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SUMMARY

We consider Bayesian sensitivity analysis for unmeasured confounding in observational studies where
the association between a binary exposure, binary response, measured confounders and a single binary
unmeasured confounder can be formulated using logistic regression models. A model for unmeasured
confounding is presented along with a family of prior distributions that model beliefs about a possible
unknown unmeasured confounder. Simulation from the posterior distribution is accomplished using Markov
chain Monte Carlo. Because the model for unmeasured confounding is not identifiable, standard large-
sample theory for Bayesian analysis is not applicable. Consequently, the impact of different choices of
prior distributions on the coverage probability of credible intervals is unknown. Using simulations, we
investigate the coverage probability when averaged with respect to various distributions over the parameter
space. The results indicate that credible intervals will have approximately nominal coverage probability,
on average, when the prior distribution used for sensitivity analysis approximates the sampling distribution
of model parameters in a hypothetical sequence of observational studies. We motivate the method in a
study of the effectiveness of beta blocker therapy for treatment of heart failure. Copyright q 2006 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Consider a retrospective cohort study designed to estimate the effectiveness of beta blocker therapy
for treatment of heart failure using linked records of hospital episodes, prescription claims data, and
death certificates. An important limitation is that the data do not contain detailed clinical information
on patient characteristics that may influence prescribed therapy [1, 2]. Patients who are prescribed
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a beta blocker when discharged from hospital may differ systematically from patients without
such therapy with respect to clinical variables that are not adequately measured. Consequently, the
estimated effect of beta blocker therapy on mortality may be biased from unmeasured confounding
even after adjusting for measured covariates [3].

A solution is to conduct a sensitivity analysis for unmeasured confounding using Bayesian tech-
niques [4–8]. The model for the relationship between exposure to beta blocker therapy, measured
covariates and the outcome is expanded to include bias parameters which reflect the investigators’
beliefs about a binary unmeasured confounder. The resulting model is typically non-identifiable.
External information about unmeasured confounding is incorporated into the analysis as prior
distributions on bias parameters. The posterior distribution of the exposure effect summarizes
uncertainty due to unmeasured confounding in addition to random error.

A difficulty with this approach is that the impact of different choices of prior distributions on
the performance of interval estimators for the exposure effect is unknown. The method involves
Bayesian analysis using a non-identifiable model. Depending on the prior distribution, the poste-
rior mean may be asymptotically biased and credible intervals will not have nominal large sample
coverage probability [9]. Hence without identifiability, standard large-sample theory does not guar-
antee good performance of interval estimators regardless of the choice of prior distributions. This
is not a deficiency of Bayesian methods. Without identifiability, no statistical method will afford
interval estimates which have correct frequentist coverage levels. While Bayesian approaches to
sensitivity analysis for unmeasured confounding are discussed in several recent works [4–8], there
has been no investigation of the frequentist performance of interval estimators while addressing
the role of the prior distribution used for sensitivity analysis.

We address this limitation in the context of a real data example estimating the effectiveness of beta
blocker therapy for treatment of heart failure using healthcare administrative data. In Section 2,
we present a method of Bayesian sensitivity analysis (BSA) for unmeasured confounding for
observational studies where the association between a binary response, binary exposure, measured
confounders and a single binary unmeasured confounder can be formulated using logistic regression
models. We propose a family of prior distributions which model beliefs about a confounder which
is both unmeasured and unknown. In Section 3, we apply our method to the heart failure data
set. In Section 4, we conduct a simulation study to investigate the relationship between the prior
distribution used for sensitivity analysis and the frequentist performance of interval estimators for
the exposure effect. Following work by Gustafson [9] on Bayesian inference using non-identifiable
models, we estimate the coverage probability of interval estimators when averaged with respect
to various distributions over the parameter space. We demonstrate that interval estimators will
have desirable frequentist properties when averaged over a hypothetical sequence of observational
studies provided that the prior distribution used for sensitivity analysis approximates the sampling
distribution of model parameters in the sequence of studies. Section 5 concludes with a summary
and discussion.

2. BAYESIAN SENSITIVITY ANALYSIS (BSA) FOR UNMEASURED CONFOUNDING

2.1. A model for unmeasured confounding

Let X , Y and U denote dichotomous random variables taking values 1 or 0 to indicate the presence
or absence of an exposure, disease or unmeasured confounder, respectively. Let Z denote a p× 1
vector of measured covariates.
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Following Lin et al. [10], we use the factorization P(Y,U |X, Z) = P(Y |X,U, Z)P(U |X, Z)

and model the confounding effect of U using logistic regression models:

logit[P(Y = 1|X,U, Z)] = �0 + �1X + �U + �′Z (1)

logit[P(U = 1|X, Z)] = �0 + �1X + �′Z (2)

The variables X and U are assumed to not interact in their effect on Y . Extending equation (1)
to include interactions is straightforward, but creates ambiguity about the targets of inference.
Greenland [4] discusses these issues and argues that excluding interaction terms can typically be
justified in this context because it simplifies modelling and because their inclusion only modestly
affects inferences from sensitivity analysis.

As with other models for unmeasured confounding, the model is non-identifiable and indexed
by the bias parameters �0, �1, � and �, which reflect assumptions about the confounding effect
of U . The quantity exp(�) models the odds ratio of the association between U and Y given X
and Z , while the quantity exp(�1) models the odds ratio of the association between U and X
given Z . The parameter � models the correlation between U and Z given X . Non-identifiability is
apparent from the fact that when � = 0 the observed risk of Y within strata of X and Z , given by
P(Y = 1|X, Z) = P(Y = 1|X,U = 1, Z)P(U = 1|X, Z) + P(Y = 1|X,U = 0, Z)P(U = 0|X, Z),
does not depend on �0, �1 or �. Different parameter values may yield identical likelihood functions
for the observed data.

2.2. Prior specification

In principal, a prior distribution f (�0, �1, �, �, �0, �1, �) from any standard parametric family can
be used for BSA. Because our intent is to model prior beliefs about unmeasured confounding,
we consider the case where f (�0, �1, �, �, �0, �1, �) = f (�, �0, �1, �) f (�0, �1, �) and restrict our
attention to specifying f (�, �0, �1, �). We propose a family of priors distributions to model the
effect of a confounding variable U which is both unmeasured and unknown.

For the bias parameter �, we assign

f (�) ∝ exp

{
− �2

2c21

}
(3)

to model prior beliefs about the association between U and Y . This normal density is symmetric
and centred at zero to reflect the fact that because U is unknown, little can be said about whether
� is positive or negative. But this does not preclude prior assertions about the possible magnitude
of �. Depending on the investigation, it may be unlikely that U is a strong predictor of the disease.
Consequently, we specify c1>0 to limit the association between U and Y . For example, if the
investigator felt that � might be large in magnitude, then she might specify c1 = log(6)/1.96. This
would model the prior belief that the log-odds ratio of the association between U and Y is between
± log(6) with probability 95 per cent.

A prior distribution for �0 and �1 is assigned as a bivariate normal distribution

f (�0, �1) ∝ exp

⎧⎪⎨
⎪⎩−1

2

(
�0

�1

)′⎛⎝ c22 −c23/2

−c23/2 c23

⎞
⎠

−1 (
�0

�1

)⎫⎪⎬
⎪⎭ (4)
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where c2, c3>0 and 2c2>c3 so that the covariance matrix is positive definite. We specify c3 to
limit the possible associations between U and X . Additionally, the prior distribution limits the
prevalence of U within exposure groups, denoted P(U = 1|X). To see this, note that

P(U = 1|X, Z) = 1

1 + exp{−(�0 + �1X + �′Z)}

≈ 1

1 + exp{−(�0 + �1X)} + exp{−(�0 + �1X)}
[1 + exp{−(�0 + �1X)}]2 �′Z

based on a first order Taylor expansion of P(U = 1|X, Z) around E{Z}, where the components
of Z have been re-scaled to have mean zero and unit variance. Hence P(U = 1|X)= E{P(U =
1|X, Z)|X}≈ (1 + exp(−(�0 + �1X)))−1, or equivalently, logit[P(U = 1|X)]≈ �0 + �1x . Now
observe that based on in equation (4), we have Var{�0+�1X} = c22 for X = 0, 1 because Var{�0} = c22
and Var{�0+�1} =Var{�0}+Var{�1}+2Cov{�0, �1} = c22+c21−2c21/2= c22. Consequently, c2 limits
the magnitude of logit[P(U = 1|X)]. If the user specified c2 = log(6)/1.96, this would model the
belief that logit[P(U = 1|X)] lies between ± log(6) with probability 95 per cent.

We assign

f (�) ∝ exp

{
− �′�
2c24

}
(5)

where c4 limits the associations between Z and U . For example, setting c4 = log(6)/1.96 implies
that a unit change of one standard deviation of any component Z changes the log-odds of U by
at most ± log(6) with probability 95 per cent. If U was thought to be correlated with C , then a
larger value of c4 might be suitable. However, because Z is re-scaled to have unit variance, the
interpretation of � depends on the variance of Z .

To improve posterior simulation, we may further restrict �1 to be greater than zero without
affecting the resulting posterior distribution. The reason is that, because U is unmeasured, the
labelling U = 1 or 0 is arbitrary, and we may assume that U is more prevalent in exposed subjects.
IfU were more prevalent among unexposed subjects, we could define a new unmeasured confounder
U∗ = 1−U and switch the sign of �. The resulting variable U∗ would have the same confounding
effect of U and would be more prevalent in exposed subjects.

2.3. Posterior simulation

Let y, x and u denote vectors of length n of the observed responses, exposures and unmeasured
confounders in n study subjects and let z denote an n × p matrix of measured covariates. Our
objective is to study f (�0, �1, �, �, �0, �1, �|y, x, z), the posterior distribution of model parameters
given y, x and z and prior assumptions about unmeasured confounding. To accomplish this, we
sample from the posterior using Markov chain Monte Carlo (MCMC). To illustrate the main ideas,
observe that if u were measured then posterior inferences could be accomplished by fitting the
logistic regression models in equations (1) and (2). Therefore, posterior simulation may proceed
using two Gibbs sampling steps by treating u as missing data that is integrated out of the joint pos-
terior distribution f (�0, �1, �, �, �0, �1, �, u|y, x, z) [11]. The imputation step samples the latent u
from f (u|�0, �1, �, �, �0, �1, �, y, x, z). The posterior step samples from the posterior distributions
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from Bayesian logistic regressions of y on x , u and z and from u on x and z. Details are given in
Appendix A.

3. ESTIMATING THE EFFECTIVENESS OF BETA BLOCKER THERAPY
FOR TREATMENT OF HEART FAILURE

Returning to the example described in the introduction, we apply BSA to estimate the effect of beta
blockers on 1 year all-cause mortality among elderly residents of Vancouver BC, who have suffered
an acute exacerbation of heart failure. Hospital discharge summaries, prescription claims records
and death certificates were obtained from the British Columbia Linked Health Database [12]. The
study sample included all 945 Vancouver residents, aged 65 years or older, who were discharged
alive with a primary discharge diagnosis of heart failure (International Classification of Disease
ninth revision (ICD9) code 428) between April 1999 and March 2001. Only patients with a new
hospitalization for heart failure were included. Letting X denote exposure to beta blockers, we
set X equal to one if the subject was dispensed a beta blocker within 30 days of discharge from
hospital and zero otherwise. The response variable Y was set equal to one if the subject died
within 1 year of discharge from hospital and zero otherwise. Measured covariates included age
(categorical with three levels; 65–74, 75–84, �85 years), sex (binary with 1 indicating female
and zero otherwise), Polynczyk congestive heart failure casemix index [13] (continuous), hospital
length of stay in unit number of 10 day intervals (continuous), and contraindications (binary with 1
indicating presence of asthma or chronic obstructive pulmonary disorder (ICD9 code 491.0–493.9)
or diabetes (ICD9 code 250)).

We begin by estimating the effectiveness of beta blocker therapy while adjusting for measured
covariates, but ignoring possible unmeasured confounding. We fit a logistic regression model
of Y on X stratifying on quintiles of the estimated propensity score [14]. Thus we let Z be a
4× 1 vector with components taking values of one or zero to indicate quintile group membership.
The propensity scores are estimated using the fitted values from logistic regression of X on the
measured covariates with main effects and no interactions. To assess the balancing properties
of the propensity scores, we examine the distribution of measured covariates among exposed
and unexposed patients within quintile groups. The results are presented in Table I. Differences
in the covariate distributions are compared using t-tests and chi-square tests [14]. While some
imbalances are observed, none are statistically significant, and this indicates that exposed and
unexposed patients are fairly comparable within quintile groups. The analysis yields a log odds
ratio of −0.69 with 95 per cent two-tailed credible interval (−1.06,−0.33) for the effect of X
on Y , suggesting that beta blocker therapy is associated with a significant reduction in odds of
mortality.

Because of the lack of clinical information in healthcare administrative data, there are concerns
that the treatment effect estimate may be biased because it ignores possible unmeasured confounders
such as indications of disease severity [3]. We apply BSA to assess the sensitivity of the treatment
effect estimates to confounding from a possible unknown and unmeasured binary confounder. We
let Z from equations (1) and (2) be a 4× 1 vector of indicator variables indicating membership in
propensity score quintiles. We assign a diffuse independent multivariate normal prior for (�0, �1, �),
and we consider several prior distributions for the bias parameters (�, �0, �1, �) based on the family
specified in Section 2.2. We assign c1 = c3 = c4, and we let c1, c2, c3 and c4 equal log(3)/1.96
or log(6)/1.96. This corresponds to priors where �, �1 and each component of � are normally
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distributed, and lie between ± log(k) with probability 95 per cent, for k = 3, 6. The selected values
of c2 correspond to logit[P(U = 1|X)], for X = 0, 1, lying approximately between logit[1/(k+1)]
and logit[k/(k+1)] with probability 95 per cent, for k = 3, 6. We also study the limiting case where
c1, c2, c3, c4 equal zero. In this case, the prior distributions for �, �0, �1, � are point masses at 0,
and BSA corresponds to logistic regression of Y on X and Z ignoring unmeasured confounding.
In each analysis, the components of Z are rescaled to have mean zero and unit variance, and a
Markov chain of length 500 000 iterations is obtained with the 10 000 initial iterations discarded.
Convergence is assessed using the method of Gelman and Rubin [15].

Table II gives posterior means and 95 per cent two-tailed credible intervals for the log odds ratios
of the beta blocker effect �1 for different c1, c2, c3 and c4. Posterior density estimates are plotted
in Figure 1. The results indicate that the protective effect of beta blocker exposure on mortality is
robust to a variety of assumptions about unmeasured confounding. When c1 = c3 = c4 = 0, BSA
is equivalent to logistic regression of Y on X and Z ignoring unmeasured confounding. Larger
values of c1 = c3 = c4 yield modest increases in the length of credible intervals. This is depicted
by the flattening of the density functions in Figure 1. These results are consistent with intuition
because they correspond to greater uncertainty about the magnitude of unmeasured confounding.
The parameter c2 does not appear to greatly affect credible intervals.

For comparison, we contrast BSA with the method of sensitivity analysis for unmeasured
confounding proposed by Rosenbaum and Rubin [16]. The method of Rosenbaum and Rubin
involves fixing the bias parameters and then maximizing the likelihood of the observed data,
which has been integrated over the distribution of unmeasured confounder. For the beta blocker

Figure 1. Posterior distribution of the log-odds ratio of the beta blocker effect �1 from BSA
stratifying on quintiles of the propensity score. The solid curve refers to the naive analysis with
c1 = c2 = c3 = c4 = 0 ignoring unmeasured confounding. The dashed curves refer to the various

non-zero combinations of c1, c2, c3 and c4.
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DOI: 10.1002/sim



2338 L. C. McCANDLESS, P. GUSTAFSON AND A. LEVY

Table III. Point estimates of the beta blocker effect �1 as a function of the bias parameters �, �1 and �1
from sensitivity analysis using the method of Rosenbaum and Rubin [16].

�

�1 �0 − log(6)
1.96

− log(3)
1.96

0 log(3)
1.96

log(6)
1.96

0 − log(6)
1.96

−0.71 −0.70 −0.69 −0.70 −0.72

− log(3)
1.96

−0.71 −0.70 −0.69 −0.70 −0.72

0 −0.72 −0.70 −0.69 −0.70 −0.72

log(3)
1.96

−0.72 −0.70 −0.69 −0.70 −0.71

log(6)
1.96 −0.72 −0.70 −0.69 −0.70 −0.71

log(3)
1.96

− log(6)
1.96

−0.60 −0.63 −0.69 −0.77 −0.84

− log(3)
1.96

−0.59 −0.62 −0.69 −0.78 −0.85

0 −0.59 −0.62 −0.69 −0.78 −0.84

log(6)
1.96

− log(6)
1.96

−0.53 −0.58 −0.69 −0.82 −0.92

− log(3)
1.96

−0.51 −0.58 −0.69 −0.83 −0.92

0 −0.51 −0.58 −0.69 −0.82 −0.90

Standard errors equal 0.19 for all treatment effect estimates.

data, this calculation involves maximizing the likelihood function

L(�0, �1, �) =
n∏

i=1
[ f (yi |xi ,U = 1, zi ) f (U = 1|xi , zi ) + f (yi |xi ,U = 0, zi ) f (U = 0|xi , zi )]

=
n∏

i=1

[
exp{yi (�0 + �1xi + � + �′zi )}
1 + exp{�0 + �1xi + � + �′zi }

exp{�0 + �1xi + �′zi }
1 + exp{�0 + �1xi + �′zi }

+ exp{yi (�0 + �1xi + �′zi )}
1 + exp{�0 + �1xi + �′zi }

1

1 + exp{�0 + �1xi + �′zi }
]

over the parameters (�0, �1, �), for fixed bias parameters (�, �0, �1, �).
Table IIIpresents the results of the sensitivity analysis using the method of Rosenbaum and

Rubin. Each cell of Table III contains a point estimate of �1 for different values of (�, �0, �1).
The components of the bias parameters � are set equal to zero to ease the presentation of results.
For example, consider the bottom right cell in Table III. We have � = �1 = log(6)/1.96. This
corresponds to the instance where U increases the risk of Y and is more common among patients
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with X = 1. Hence we believe that the naive odds ratio ignoring unmeasured confounding is
attenuated towards zero. The sensitivity analysis yields �̂1 =−0.90 which is driven away from
zero. When � or �1 equals zero there is no unmeasured confounding. We do not consider �1<0.
As was emphasized in Section 2.2, because U is unmeasured, the labelling of U equal to one or
zero is arbitrary. Therefore, we can assume that the event U = 1 is more common among exposed
subjects. In Table III, standard errors for the point estimates are obtained from the inverse of the
observed information.

A limitation of the method of sensitivity analysis of Rosenbaum and Rubin is that the results
are presented in large tables. Standard errors are reported separately. The user must qualitatively
synthesize bias uncertainty with variability due to random sampling. Consequently the results
of the sensitivity analysis may be difficult to interpret, particularly when there are many bias
parameters. For the heart failure data set there are a total of seven bias parameters (�, �0, �1 and
�1, �2, �3, �4). In contrast, BSA incorporates prior information about bias parameters and yields a
single interval estimate for the exposure effect which summarizes uncertainty from bias and random
sampling.

The BSA methodology can alternatively be used in conjunction with direct regression on
measured covariates rather than on quintiles of the propensity score. To illustrate, we let Z
from equations (1) and (2) equal a 6× 1 vector of measured covariates (sex, age 75–84, age 84+,
contraindications, casemix index, and hospital length of stay). Table IV gives posterior means and
95 per cent two-tailed credible intervals for the log odds ratios of the beta blocker effect and
covariate effects for different c1, c2, c3 and c4. For the beta blocker effect, the results are similar
to those of Table II obtained from the regression on propensity score quintiles. Interestingly,
large values of c1 = c3 = c4 yield wider posterior distributions for the other regression coefficients.
This is not unexpected because allowing � to be non-zero in equation (2) implies that U is an
unmeasured confounder for the effect of Z on Y .

While the credible intervals for the exposure effect in Tables II and IV widen with increasing
c1, c2, c3 and c4, all of the interval estimates exclude zero, indicating that the protective effect
of beta blocker exposure on mortality is insensitive to a variety of assumptions about unmea-
sured confounding. In epidemiologic research on therapeutics using healthcare administrative data,
uncertainty from random error is often small in relation to uncertainty about bias [2]. But the results
of this analysis indicate that in certain settings, large prior uncertainty about possible bias does not
necessarily translate to large increases in posterior uncertainty about exposure effects. The combi-
nation of large sample size and large exposure effects may yield robustness of effect estimates to
pessimistic assumptions about unmeasured confounding. It is emphasized that only one source of
bias has been investigated. Other sources of bias, such as selection bias or information bias, can
distort the measure of association [2].

4. A SIMULATION STUDY OF THE FREQUENTIST PERFORMANCE
OF INTERVAL ESTIMATORS FROM BSA

4.1. Average coverage probability of interval estimators

An issue in interpreting the analysis of the beta blocker data is that we do not know how the choice
of prior distribution used for sensitivity analysis affects the performance of interval estimates. For
identifiable models, large sample theory guarantees that under standard regularity conditions the

Copyright q 2006 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:2331–2347
DOI: 10.1002/sim



2340 L. C. McCANDLESS, P. GUSTAFSON AND A. LEVY

Ta
bl
e
IV
.
Po

st
er
io
r
m
ea
ns

(9
5%

tw
o-
ta
ile
d
cr
ed
ib
le

in
te
rv
al
s)

of
lo
g-
od
ds

ra
tio

s
of

th
e
be
ta

bl
oc
ke
r
ef
fe
ct

� 1
an
d
co
va
ri
at
e
ef
fe
ct
s
fr
om

B
SA

st
ra
tif
yi
ng

on
m
ea
su
re
d
co
va
ri
at
es
.

c 1
=
c 3

=
c 4

=
lo
g(
3)

1.
96

c 1
=
c 3

=
c 4

=
lo
g(
6)

1.
96

c 1
=
c 2

=
c 3

=
c 4

=
0

c 2
=

lo
g(
3)

1.
96

c 2
=

lo
g(
6)

1.
96

c 2
=

lo
g(
3)

1.
96

c 2
=

lo
g(
6)

1.
96

B
et
a
bl
oc
ke
r

−0
.7
5

(−
1.
16

,
−0

.3
6)

−0
.7
6

(−
1.
17

,
−0

.3
5)

−0
.7
6

(−
1.
18

,
−0

.3
5)

−0
.7
6

(−
1.
26

,
−0

.2
8)

−0
.7
6

(−
1.
25

,
−0

.2
8)

Se
x

−0
.3
0

(−
0.
61

,
−0

.0
1)

−0
.3
1

(−
0.
72

,
0.
09

)
−0

.3
0

(−
0.
71

,
0.
09

)
−0

.3
1

(−
1.
01

,
0.
41

)
−0

.3
0

(−
1.
04

,
0.
43

)
A
ge

75
–8

4
0.
65

(0
.2
1,
1.
10

)
0.
66

(0
.1
5,
1.
19

)
0.
66

(0
.1
4,
1.
19

)
0.
67

(−
0.
17

,
1.
49

)
0.
67

(−
0.
18

,
1.
50

)
A
ge

84
+

1.
02

(0
.5
6,
1.
50

)
1.
02

(0
.4
8,
1.
56

)
1.
02

(0
.4
8,
1.
57

)
0.
98

(0
.2
4,
1.
71

)
0.
99

(0
.2
9,
1.
67

)
C
on

tr
ai
nd

ic
at
io
ns

0.
31

(−
0.
05

,
0.
66

)
0.
32

(−
0.
12

,
0.
77

)
0.
32

(−
0.
11

,
0.
77

)
0.
31

(−
0.
27

,
0.
93

)
0.
31

(−
0.
27

,
0.
91

)
C
as
em

ix
in
de
x

0.
22

(0
.1
6,
0.
29

)
0.
22

(0
.1
5,
0.
30

)
0.
22

(0
.1
5,
0.
30

)
0.
23

(0
.1
3,
0.
33

)
0.
23

(0
.1
3,
0.
33

)
H
os
pi
ta
l
le
ng

th
of

st
ay

−0
.0
1

(−
0.
12

,
0.
10

)
−0

.0
1

(−
0.
15

,
0.
11

)
−0

.0
1

(−
0.
15

,
0.
11

)
−0

.0
3

(−
0.
20

,
0.
13

)
−0

.0
3

(−
0.
21

,
0.
13

)

Copyright q 2006 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:2331–2347
DOI: 10.1002/sim



BAYESIAN SENSITIVITY ANALYSIS 2341

posterior mean is a consistent estimator of model parameters and interval estimators have nominal
large sample coverage probability [11]. But BSA involves Bayesian analysis using a non-identifiable
model. Consequently, depending on the prior used for sensitivity analysis, the posterior mean may
be asymptotically biased and interval estimators will not have nominal large sample coverage
probability [9].

When coverage probability varies over the parameter space, one approach to characterizing the
performance of interval estimators is to study the average coverage probability [17, 18]. Specifically,
let I (y, x, z) denote a 1−� credible interval for the exposure effect �1 constructed using the prior
distribution f (�). The coverage probability of I (y, x, z), for fixed � = (�0, �1, �, �, �0, �1, �), is

C f (�) =
∫

1{�1 ∈ I (y, x, z)} f (y, x, z|�) d(y, x, z)

where 1{�1 ∈ I (y, x, z)} is the indicator function which takes value one if �1 ∈ I (y, x, z) and zero
otherwise. The average coverage probability of I (y, x, z), with respect to some density g(�), is
given by

�g, f =
∫

C f (�)g(�) d�

It is well known that if the density g(�) is equal to the prior density f (�) used to construct
I (y, x, z), then �g, f = 1−� [17, 18]. Moreover, this property holds irrespective of sample size and
whether the model is identifiable or not. Therefore, if the prior distribution used for BSA equals
the distribution g(�) used to calculate �g, f , then 1 − � credible intervals will have the appealing
property that the long run average coverage under repeated sampling of data and parameters from
f (y, x, z|�)g(�) is equal to 1−�. This reasoning can be used to describe the frequentist properties
of BSA credible intervals in a hypothetical sequence of observational studies. If the data in a
sequence of observational studies are obtained by first sampling � from g(�) and then sampling
data given �, then BSA credible intervals will have nominal coverage probability, on average,
provided that f (�) = g(�). Thus while BSA involves Bayesian analysis using a non-identifiable
model, interval estimators may be good frequentist properties depending on the prior distribution
used for sensitivity analysis.

Typically, when analysing observational data, the model f (y, x, z|�) is assumed to be known,
but parameters themselves and the distribution g(�) used to sample parameters are unknown.
Therefore, it would appear that there is no guarantee of choosing a prior distribution f (�) such
that f (�) = g(�). However, the investigator may have general a priori knowledge of g(�), and may
choose f (�) such that f (�) ≈ g(�). Thus to characterize the average coverage probability of interval
estimators from BSA, the important issue is to determine how badly the relation �g, f = 1 − �
breaks down as g(�) departs from f (�).

4.2. Simulation study

We use simulated data sets to study �g, f as a function of f (�) and g(�). To clarify, g(�) is the den-
sity used to sample parameters, while f (�) is the prior distribution used to analyse the simulated data
sets. We assume that f (�) and g(�) are members of the family of densities described in Section 2.2.
This implies that we can write f (�) = f (�0, �1, �, �, �0, �1, �) = f (�) f (�0, �1) f (�0, �1, �, �),
and g(�) = g(�0, �1, �, �, �0, �1, �) = g(�)g(�0, �1)g(�0, �1, �, �). We study the case where Z is
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comprised of two continuous covariates and

f (�0, �1, �, �) = g(�0, �1, �, �) ∝ exp

⎡
⎣−

{
2

(
log(15)

1.96

)2
}−1

(�20 + �21 + �′� + �′�)

⎤
⎦

For both f (�) and g(�), we assign c1 = c3 = c4, and we let c1, c2, c3 and c4 equal log(3)/1.96 or
log(6)/1.96. We also study the limiting case where c1, c2, c3 and c4 equal zero.

For fixed f (�) and g(�), we estimate �g, f using the following algorithm of Rubin and
Schenker [18]:

1. For t = 1, 2, . . . , 50:

(a) Sample �(t) from g(�).
(b) Given �(t), sample (y, x, z)(t), with n = 1000, according to the decomposition

f (y, x, z|�) = f (y|x, u, z, �0, �1, �, �) f (u|x, z, �0, �1, �) f (x) f (z) (6)

based on the models in equations (1) and (2), where f (x)∼Bernoulli(0.5) and f (z) ∼
independent uniform(−2, 2).

(c) Construct I (y, x, z)(t), an 80 per cent two-tailed credible interval for �1 with respect to
f (�), using a single Markov chain of length 10 000 with 500 initial iterations discarded.

(d) Calculate

Q(y, x, z)(t) =
∫

1{�1 ∈ I (y, x, z)(t)} f (y, x, z|�)g(�)∫
f (y, x, z|�′)g(�′) d�′ d�

the posterior probability of �1 falling I (y, x, z)(t), with respect to the prior g(�), using
a single Markov chain of length 10 000 with 500 initial iterations discarded.

2. Calculate �̂g, f = (1/50)
∑50

t=1 Q(y, x, z)(t), which is an unbiased estimator of �g, f [18].
The sample size n = 250 is also considered and the results are discussed qualitatively.

Table V presents �̂g, f as a function of f (�) and g(�). Also included is the average length of the
simulated interval estimates. As expected, the average coverage probabilities along diagonal
elements of the table are within simulation error of 80 per cent, reflecting proper coverage of cred-
ible intervals because of equality between f (�) and g(�). In these instances, the distribution
used to sample model parameters for the simulation is also used as a prior distribution for BSA.
The consequence is that credible intervals have nominal coverage probability, on average, de-
spite the fact that the model is non-identifiable. The off-diagonal elements of the table describe
�g, f when f (�) �= g(�), meaning that the investigator has incorrectly specified the true sam-
pling distribution of bias parameters �, �0, �1 and � in the sequence of observational studies.
Table V demonstrates that �g, f ≈ 80 per cent when f (�) ≈ g(�) with �g, f being either greater
than or less than 80 per cent, depending on the relationship between f (�) and g(�). For exam-
ple, consider the estimate �̂g, f = 87.4 per cent in the top right corner of the table. Here we have
c1 = c2 = c3 = c4 = log(6)/1.96 for the density f (�) and c1 = c2 = c3 = c4 = 0 for the density g(�).
This means that we have a sequence of data sets without bias from unmeasured confounding. But
the analyst falsely believes that there is a great deal of possible unmeasured confounding in each
data set, and she chooses a prior distribution for BSA with large values of c1, c2, c3 and c4. The
result is that credible intervals cover �1 too often, 87.4 per cent of the time.
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Table V. Estimated average coverage probabilities �̂g, f and the average lengths of 80% two-tailed credible
interval as a function of f (�) and g(�), when n = 1000.

f (�)

c1 = c3 = c4 = log(3)
1.96

c1 = c3 = c4 = log(6)
1.96

c1 = c3 = c4 = 0 c2 = log(3)
1.96

c2 = log(6)
1.96

c2 = log(3)
1.96

c2 = log(6)
1.96

c1 = c2 = c3 = c4 = 0 Coverage (%) 80.1 82.7 82.4 87.7 87.4
Length 0.47 0.51 0.51 0.61 0.61

c1 = c3 = c4 = log(3)
1.96

c2 = log(3)
1.96

Coverage (%) 76.6 80.2 79.7 85.6 85.6
Length 0.45 0.53 0.53 0.64 0.61

g(�) c2 = log(6)
1.96

Coverage (%) 77.5 80.0 80.1 86.2 85.5
Length 0.48 0.53 0.53 0.62 0.60

c1 = c3 = c4 = log(6)
1.96

c2 = log(3)
1.96

Coverage (%) 69.3 72.6 72.4 80.4 79.3
Length 0.48 0.52 0.50 0.61 0.60

c2 = log(6)
1.96

Coverage (%) 70.5 73.0 73.5 80.6 79.4
Length 0.49 0.50 0.50 0.60 0.59

Simulation standard errors for �̂g, f range from 0.1 to 0.6%. Simulation standard errors for average interval
lengths range from 0.01 to 0.03.

There are similar findings when the simulation is repeated with sample size n = 250 (results
not shown and are available from the authors upon request). Credible intervals are longer on
average compared to when n = 1000. Estimates of �g, f are within simulation error of 80 per cent
when f (�) = g(�). When f (�) �= g(�), �̂g, f are closer to 80 per cent relative to the case when
n = 1000. This indicates that misspecifying f (�) more adversely affects the performance of interval
estimators when the sample size is large.

The results of the simulation study suggest that BSA interval estimators will have good frequen-
tist performance provided that the investigator uses a prior distribution f (�) which approximates
g(�), the true sampling distribution of model parameters in a hypothetical sequence of studies. To
illustrate the value of this result for the practitioner in light of their own data set and analysis, we
point out that the usual approach to analysing observational data is to assume that unmeasured
confounding is absent. This corresponds to choosing f (�) where c1 = c2 = c3 = c4 = 0. Table V
shows that this method will perform poorly when there is large possible unmeasured confounding.
Along the bottom row, we have g(�) with c1 = c2 = c3 = c4 = log(6)/1.96, which corresponds
to sequences of observational studies with large unmeasured confounding on average. When the
practitioner analyses the data sets and ignores unmeasured confounding, this yields �̂g, f equal
to 70.5 per cent rather than the desired value of 80 per cent. In contrast, choosing f (�) with
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non-zero values for c1, c2, c3 and c4 improves the average coverage probability. This indicates
that the performance of interval estimation of exposure effects can be improved by acknowledging
uncertainty about unmeasured confounding, even if it is only approximate, rather than assuming
that bias is absent.

5. DISCUSSION

We propose BSA for observational studies where the associations between a binary exposure,
binary outcome, measured covariates and a single binary unmeasured confounder can be modelled
using logistic regression. The proposed family of prior distributions model beliefs about unknown
and unmeasured confounding, and are applicable in settings where there is a possible unknown risk
factor for the outcome which also predicts exposure. Other families of prior distributions can be
used through suitable modification of the acceptance ratios in the Metropolis updating steps used in
posterior simulation. For example, non-zero prior means for the bias parameters could be specified.

Because the model is not identifiable the usual asymptotic properties for posterior distributions
do not apply, complicating an evaluation of the performance of interval estimators. The posterior
distribution is sensitive to the choice of prior distribution used for data analysis, and this sensitivity
increases with increasing sample size [9]. This seems unappealing because inferences about model
parameters are driven by subjective prior information. However, the method accurately character-
izes uncertainty in observational studies because uncertainty about bias does not diminish with
increasing sample size [2, 5].

To illustrate the impact of the choice of prior distribution used for sensitivity analysis on
the performance of interval estimators for the treatment effect, we used simulations to study
coverage probability when averaged over a hypothetical sequence of observational studies. The
results indicate that credible intervals will have approximately nominal coverage probability, on
average, provided that prior distribution used for sensitivity analysis approximates the sampling
distribution of model parameters in the sequence of studies. Thus interval estimators may have
good frequentist properties even though the model used for BSA is not identifiable. While average
coverage probability is an unusual measure of frequentist performance, its relevance has been
advocated elsewhere [19] because it characterizes performance of interval estimators in the setting
in which they are actually used, namely to analyse data from different investigations, rather
than data under hypothetical repeated sampling given fixed parameters. Using average coverage
probability to measure performance is natural in meta-analysis where the sampling distribution of
model parameters is usually modelled in the analysis.

The usual analysis of observational data assumes that unmeasured confounding is absent. This
approach is appealing because it involves identifiable models and yields interval estimators with
standard asymptotic properties. But the simulations in Section 4 indicate that in a sequence of
observational studies with large unmeasured confounding, on average, credible intervals which
ignore unmeasured confounding will not have nominal average coverage probability. They will
also not have nominal large sample coverage probability conditional on fixed non-zero values
of the bias parameter. Therefore, it appears that performance may be improved by acknowledg-
ing uncertainty about unmeasured confounding, even approximately, rather than assuming it is
absent.

The proposed method has limitations. While the MCMC algorithm can be run using the statistical
package R [20], we observed that sampler convergence deteriorates with increasing sample size.
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Using a diffuse prior distribution for bias parameters (e.g. values of c1, c2, c3 and c4 greater
than log(6)/1.96) aggravated this problem. Other investigations of Bayesian methods using non-
identifiable models have reported similar findings [9, 21]. Thus more involved MCMC algorithms
must be developed in some situations. Another limitation of sensitivity analysis is the difficulty of
assessing the appropriateness of the model for unmeasured confounding. Because U is unobserved,
the data cannot be used to verify modelling assumptions about the association between U and
measured variables. It would be informative to study the performance of BSA under model
misspecification. One relevant setting is the case when U is used to approximate a vector of
unmeasured confounders. This approach to sensitivity analysis is discussed by Greenland [5].

APPENDIX A

We outline a method of simulating from the posterior distribution f (�0, �1, �, �, �0, �1, �|y, x, z)
using Gibbs sampling with Metropolis updating. The imputation step (I-step) samples the latent
u from f (u|�0, �1, �, �, �0, �1, �, y, x, z). To accomplish this, write the joint distribution of y, u
and model parameters given x and z as

f (�0, �1, �, �, �0, �1, �, u, y|x, z) = f (y|�0, �1, �, �, u, x, z) f (u|�0, �1, �, x, z)

× f (�0, �1, �, �, �0, �1, �)

∝
n∏

i=1

[
exp{yi (�0 + �1xi + �ui + �′zi )}
1 + exp{�0 + �1xi + �ui + �′zi }

× exp{ui (�0 + �1xi + �′zi )}
1 + exp{�0 + �1xi + �′zi }

]

× f (�0, �1, �, �, �0, �1, �)

based on the likelihood functions for logistic regression. By conditioning on �0, �1, �, �, �0, �1, �, y,
we may write

f (u|�0, �1, �, �, �0, �1, �, y, x, z) ∝
n∏

i=1

exp{ui (yi� + �0 + �1xi + �′zi )}
1 + exp{�0 + �1xi + �ui + �′zi + �′zi }

and therefore

f (ui |�0, �1, �, �, �0, �1, �, y, x, z) ∝ exp{ui (yi� + �0 + �1xi + �′zi )}
1 + exp{�0 + �1xi + �ui + �′zi }

where ui denotes U for the i th subject. Since ui is dichotomous, this expression can be normalized
and written in closed form. Sampling from f (u|�0, �1, �, �, �0, �1, �, y, x, z), amounts to sampling
an n × 1 vector of Bernoulli random variables with success probabilities f (ui |�0, �1, �, �, �0, �1, �,

y, x, z), for i = 1, . . . , n.
The posterior step (P-Step) samples from the posterior distributions in the logistic regression

models of equations (1) and (2) using the sampled u. The first model regresses y on x , u and z,

Copyright q 2006 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:2331–2347
DOI: 10.1002/sim



2346 L. C. McCANDLESS, P. GUSTAFSON AND A. LEVY

while the second model regresses u on x and z. Bayesian logistic regression can be accomplished
using the independence sampler Metropolis Hastings algorithm with a proposal distribution given
by the asymptotic approximation to the distribution of the maximum likelihood estimator. Further
details of Bayesian logistic regression are given in Reference [11].

To summarize, simulation from the posterior distribution f (�0, �1, �, �, �0, �1, �|y, x, z)
proceeds as follows:

1. Obtain reasonably overdispersed starting values for (�(0)
0 , �(0)

1 , �(0), �(0), �(0)
0 , �(0)

1 , �(0))

and u(0) by simulating u(0) as an n × 1 vector of Bernoulli random variables with success
probabilities equal to 1

2 and then sampling (�(0)
0 , �(0)

1 , �(0), �(0), �(0)
0 , �(0)

1 , �(0)) from the
asymptotic distribution of the maximum likelihood estimator obtained via regressions of y
on x , u(0), z, and u(0) on x and z.

2. For t = 1, 2, . . .

I-Step: Sample u(t) from f (u|�(t−1)
0 , �(t−1)

1 , �(t−1), �(t−1), �(t−1)
0 , �(t−1)

1 , �(t−1), y, x, z).

P-step: Sample �(t)
0 , �(t)

1 , �(t), �(t) using a Metropolis Hastings step with target density
f (�0, �1, �, �|u(t), y, x, z) and proposal distribution obtained by logistic regression
of y on x , z and u(t).
Sample (�(t)

0 , �(t)
1 , �(t)) using a Metropolis Hastings step with target density f (�0, �1,

�|u(t), y, x, z) and proposal density obtained by logistic regression of u(t) on x , z.

3. Discard u(0), u(1), . . .

After discarding a suitable number of initial iterations, the sequence (�(t)
0 , �(t)

1 , �(t), �(t), �(t)
0 ,

�(t)
1 , �(t)) for t = 1, 2, . . . , comprises a sample from the required posterior distribution. Convergence
of the Markov chain can be assessed using standard tools [11].
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