of the Scandinavian Journal of Statistics 2003.



[gt(1)(G) ŒD]. Hence, given t(1), posterior inference for the residual life curve and for the median

residual life (in fact, any quantile of the residual life distribution) is immediate.

Evidently, if we divide all rows ofW by the second row we can obtain posterior inference for

the residual life curve and for the median residual life given t(2). So now, an overall compu-

tational strategy is clear. Choose the set of t’s to be sufficiently dense over the portion of R+ of

interest, to include all t’s for which we seek the residual life distribution and such that, beyond

the largest t of interest, there are enough t’s to provide an adequate domain for the residual life

distribution associated with this t.

Lastly, the technical discussion in Gelfand & Kottas (2002, section 3.2) clarifies that, as the

residual life functional is defined through a ratio of bounded linear functionals, the partial sum

approximation approach described at the end of section 3 and above yields convergence in

probability to the exact functional. For the median residual life functional convergence in

probability emerges using theorem 4 from Gelfand & Kottas (2002).

5. The regression case

As explained in sections 1 and 2, with covariates, we first formulate a semiparametric median

regression model for log survival time which in turn, induces a regression for the residual life

distribution and the median residual life. Explicitly, we have

Y ¼ log T ¼ xTb þ �; ð7Þ

where x ¼ (1, x1, . . . , xp)
T, b ¼ (b0, b1, . . . , bp)

T and � has a median zero distribution.

Next, we summarize briefly the semiparametric median zero family of distributions on R1

proposed in Kottas & Gelfand (2001).

Let f(Æ; h) be a symmetric (about 0) unimodal density on R1 where h > 0 is a scale pa-

rameter. Define

pð	; h; cÞ ¼ c�1f ð	c�1; hÞ1ð�1;0Þð	Þ þ cf ð	c; hÞ1½0;1Þð	Þ; ð8Þ

where c > 0. Any member of this family, with c „ 1, is a skewed distribution with the type and

amount of skewness depending on the value of c. The case of symmetry corresponds to c ¼ 1,

yielding p(Æ; h,1) ” f(Æ; h), while for c < 1(>1) the resulting distribution is right (left) skewed.

c controls the rate at which the density drops off on the positive and negative axes. Regardless,

the mass remains 0.5 on each so that the median is 0 but a discontinuity of the density occurs

at the origin. The unique mode is still at 0. The c.d.f. of (8) is

P(Æ; h, c) ¼ F(Æc)1; h)1()1,0)(Æ) + F(Æc; h)1[0,1)(Æ), where F(Æ; h) is the c.d.f. associated with

f(Æ; h). The densities in (8) are closely related to the split densities introduced by Geweke (1989)

as importance sampling densities.

Properties of (8) are developed in Kottas & Gelfand (2001). Here we only note that, to

clarify how c affects the skewness of (8), we might reparametrize to a skewness functional. As,

for a general f, moments associated with (8) need not exist, the Bowley coefficient (Groeneveld

& Meeden, 1984) being free of moments, is useful. This coefficient,

dðh; cÞ � q0:75ðh; cÞ þ q0:25ðh; cÞ � 2q0:5ðh; cÞ
q0:75ðh; cÞ � q0:25ðh; cÞ

¼ 1� c2

1þ c2
ð9Þ

under (8) by straightforward calculation. Evidently, d 2 ()1, 1) with d ¼ 0 indicating

symmetry and d ¼ 1()1) indicating extreme right (left) skewness.

To introduce Dirichlet process mixing to (8) we consider general scale mixtures of p(Æ; h, c).
For a proper G, consider
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f ð	;G; cÞ ¼
Z

pð	; h; cÞGðdhÞ: ð10Þ

Mixing on h to create the semiparametric family in (10) preserves median 0 while enriching the

class of models in terms of their dispersion. Note that, even if the mean of p(Æ; h, c) exists, the
mean of (10) need not exist for arbitrary G. Also, the class (10) is not made richer by one

choice of f(Æ; h) in (8) versus another. Attractively, d is again given by (9) for the mixture (10).

If G is assumed to arise from a Dirichlet process prior, the full inference approach described in

section 3 will be applicable.

Returning to (7), for a sample of survival times Ti, i ¼ 1, . . . ,n we now assume that the �i
are distributed according to (10). That is, Yi 
 f ð	 � xTi b;G; cÞ, which, as in section 2, induces

a linear regression, on a transformed scale, for the residual life curve and for the median

residual life.

6. An alternative version using the PH model

An alternate approach to introduce a regression into the residual life function or the

median residual life is in the PH setting. For instance, Kalbfleisch (1978) models

the unknown baseline cumulative hazard function using a Gamma process. Alternatively,

the extended Gamma process (Dykstra & Laud, 1981) can be used to model the hazard

function itself.

To illustrate with the former, first in the absence of covariates St0(t) ¼ exp{)(H0(t) )
H0(t0))}, t > t0. Define rt0(t) ¼ H0(t) ) H0(t0). If H0 comes from a Gamma process GP(cR),

where R is a specified cumulative hazard and c > 0, i.e. for any t, H0(t) 
 Gamma(cR(t), c), a

Gamma distribution with mean R(t) and variance R(t)/c then rt0(t) 
 Gamma(c(R(t) ) R(t0)),
c). With n ordered observations t(1) < t(2) < 	 	 	 < t(n) the vector r ¼ (r0(t(1)),

rt(1)(t(2)), . . . ,rt(n)1)(t(n))), where rt(i)1)(t(i)) ¼ H0(t(i)) ) H0(t(i)1)), has components that are, a priori,

independent Gamma variables and, clearly
Pi

j¼1 rtðj�1Þ ðtðjÞÞ ¼ H0ðtðiÞÞ, i ¼ 1, . . . ,n.

Hence with posterior samples r�b; b ¼ 1, . . . ,B from [r ŒD] and interpolation we can obtain a

posterior realization from [H0(Æ) ŒD] and thus from rt0(Æ) ¼ H0(Æ) ) H0(t0) given D for any t0.

But rt0(gt0(H0)) ¼ log 2 determines gt0(H0) so each posterior realization r�b yields an g�t0;b.
In practice, the grid of t values arising from the data will neither be fine enough or regular

enough to adequately handle the required interpolation. Additional sampling from the

Gamma process will be needed. To introduce covariates, now St0(t; x) ¼ exp{)(H0(t) )
H0(t0)) exp(x

Tb)}, t > t0, so we can define rt0(t; x) ¼ rt0(t) exp(x
Tb). Now posterior realiza-

tions from r and b enable posterior realizations from gt0(x).

7. Modelling details, model fitting and computational issues

Here we present explicit details for the regression case based on the class of error distributions

presented in section 5. We discuss prior specification, simulation-based model fitting and

inference for the residual life distribution and median residual life function.

To specify (10), we choose a split normal for the kernel of the mixture. Hence (8) becomes

pð	; h;/Þ ¼ fN ð	 j 0;/hÞ1ð�1;0Þð	Þ þ fN ð	 j 0; h=/Þ1½0;1Þð	Þ; ð11Þ

where fN(Æ Œl, r2) denotes the N(l, r2) density and we have reparameterized from c to / ¼ c2.
We adopt a Dirichlet process prior for G whence the semiparametric model is completed by

specifying parametric priors for b and /. We take a multivariate normal prior for the former
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and a Gamma(a, b) prior (with mean a/b) for the latter. Letting Yi ¼ log Ti, i ¼ 1, . . . ,n, the

resulting full Bayesian model has the hierarchical structure:

Yi j b;/; hi 
ind: pðyi � xTi b; hi;/Þ; i ¼ 1; . . . ; n;

hi j G 
i:i:d: G; i ¼ 1; . . . ; n;
G 
 DPðmG0Þ;
b 
 Npþ1ðl;RÞ;
/ 
 Gammaða; bÞ;

ð12Þ

where the base distribution G0 for the Dirichlet process is taken to be an IGamma(s1, s2) (with

mean s2/(s1 ) 1), provided s1 > 1). In fact, the components of the vector b are assumed a

priori independent, hence R ¼ diagðr2
0; r2

1; . . . ; r
2
pÞ with l ¼ (l0, l1, . . . ,lp)

T. The hyperpa-

rameters are fixed. Prior specification can be accomplished in a rather non-informative fashion

using only a rough range, r, for survival time on the logarithmic scale provided either from

previous studies or from the data in hand. To specify G0, we work with the parametric version

of the model, emerging when m fi 0+, that replaces the first three stages in (12) with

Yi j b;/; h 
ind: pðyi � xTi b; h;/Þ, i ¼ 1, . . . ,n, and h 
 IGamma(s1, s2). h being a scale param-

eter, we set the mean, s2/(s1 ) 1), of G0 equal to (r/6)2 or perhaps (r/4)2. G0 is fully specified by

taking s1 ¼ 2 implying infinite variance. Adding a prior for m does not complicate the fitting

details (Escobar & West, 1995), but is not done here because we have found very little

sensitivity to the choice of its value. For the data set of section 8, we experimented with values

of m between 0.5 and 10 obtaining essentially identical posterior inference (taking eventually

m ¼ 1). For the regression coefficients, we follow the standard approach, assuming lj ¼ 0 and

large variances r2
j , j ¼ 0,1, . . . ,p. Finally, we need to supply the hyperparameters a and b,

corresponding to the prior of /. Seeking a specification that, a priori, does not favour

skewness we centre this prior around 1, yielding a ¼ b, assuming large variance. We note that

a choice of a < 1 is not reasonable since then the prior has an asymptote at 0 which may

strongly affect the behaviour of the posterior. In the example of section 8, we take

a ¼ b ¼ 2.5, implying a priori a range for / roughly from 0 to 3.5 and P(/ < 1) ¼ 0.584.

To obtain inferences for the vector of regression coefficients, for the skewness in the error

distribution (through the parameter /), and for functionals of the residual life distribution we

need the joint posterior [b, /, h ŒD], where h ¼ (h1, . . . ,hn) and D ¼ {yi, xi, i ¼ 1, . . . ,n},

obtained upon marginalization over G. In fact, we resort to simulation-based fitting of the

model, employing a Gibbs sampler (Gelfand & Smith, 1990) whose full conditionals are briefly

described next; see Kottas & Gelfand (2001, appendix A) for the complete implementation

details.

The full conditional for / is a generalized inverse Gaussian distribution that can be sampled

efficiently using a ratio of uniforms generation method given in Dagpunar (1988, p. 133).

Following Escobar & West (1995), the full conditional for each hi, i ¼ 1, . . . ,n, is a mixed

distribution with point masses at hi ¼ hj, j ¼ 1, . . . ,n, j „ i and continuous mass on an inverse

Gamma distribution. The required weights are easily computed resulting in straightforward

draws from these full conditionals. Finally, the full conditionals for the regression coefficients

bj, j ¼ 0,1, . . . ,p, can be expressed as piecewise densities with components that are truncated

normals, which we sample using the suggestion of Devroye (1986, p. 38).

The algorithm can be readily modified to incorporate censoring. In particular, a combi-

nation of Gibbs sampling and data augmentation can be employed to handle left, right or

interval censored survival times. Briefly, for any Ti which are, say, right censored at Vi, i.e. we

only know Vi < Ti, we can retain Yi ¼ log Ti in (12) but employ an additional updating step

in the Gibbs sampler using the structure induced by the Dirichlet process prior. In particular,

658 A. E. Gelfand and A. Kottas Scand J Statist 30

� Board of the Foundation of the Scandinavian Journal of Statistics 2003.



given b, / and h, we update Yi from
R
pðyi � xTi b; h0;/Þ½h0 j hdh0 subject to Yi > log Vi.

Here [h0 Œh] is a mixed distribution with point masses at hi, i ¼ 1, . . . ,n and continuous mass on

G0. But then, given the observed Yi’s and the updated censored Yi’s, we update b, / and the

hi’s as above. Again, we refer to Kottas & Gelfand (2001, section 5) for more details.

The posterior sample ðb�
b;/

�
b; h

�
bÞ, b ¼ 1, . . . ,B obtained from the Gibbs sampler yields

inference for the residual life distribution using a simple modification of the approach

described in section 4 for the no covariates case. All that is needed here is to apply the

method for the specific combination of covariate levels say x0. Hence, instead of (6), we

work with

F ð	 � xT0 b;G;/Þ ¼
Z

P ð	 � xT0b; h;/ÞGðdhÞ;

where P(Æ; h, /) is the c.d.f. of (11). Now the K · B matrix consists of entries

F ðyðkÞ � xT0b�
b;G

�
b;/

�
bÞ, k ¼ 1, . . . ,K, b ¼ 1, . . . ,B. All the other details are the same as with

the no covariates case. We note that drawing G�
b is only done once at iteration b for all the

x0’s of interest. Finally, in the regression context, the range of inferences that can be

reported is broader. Fixing x0, we can compare the posteriors of median residual life for

several conditional t0’s of interest. But also fixing t0, we can observe how gt0(x) evolves with
x. In particular, for a continuous covariate, working with a grid of its possible values, we

obtain the posterior estimate with ranges of uncertainty for the median residual life

regression curve.
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Fig. 1. Posteriors of regression coefficients (b0 upper left, b1 upper right, b2 lower left) and skewness

functional d (lower right) under the semiparametric regression model.
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8. Data analysis

We illustrate the methodology with a data set involving censoring analysed using median

regression models initially by Ying et al. (1995) and later by Yang (1999), Walker & Mallick

(1999) and Kottas & Gelfand (2001). It consists of survival times in days for 121 patients with

small cell lung cancer. Among them, 98 are observed with the remaining 23 right censored.

Each patient was randomly assigned to one of two treatments A and B, achieving 62 and 59

patients, respectively. Also available is the patient’s age at entry. We fit model (12) to this data

set with Yi ¼ log10 Ti, xi1 ¼ 1 if the ith patient is receiving treatment A and 2 otherwise and

xi2 ¼ ith patient’s entry age. Following the suggestions of section 7 regarding the prior

hyperparameters, we take m ¼ 1, s1 ¼ 2, s2 ¼ 0.203, lj ¼ 0, r2
j ¼ 50, j ¼ 0, 1, 2 and

a ¼ b ¼ 2.5. The value of s2 corresponds to a range r ¼ 1.8 with s2 ¼ (r/4)2, a rather vague

specification given that the smallest (observed) survival time on the log scale is equal to 1.919

with the largest (censored) being 3.297. Kottas & Gelfand (2001) offer a comparison of pos-

terior results under s2 ¼ 0.203 and s2 ¼ 1.5, a dramatically larger value, revealing robustness

of model (12).

The posteriors of the regression coefficients (see Fig. 1) provide evidence that survival time

decreases with increasing age and that treatment A is better. Moreover a right-skewed error

distribution is clearly favoured as the posterior of the skewness functional d ¼ (1 ) /)/(1 + /),
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Fig. 2. Posteriors of median survival time and median residual life at t0 ¼ 200, 450 or 1000 days, for a

47-year-old patient receiving treatment B (dashed-dotted lines) or treatment A (solid lines). The left

column corresponds to the semiparametric model and the right column to the parametric model.
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also given in Fig. 1, indicates; see Kottas & Gelfand (2001) for further illustrations with

functionals of the survival distribution at certain combinations of covariate values. In parti-

cular, the posteriors of median survival time for both treatments at certain ages are bimodal,

an interesting feature that the model captures. See Figs. 2–4 where we include the posteriors of

median survival time for three values of age.

In the interest of comparing the results from the semiparametric model (12) with a para-

metric analysis, we consider a PH regression model with a Weibull baseline cumulative hazard,

Hðti; xi1; xi2Þ ¼ tci expðb0 þ b1xi1 þ b2xi2Þ, assuming a priori that b ¼ ðb0; b1; b2ÞT 

N3ðð0; 0; 0ÞT ; diagðs20; s21; s22ÞÞ and c 
 Gamma(c, d). Under this model, the median residual life

has the convenient form given in (4) and therefore its posterior immediately emerges if we

sample from [b, c ŒD]. To this end, we employ Gibbs sampling with auxiliary variables in the

spirit of Damien et al. (1999). We performed prior sensitivity analysis with values for s2j ,
j ¼ 0, 1, 2 ranging from 50 to 400 and values for c and d corresponding to Gamma distri-

butions with spread ranging from (0, 10) to (0, 20) and medians from 1.5 to 2.5. The differ-

ences in the resulting posteriors were inconsequential in all cases yielding both age and

treatment as significant covariates and favouring an increasing baseline hazard function. The

final results are based on the choice c ¼ 1.4, d ¼ 0.7 and s2j ¼ 50, j ¼ 0, 1, 2 under which 95
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Fig. 3. Posteriors of median survival time and median residual life at t0 ¼ 200, 450 or 1000 days, for a

63-year-old patient receiving treatment A (solid lines) or treatment B (dashed-dotted lines). The left

column has the posteriors under the semiparametric model and the right under the parametric model.

Scand J Statist 30 Regression for median residual life 661

� Board of the Foundation of the Scandinavian Journal of Statistics 2003.



per cent posterior interval estimates for b1, b2 and c are (0.1639, 0.9443), (0.0013, 0.0510) and

(1.1708, 1.6121), respectively.

Turning to inference for the residual life distribution, we first study the median residual life

for six combinations of covariate values and three values of t0. Specifically, we consider both

treatments for three values of age, 47, 63 and 74 years, corresponding to the 0.05, 0.5 and 0.95

quantiles, respectively, of the observed values of entry age. Moreover we take t0 ¼ 200, 450

and 1000 days, values which correspond roughly to the 0.2, 0.5 and 0.9 quantiles, respectively,

of the 98 observed survival times. Figures 2–4 provide all the resulting posteriors of median

residual life under both models. The posteriors of median survival time (i.e. median residual

life at t0 ¼ 0) are also included. The greater flexibility of the semiparametric regression model

is evident, for instance, suggesting bimodality in the posteriors of median survival time and

median residual life at 200 days. (We do not think this is an artefact of the prior. It arises only

in some of the posteriors and, in fact, occurs at the smallest t0 we considered, the choice where

the data provides the most information.) The posteriors from the semiparametric regression

model suggest a decrease of median residual life with age, particularly evident at

t0 ¼ 200 days, and superiority of treatment A. Finally, based on the semiparametric regres-

sion model, in Fig. 5, we plot the posterior predictive residual survival functions at t0 ¼ 200

and 450 days for the six combinations of covariate levels considered above.
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Fig. 4. Posteriors of median survival time and median residual life at t0 ¼ 200, 450 or 1000 days, for a

74-year-old patient receiving treatment A (solid lines) or treatment B (dashed-dotted lines). The left

column has the posteriors under the semiparametric model and the right under the parametric model.
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9. Summary and concluding remarks

In this paper, building on earlier work for median regression modelling, we have developed a

semiparametric regression model for median residual life. Moreover, we have shown how full

and exact inference for other features of the residual life distribution can be obtained. The

model is induced by semiparametric AFT median regression modelling for log survival time,

based on a Dirichlet process mixture for the error distribution. We have provided approaches

for prior specification and simulation-based model fitting and inference. Finally, we have

applied the methodology to the analysis of a data set and included comparison with results

from a standard parametric model.

Any particular specification for the initial regression model, either an AFT or a PH spe-

cification, necessarily induces certain (potentially restrictive) structure on the corresponding

regression for the residual life distribution. The Bayesian non-parametric models we have

proposed allow data-driven deviations from commonly used AFT or PH specifications

resulting in more flexible regression models to explain residual survival time. An alternative
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Fig. 5. Under the semiparametric regression model, posterior predictive residual survival functions at

t0 ¼ 200 days (left) and 450 days (right) for treatment A (solid lines) and treatment B (dashed-dotted

lines) at ages 47, 63 and 74 years (upper, middle and lower curve, respectively, in each case).
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approach would attempt to provide Bayesian non-parametric models directly for classes of

percentile residual life functions or mean residual life functions in order to achieve inference

for median or mean residual life regression.
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