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In this paper we study the problem of Bayesian sensor fusion for dynamic object tracking. The prospects
of utilizing measurements from several sensors to infer about a system state are manyfold and they range from
increased estimate accuracy to more reliable and robust estimates. Sensor measurements may be combined, or
fused, at a variety of levels; from the raw data level to a state vector level, or at the decision level. In this paper we
mainly focus on the Bayesian fusion at the likelihood and state vector level. We analyze two groups of data fusion
methods: centralized independent likelihood fusion, where the sensors report only its measurement to the fusion
center, and hierarchical fusion, where each sensor runs its own local estimate which is then communicated to the
fusion center along with the corresponding uncertainty. We compare the prospects of utilizing both approaches, and
present explicit solutions in the forms of extended information filter, unscented information filter, and particle filter.
Furthermore, we also propose a solution for fusion of arbitrary filters and test it on a hierarchical fusion example of
two of the aforementioned filters. Hence, the main contributions of this paper are systematic comparative study of
Bayesian fusion methods, and a method for hierarchical fusion of arbitrary filters. The fusion methods are tested
on a synthetic data generated by multiple Monte Carlo runs for tracking of a dynamic object with several sensors
of different accuracies by analyzing the quadratic Rényi entropy and root-mean-square error.
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Komparativna studija Bayesovih metoda fuzije u svrhu praćenja gibajućih objekata. U ovom članku
razmatra se problem Bayesove fuzije senzora u svrhu praćenja gibajućih objekata. Prednosti korištenja mjerenja
više senzora kako bi se estimiralo stanje sustava su višestruke te se kreću od povećanja preciznosti do pouzdanijih
i robusnijih estimacija. Fuzija mjerenja senzora može se izvršiti na razini neobrad̄enih mjerenja, razini estimacije
stanja te na još višoj razini–razini donošenja odluka. U ovom se članku fokusira na Bayesovu fuziju senzora na
razini funkcija vjerodostojnosti i na razini vektora stanja sustava. Analiziramo dvije grupe metoda fuzije podataka:
centraliziranu fuziju nezavisnih funkcija vjerodostojnosti, u kojoj senzori šalju samo svoja mjerenja centru fuzije,
i hijerarhijsku fuziju, gdje svaki senzor lokalno estimira stanje sustava koje se potom šalje centru fuzije zajedno sa
pripadajućom nesigurnosti. Uspored̄ujemo prednosti korištenja oba pristupa te predstavljamo eksplicitna rješenja
u obliku proširenog informacijskog filtra, nederivacijskog informacijskog filtra te čestičnog filtra. Nadalje, takod̄er
se predlaže rješenje za fuziju proizvoljnih filtara te se testira na primjeru hijerarhijske fuzije dvaju različitih tipova
filtara. Glavni doprinos ovoga članka je u sustavnoj komparativnoj studiji Bayesovih metoda fuzije te u metodi
za hijerarhijsku fuziju proizvoljnih filtara. Metode fuzije provjerene su na, iz višestrukih Monte Carlo simulacija
dobivenom, sintetičkom skupu podataka praćenja gibajućeg objekta s više senzora različitih preciznosti analizirajući
kvadratičnu Rényijevu entropiju i srednju kvadratičnu pogrešku.

Ključne riječi: Bayesova fuzija senzora, informacijski filtar, čestični filtar, Rényijeva entropija

1 INTRODUCTION

The prospects of utilizing measurements from several
sensors to infer about a system state are manyfold. To be-
gin with, the use of multiple sensors results in increased
sensor measurement accuracy, and moreover, additional
sensors will never reduce the performance of the optimal

estimator [1]. However, in order to ensure this perfor-
mance, special care must be taken when choosing the pro-
cess model [2]. Furthermore, system reliability increases
with additional sensors, since the system itself becomes
more resilient to sensor failure [3]. Therefore, by com-
bining data from multiple sensors, and perhaps related in-
formation from associated databases, we can achieve im-
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proved accuracies and more specific inferences than using
only a single sensor [4].

Sensor measurements may be combined, or fused, at
a variety of levels; from the raw data level to a state vec-
tor level, or at the decision level [4]. Raw sensor data can
be directly combined if the sensor data are commensurate
(i.e., if the sensors are measuring the same physical phe-
nomena), while if the sensor data are noncommensurate,
then the sensor data, i.e. sensor information, must be fused
at a feature/state vector level or decision level.

Information from multiple sensors can be classified as
redundant or complementary [3]. Redundant information
is provided from multiple sensors (or a single sensor over
time) when each sensor perceives the same feature in the
environment. On the other hand, complementary informa-
tion from multiple sensors enables the system to perceive
features impossible to perceive by using just a single sen-
sor. But what is in common for both classifications, is that
all the sensors are used to somehow infer about a system
state. It is important to note that complementary sensors do
not have to necessarily provide information about the full
system state. Some sensors, like omnidrectional cameras
and microphone arrays, measure angle and not the range of
the detected objects, while laser range scanners and depth
cameras can give measurements in 2D or 3D. Moreover,
some sensors can provide measurements at higher rates
than others, thus making sensor fusion an even more chal-
lenging problem.

One way of approaching the problem of sensor fusion
is at the likelihood level. Basically, each sensor measure-
ment is modelled as a Gaussian random variable and the
resulting fused distribution is also Gaussian with the new
fused mean and covariance. In [5], the fused moments are
calculated by optimizing a weighted sum of Gaussian ran-
dom variables so as to minimise the volume of the fused
uncertainty ellipsoid. The resulting moments are equal
to as if they were obtained by calculating the product of
Gaussian distributions. Similar results were obtained in [6]
where the fused moments are calculated by estimating the
moments of a product of Gaussians via maximum likeli-
hood approach. Both of these methods do not take any
past measurements into account, and if tracking is needed
then a different approach needs to be utilised.

If the system is linear and the system state is modeled
as Gaussian, then multisensor fusion can be performed
with the decentralized Kalman filter (DKF) proposed in
[7]. The DKF enables us to fuse not only the measure-
ments, but also the local independent Kalman filters. The
inverse covariance form is utilized, thus resulting in addi-
tive fusion equations, which can further be elegantly trans-
lated to the information filter form as shown in [8]. For
the case of non-linear systems the extended information fil-
ter (EIF) or the unscented information filter (UIF) [9] can

be utilised. Another approach, proposed in [10], is to de-
fine for each sensor system, a separate and specific Gaus-
sian probability distribution and to fuse them using covari-
ance intersection method [11]. If the underlying distribu-
tion characterizing the system is not Gaussian and possibly
non-linear, then usually particle filters (PF) are utilized.
In [12] a distributed particle filtering algorithm is proposed
where each sensor maintains a particle filter and the in-
formation is propagated in a sensor network in the form
of partial likelihood functions. The last sensor then back-
propagates the final importance distribution so that a new
set of particles is generated at each sensor using the final
distribution. The standard particle filter algorithm was de-
centralized in [13] by communicating and fusing only the
most informative subsets of samples. It was applied on mo-
bile robots playing the game of laser tag. In [14] a speaker
tracking system was implemented by using a camera and a
microphone array. Each sensor estimate was modeled as a
Gaussian distribution in order to obtain the overall likeli-
hood function. The fusion was performed by a global par-
ticle filter which used the sum of the former Gaussians as
the proposal distribution and their product as the likelihood
function for calculating the weights of particles.

In order to perform fusion between decentralized track-
ing filters, we have to take into account the common in-
formation that the distributions might share. This usu-
ally entails a product and a division of particle sets and
a solution for consistent fusion was proposed in [15, 16].
An overview of decentralized fusion methods and non-
Gaussian estimation techniques can be found in [17, 18].
In [19] we implicitly used centralized independent likeli-
hood fusion via joint probabilistic data association filter in
the problem of multi-target tracking with multiple sensors
on a mobile robot.

In this paper we study the problem of Bayesian sensor
fusion for dynamic object tracking focusing mainly on the
Bayesian fusion at the likelihood and state vector level. We
analyze two groups of data fusion methods: centralized in-
dependent likelihood fusion, where the sensors report only
its measurement to the fusion center, and hierarchical fu-
sion, where each sensor runs its own local estimate which
is then communicated to the fusion center along with the
corresponding uncertainty. Both approaches are compared
and explicit solutions are presented in the form of extended
information filter, unscented information filter and particle
filter. Furthermore, we also propose a solution for fusion
of arbitrary filters and test it on a hierarchical fusion exam-
ple of two of the aforementioned filters. The main contri-
butions of this paper are a systematic comparative study of
Bayesian fusion methods, and a method for hierarchical fu-
sion of arbitrary filters. The results are tested on a synthetic
data experiment of tracking a dynamic object with several
sensors of different accuracies by analyzing the quadratic
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Rényi entropy and root-mean-square error.
In Section 2 we start with the mathematical background

for Bayesian sensor fusion approaches where we assume
that we have a centralized processor in charge of fusion
from various sensor modalities. These approaches involve
system dynamics modeling and state estimation, where we
focus mainly on centralized independent likelihood fusion
(each sensor modality reports only its likelihood), and hi-
erarchical fusion (each sensor reports its estimated state
and uncertainty). In Sections 3 and 4 we give explicit so-
lutions to the problems in forms of extended information
filter, unscented information filter and particle filter. Fur-
thermore, we propose a solution for arbitrary filter fusion,
i.e. how to fuse estimates from a Kalman and a particle
filter. Moreover, we also present a solution for the case of
asynchronous data arrival. In Section 5 the methods are
tested and analyzed with filter entropy and tracking error
on a synthetic data experiment involving dynamic object
tracking, while Section 6 concludes the paper.

2 MATHEMATICAL BACKGROUND OF BAYE-
SIAN SENSOR FUSION

The most fundamental approaches to sensor fusion were
based on modeling each measurement as a Gaussian ran-
dom variable, where the results were obtained with geo-
metrical redundant fusion method proposed in [5] and by
maximum likelihood estimation approach derived in [6].
The result would be a new Gaussian with an updated mean
and covariance. However, it is important to note that these
approaches do not take into account any past system states
and depend completely on the current sensors measure-
ments and their likelihoods.

In the present paper, the goal of sensor fusion is to es-
timate the system state xk at time k based on all previous
control inputs u1:k, and all previous sensor measurements
from all the m available sensors z1:m

1:k . In other words,
from a probabilistic perspective, we need to estimate the
posterior distribution p(xk|u1:k, z

1
1:k, z

2
1:k, . . . ,z

m
1:k) =

p(xk|u1:k, z
1:m
1:k ). By applying the Bayes theorem, we can

reformulate the problem as follows (for convenience we
drop the condition on u1:k since in tracking this is usually
not known) [18]:

p(xk|z1:m
1:k ) = p(xk|z1:m

k , z1:m
1:k−1)

=
p(z1:m

k |xk, z1:m
1:k−1)p(xk|z1:m

1:k−1)

p(z1:m
k |z1:m

1:k−1)
.

(1)

Furthermore, we assume that (i) given the statexk the mea-
surement at the ith sensor is independent of the measure-
ments obtained from other sensors, and (ii) that the current
state xk includes all the required information to evaluate
the likelihood meaning that we can drop the conditional de-
pendency of the current measurement of the ith sensor zik

on all the previous measurements of all the sensors z1:m
1:k−1:

p(z1:m
k |xk, z1:m

1:k−1) =

m∏

i=1

p(zik |xk, z1:m
1:k−1)

=

m∏

i=1

p(zik |xk).

(2)

At this point, we can proceed further in three different
directions: (i) centralized independent likelihood fusion,
(ii) hierarchical fusion without feedback, and (iii) hierar-
chical fusion with feedback. If each sensor reports only its
measurement modeled in a probabilistic manner, i.e. like-
lihood or the sensor model, then this leads us to the first
solution, in which we have a global estimate of the system
state updated by fusing only the likelihoods communicated
from each sensor:

p(xk|z1:m
1:k ) ∝ p(xk|z1:m

1:k−1)
m∏

i=1

p(zik |xk), (3)

where p(z1:m
k |z1:m

1:k−1) is omitted since it only accounts for
the normalization of the calculated posterior. This is an
example of centralized independent likelihood fusion.

Now, the second solution amounts to each sensor
modality estimating its own local system state based only
on its local observations. These local posterior estimates
are then fused on a global level. Since all sensors operate
without having any knowledge of other sensor measure-
ments, at each sensor i we have p(xt|zi1:k) as the local
posterior. By inspecting (3) we can see that we need to
‘extract’ the likelihood p(zik|xk) from the local posterior.
By using a similar procedure as in (1) we can derive the
expression for the needed likelihood:

p(zik|xk) ∝ p(xt|zi1:k)

p(xt|zi1:k−1)
. (4)

This leads us to the following expression:

p(xk|z1:m
1:k ) ∝ p(xk|z1:m

1:k−1)

m∏

i=1

p(xk|zi1:k)

p(xk|zi1:k−1)
. (5)

This is an example of hierarchical fusion without feedback
which suggests that if we want to fuse a global predic-
tion based on all the sensors p(xk|z1:m

1:k−1) with local in-
dependent sensor posteriors p(xk|zi1:k), we need to first
remove the local prediction p(xk|zi1:k−1), i.e. the local
prior knowledge, by a division. This is logical since we
already have all the prior knowledge in the global predic-
tion p(xk|z1:m

1:k−1) and are only interested in acquiring new
knowledge arising from new measurements. If the local
predictions p(xk|zi1:k−1) shared common or very similar
prior information and were not removed during the fusion,
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each of them would implicitly through p(xk|zi1:k) count
with each multiplication, thus resulting in a posterior be-
ing too confident, or swayed, by all the multiply-counted
prior information.

For the third solution we have the global prediction
based on all the measurements communicated back to each
sensor i to serve as a new local prior which will then be
updated only with the local measurement zik. Therefore, at
each sensor i we have p(xk|z1:m

1:k−1, z
i
k) as the local pos-

terior from which we will need to ‘extract’ the likelihood
p(zik|xk). Again, by following a similar procedure as in
(1) we calculate the needed expression for the likelihood:

p(zik|xk) ∝ p(xk|z1:m
1:k−1)

p(xk|z1:m
1:k−1, z

i
k)
, (6)

which leads us to the following equation for the hierarchi-
cal fusion with feedback:

p(xk|z1:m
1:k ) ∝ p(xk|z1:m

1:k−1)

m∏

i=1

p(xk|z1:m
1:k−1, z

i
k)

p(xk|z1:m
1:k−1)

. (7)

Each approach has its benefits. The centralized inde-
pendent likelihood fusion is quite elegant since we only
need to communicate the likelihoods to the fusion cen-
ter, thus requiring only that each likelihood represents each
sensor measurements faithfully. The hierarchical approach
without feedback requires each sensor to run its own lo-
cal estimate independent of other sensors, while the hier-
archical fusion with feedback takes one step further and
communicates the global fused posterior back to each sen-
sor to serve as the next prior in the local estimation pro-
cess. In this way each sensor benefits by having the same
global prior, even in situations when the sensor itself has
no measurements. This approach is closely related to de-
centralized systems where we could have several indepen-
dent agents exchanging estimations in an unstructured or
arbitrary network, but without central fusion processor.
Although decentralization has many advantages [7, 8], it
requires dealing with delayed and asequent observations,
and filtering of previously exchanged common information
which is a much broader topic and out of the scope of this
paper. In this paper we shall concentrate on the centralized
independent likelihood fusion and the hierarchical fusion
without feedback, since we want to explore the effects of
fusion of sensor modalities which share no common infor-
mation.

2.1 Mathematical model of the tracked object

Let matrices Ak, Bk and Gk define the propagation of the
systems state, Hk be the observation matrix, zk be the sen-
sor measurement, and xk be the states associated with the

system, then the state transition and observation equations
can be written as:

xk = Akxk−1 + Bkuk + Gkvk, (8)
zk = Hkxk + nk, (9)

where vk and nk describe uncertainty in the evolution of
the system state and uncertainty in the measurement, re-
spectively. Naturally, both of them are assumed to be nor-
mal, zero-mean and white. The associated local process
noise and measurement noise covariance matrices are de-
noted as Qk and Rk.

In the present paper we use a fairly general piecewise
constant white acceleration model in order to describe the
system behavior [20]. The system state is defined as a vec-
tor xk = [xk, ẋk, yk, ẏk], where (xk, yk) are the Cartesian
coordinates, while ẋk and ẏk represent their respective ve-
locities in the x, y-plane. The model itself is given by:

xk = Axk−1 + Gvk =




1 ∆T 0 0
0 1 0 0
0 0 1 ∆T
0 0 0 1


xk−1

+




∆T 2

2 0
∆T 0

0 ∆T 2

2
0 ∆T


vk,

(10)

where ∆T is the sampling period.

For the measurement model, we assume that the sen-
sors measure both range and bearing, thus yielding a non-
linear measurement equation:

zk = h (xk) + nk =



√
x2
k + y2

k

arctan

(
yk
xk

)

+ nk. (11)

3 CENTRALIZED SENSOR FUSION

3.1 Centralized extended information filter

With transition and observation equations defined with
(10) and (11), respectively, for the Kalman filter the a pri-
ori predicted values of the system state and covariance are
calculated as follows:

x̂k|k−1 = Akx̂k−1|k−1 + Bkuk, (12)

Pk|k−1 = AkPk−1|k−1A
T
k + GkQkG

T
k . (13)

Instead of continuing with the Kalman filter update equa-
tions, we shall now revert to its equivalent information fil-
ter form, whose advantages in sensor fusion will become
apparent soon.
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The information matrix Yk|k and the information vec-
tor ŷk|k are defined as follows:

Yk|k = P−1
k|k, ŷk|k = P−1

k|kx̂k|k. (14)

If we define the information associated with the observa-
tion taken at time k as:

ik = HT
kR
−1
k

(
νk + Hkx̂k|k−1

)
, Ik = HT

kR
−1
k Hk,

(15)
where νk = zk − h(x̂k|k−1) is the innovation vector, we
can write the update stage of the information filter as:

ŷk|k = ŷk|k−1 + ik, (16)

Yk|k = Yk|k−1 + Ik. (17)

From (16) and (17) we can see that the update stage of the
information filter is additive. In fact, this very property of
the information filter is the main reason for its utility in
multisensor fusion.

If we have N sensors, then for each sensor i we can
define an observation equation:

zik = Hi
kxk + nik, i = 1, . . . , N. (18)

Since the measurement model can be linearised about the
predicted state vector, the Jacobian matrix may be intro-
duced:

Hi
k =

∂hi (x)

∂x

∣∣∣∣∣
x=x̂k|k−1

. (19)

For the measurement model (11) the Jacobian matrix takes
the following form:

∂h (x)

∂x
=




x√
x2 + y2

0
y√

x2 + y2
0

− y

x2 + y2
0

x

x2 + y2
0


 . (20)

In the standard Kalman filter notation, contributions
from multiple sensors cannot be additively combined,
since, although the sensor measurements given the system
state are themselves independent, the innovations are cor-
related through common information from the prediction
stage in (12). However, in the information form, the terms
iik from each sensor are uncorrelated, thus resulting with
additive update stage with contributions from each sen-
sor [7, 8]:

ŷk|k = ŷk|k−1 +

N∑

i=1

iik, (21)

Yk|k = Yk|k−1 +

N∑

i=1

Iik, (22)

where now ŷk|k and Yk|k represent the central fused infor-
mation vector and information matrix. The central fused
estimate of the system state may be found via x̂k|k =

Y−1
k|kŷk|k.

By inspecting (21) and (15), we can see that during
fusion each sensor measurement is weighted by its cor-
responding variance. In essence, this approach is simi-
lar to the product of Gaussians, except that it does take
past values into account through ŷk|k−1, which we can see
from (14) that it is just the predicted global system state
weighted by the corresponding global predicted variance.

The previous approach to sensor fusion was derived
in [7] following the work in [21], and was termed decen-
tralized Kalman filter (DKF). The main idea was to offer
a flexible method for decomposing the linear Kalman fil-
ter into autonomous local processors associated with each
sensor modality. However, so far we have presented only
the means for fusing multiple sensor measurements. If we
want to fuse estimates form several running filters each ad-
joined to a sensor (for which the DKF was initially derived
for), then we have to further extend the fusion approach.

3.2 Centralized unscented information filter
In this section the unscented version [22, 23] of the infor-
mation filter is utilized for centralized sensor fusion. Un-
like EIF which approximates the non-linear function by a
Taylor series expansions, the UIF deterministically gener-
ates sigma points and uses them to estimate the mean and
the covariance. Therefore, for an n dimensional system we
need to generate 2n+ 1 sigma points X j,k−1 by:

X 0,k−1|k−1 = x̂k−1|k−1

X j,k−1|k−1 = x̂k−1|k−1 +
(√

(n+ λ)Pk−1|k−1

)
j

X j,k−1|k−1 = x̂k−1|k−1 −
(√

(n+ λ)Pk−1|k−1

)
j
,

(23)

where λ = α2(n + κ) − n is a scaling parameter with
0 ≤ α ≤ 1 and κ usually chosen by the heuristic n+ κ =
3, and

(√
(n+ λ)Pk−1|k−1

)
j

is the jth column of the
square root matrix of the multiplied covariance matrix.

The corresponding weights for recovering the mean
and the covariance are calculated as follows:

w
(m)
0 = λ/(n+ λ)

w
(m)
j = 1/ [2(n+ λ)]

w
(c)
0 = λ/(n+ λ) + (1− α2 + β)

w
(c)
j = 1/ [2(n+ λ)] ,

(24)

where the parameter β is for encoding additional higher
order effects. If the underlying distribution is a Gaussian,
then β = 2 is the optimal choice.
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The information prediction equations are:

ŷk|k−1 = Yk|k−1

2n∑

j=0

w
(m)
j X j,k|k−1, (25)

Yk|k−1 = P−1
k|k−1, (26)

where X j,k|k−1 are predicted sigma points calculated by
the process model (10), and the predicted covariance ma-
trix is computed by:

Pk|k−1 =

2n∑

j=0

w
(c)
j

[X j,k|k−1 − x̂k|k−1

]

·
[X j,k|k−1 − x̂k|k−1

]T
+ GQkG

T .

(27)

In order to present the UIF update equations, let us first
define a pseudo measurement matrix Hk as [9]:

HT
k = P−1

k|k−1P
X ,Z
k|k−1, (28)

where the cross-covariance matrix is calculated by:

PX ,Zk|k−1 =

2n∑

j=1

w
(c)
j

[X j,k|k−1 − x̂k|k−1

]

·
[Zj,k|k−1 − ẑk|k−1

]T
,

(29)

where Zj,k|k−1 = h
(X j,k|k−1

)
are observation sigma

points, and the predicted measurement vector is obtained
by ẑk|k−1 =

∑2n
j=0 w

(m)
j Zj,k|k−1. Then, in terms of

psedo-measurement matrix, information contribution for
sensor i can be expressed as 1:

iik = HT
i,kR

−1
i,k

[
zik − ẑk|k−1 + Hi,kx̂k|k−1

]
, (30)

Iik = HT
i,kR

−1
i,kHi,k. (31)

Now, the measurements are fused just as in the case of EIF,
through (21) and (22).

3.3 Centralized particle filter

In the previous sections we have focused mainly on filters
which assume unimodal (Gaussian) distribution over the
system state. In many applications this assumption may
not be adequate and more versatile representations may be
needed. In this section we present methods for sensor fu-
sion via particle filters which due to their specific repre-
sentation of density need additional tools to calculate the
update equations.

Let {xp, wp}Pp=1 denote a random measure that charac-
terises the posterior pdf p(x), where {xp, p = 1, . . . , P}

1Here we use index i in matrices Hi,k and Ri,k to denote the sensor
i in the subscript instead of superscript in order to more clearly denote the
transpose and the inverse operators.

is a set of particles with associated weights {wp, p =
1, . . . , P}. The weights are normalised so that

∑
p w

p =
1. Then, the posterior density can be approximated as
[24, 25]:

p(xk) ≈
P∑

p=1

wpkδ(xk − x
p
k), (32)

where P is the number of particles and δ(.) is the Dirac
delta measure. The expectation of some function f(x) in-
tegrable with respect to the pdf p(x) is:

E [f(x)] =

∫
f(x)p(x) dx, (33)

and the approximation of the integral with particles is:

E [f(x)] ≈ 1

P

P∑

p=1

f(xp), (34)

where xp ∼ p(x) and the expectation converges to the true
values as P →∞. Often, it is hard to sample from the true
distribution, hence importance sampling is used. The main
idea is to sample from a proposal distribution q(x) which
encompassed the support space of p(x), and then we can
rewrite (33) as:

E [f(x)] =

∫
f(x)

p(x)

q(x)
q(x) dx =

∫
f(x)w(x)q(x) dx,

(35)
where the importance weights w(x) is given as w(x) =
p(x)/q(x). An estimate of the expectation is then given
by:

E [f(x)] ≈ 1

P

P∑

p=1

f(xp)w(xp). (36)

In the centralized solution all the sensor modalities report
only their measurements (likelihoods), which corresponds
to estimating the posterior via (3). After similar deriva-
tion to the one in [24] we obtain the expression for weights
calculation:

w(xpk) ∝ w(xpk−1)
p(xpk|x

p
k−1)

q(xpk|x
p
k−1, z

1:m
k )

m∏

i=1

p(zik |xk)

(37)
If we choose the prior as the proposal density,
q(xpk|x

p
k−1, z

1:m
k ) = p(xpk|x

p
k−1), then weights are cal-

culated from the following expression:

w(xk) ∝ w(xpk−1)

m∏

i=1

p(zik |xk), (38)
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where the sensor likelihood is defined by:

p(zik |xk) =
1

2π
√
|Ri,k|

· exp

{
−1

2

[
zik − hi(xk)

]T
R−1
i,k

[
zik − hi(xk)

]}
.

(39)

Once the weights are calculated we can estimate the state
as follows:

x̂k|k = E[xk|zk] ≈ 1

P

P∑

p=1

w(xpk)xpk. (40)

The resampling of the particles is done at each iteration
via the sequential importance resampling (SIR) algorithm
[24]. At this point, also sample size adaption could be per-
formed [26]. Concerning the prediction stage of the filter,
we use the model (10) to predict the state of each particle.

4 HIERARCHICAL SENSOR FUSION

4.1 Hierarchical fusion of information filters

In this example each sensor runs its own local instance
of the EIF; prediction through (12) and (13), and update
through (16) and (17). Furthermore, all sensor modalities
utilise the same process model (10). The central processor,
on the other hand, also runs its own instance of EIF; pre-
diction through (12) and (13) with the same process model
(10) as the sensors utilise, but the global update, i.e. fusion,
should be performed in the following manner [8]:

ŷk|k = ŷk|k−1 +

N∑

i=1

[
ŷi,k|k − ŷi,k|k−1

]
, (41)

Yk|k = Yk|k−1 +

N∑

i=1

[
Yi,k|k −Yi,k|k−1

]
. (42)

We can see that the sensor modalities only have to commu-
nicate the difference between the updated, ŷi,k|k, and the
predicted, ŷi,k|k−1, information vector. The same applies
for the update of the information matrix. This ensures that
only the new information is used for fusion.

Hierarchical sensor fusion with UIF is performed in a
similar manner as with EIF. Both sensor modalities run
their own local, independent, and autonomous UIF and re-
port their estimates to the central fusion processor. The
central processor runs a global UIF, and performs the
global update, i.e. fusion, through (41) and (42).

4.2 Hierarchical sensor fusion with particle filtering

In this hierarchical solution with particle filters each sen-
sor modality runs its own local independent particle filter,

which needs to be fused with the global particle filter. This
corresponds to estimating the posterior via (5). Therefore,
the importance weights are given by:

w(xpk) ∝ w(xpk−1)
p(xpk|x

p
k−1)

q(xpk|x
p
k−1, z

1:m
k )

m∏

i=1

p(xk|zi1:k)

p(xk|zi1:k−1)
.

(43)
If we again choose the global prior as the proposal den-
sity, q(xpk|x

p
k−1, z

1:m
k ) = p(xpk|x

p
k−1), then weights are

calculated from the following expression:

w(xpk) ∝ w(xpk−1)

m∏

i=1

p(xk|zi1:k)

p(xk|zi1:k−1)
. (44)

By inspecting (44) we can see that we need to explic-
itly calculate functions p(xk|zi1:k) and p(xk|zi1:k−1), but
we only have particles estimating the mentioned densities.
If all the P weights from all them distributions were on the
same support space, then explicit multiplication and divi-
sion of weights would be possible. But since most weights
are assigned to an infinitesimally small point mass, direct
multiplication and division is not applicable. To solve this
problem we need a way to estimate the density function
from a particle set. One such method is the Parzen win-
dow method [27] which involves placing a kernel function
on top of each sample and then evaluating the density as a
sum of the kernels. We continue this approach as proposed
in [17, 28], and convert each sample to a kernel:

Kh(xk) = hnK(xk), (45)

where K(.) is the particle set covariance, and h > 0 is the
scaling parameter. For the kernel, we choose:

h =

(
4

n+ 2

)e
P−e, (46)

where e = 1
n+4 , and P is the number of particles. At this

point, the estimated density function is described as a sum
of Gaussian kernels:

p (xk| zi1:k) =

P∑

p=1

N (xk;xpk, 2Kh(xk|zi1:k)). (47)

In [15, 16] the authors propose how to utilize this function
estimation for particle set multiplication and division.

4.3 Hierarchical fusion of arbitrary filters

In the previous sections we have addressed centralized and
hierarchical fusion of EIFs, UIFs, and PFs. But what if
wee need to fuse a combination of these filters? For an
example, an EIF and a PF? In this section we propose a
solution to such a problem.
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To answer the question, we first need to choose the
global filter which will actually keep the global track and
fuse the local filters. In most cases we will utilize the fil-
ter which has better or higher modeling capabilities. For
an example, UIF is known to handle better high non-
linearities than the EIF. Thus if fusing an UIF and an EIF,
we might choose a UIF for the global filter. Furthermore,
if one of the filters is a PF, then we might choose also a
PF for the global filter, since it is capable of handling both
non-linearities and multimodal distributions. This reason-
ing stems from the fact that if we are using a more versa-
tile filter for local estimation, there must have been a good
reason for such a choice, and the global filter should be
equally versatile. However, this might not always be the
case and there may be situations in which a less versatile
and computationally less complex filter could be applied
for fusion. Therefore, in this section we shall analyze both
of the aforementioned situations, i.e. fusion of a local EIF
and PF with a hierarchical EIF, and the fusion of local EIF
and PF with a hierarchical PF.

For the case of fusion with the hierarchical EIF we
have equations defined in Section 4.1, from which we can
see that we need to calculate the difference of the informa-
tion vectors and matrices of the local updated and predicted
states. For the case of the local EIF this is straightforward,
while for the case of the local PF we propose to calculate
the covariance of the particle set first:

Pk|k = E[(xk − E[xk])(xk − E[xk])T|zk]

≈ 1

P

P∑

p=1

w(xpk)(xpk|k − x̂k|k)(xpk|k − x̂k|k)T,

(48)

which can then be used to calculate the information vari-
ables via (14). Once having analogously calculated the in-
formation variables for the prediction, we can readily fuse
the local PF and EIF with the hierarchical EIF via (41)
and (42).

For the case of fusion with the hierarchical PF, we have
presented fusion equations in Section 4.2, from which we
can see that in order to calculate the weights of the hier-
archical PF we need to explicitly evaluate the prior and
the posterior density of the local EIF and PF. Since EIF
assumes a Gaussian distribution, the updated density will
have the following form:

p(xk|zi1:k) = N (xk; x̂k|k,Pk|k) =
1

2π
√∣∣Pk|k

∣∣

· exp

{
−1

2

[
xk − x̂k|k

]T
P−1
k|k
[
xk − x̂k|k

]}
.

(49)

A similar expression can be obtained for the prediction
xk|k−1 and Pk|k−1. Furthermore, in order to be able to
divide the prior and the posterior density of the particle fil-
ter we will need to resort to the kernel density estimation
method presented in Section 4.2. Hence, the updated and
the predicted densities will have the form defined in (47).

All this results with the following expression for the
calculation of the weights w(xqk) of the global PF which
relies on the expressions derived for hierarchical sensor fu-
sion (5) and on the calculation of the hierarchical particle
filter weights (44):2

w(xqk) ∝ w(xqk−1) ·
∑P
p=1N (xqk;xpk, 2Kh(xk|zi1:k))

∑P
p=1N (xqk;xpk, 2Kh(xk|zi1:k−1))

· N (xqk; x̂k|k,Pk|k)

N (xqk; x̂k|k−1,Pk|k−1)
.

(50)

4.4 Asynchronous fusion

In the analysis thus far, we have assumed that all the
measurements/estimates arrive synchronously to the fu-
sion center. In most real world applications this might not
be the case. So, the question is, how should the fusion
be calculated if the measurements/estimates arrive asyn-
chronously? Is there a difference for the centralized and
hierarchical case?

Let us assume at this point that all the sensors send their
measurements/estimates in fixed, but different time inter-
vals. For an example, if we have three sensors, two might
report each 25 ms, while the third might report each 60 ms.
In such a case, only the fusion center has to change in order
to accommodate asynchronous arrivals, since from a local
sensor’s point of view, nothing has actually changed.

By inspecting (3) and (5), we see that for the sheer as-
pect of fusion itself, we only need to changem, the number
of sensors that we are fusing at a certain point. But there
is also one more very subtle change that needs to be ad-
dressed. When we use (10) for state prediction we assume
that the object undergoes a constant acceleration during a
given sampling period, which makes it inappropriate for
asynchronous fusion where the prediction and update oc-
curs in practically arbitrary time intervals [20]. This, in ef-
fect, changes the way we must calculate the prediction of
the state, and the solution is to switch to discretized con-
tinuous white noise acceleration model.

Basically, the state prediction equation remains the
same, only the process noise covariance matrix needs to

2Note that the particular particle in the hierarchical PF is now denoted
with q instead of p in order to leave the p to denote the particles in the
local PF
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be evaluated differently [20]:

Q̃k = E
[
vkv

T
k

]
= q̃

∫ ∆T

0




∆T − τ 0
1 0
0 ∆T − τ
0 1




·
[
∆T − τ 1 0 0

0 0 ∆T − τ 1

]
dτ

= q̃




1
3∆T 3 1

2∆T 2 0 0
1
2∆T 2 ∆T 0 0

0 0 1
3∆T 3 1

2∆T 2

0 0 1
2∆T 2 ∆T


 ,

(51)

where q̃ is the continuous-time process noise intensity as-
sumed to be a constant. Recommendations on how to
choose q̃ can be found in [20]. This implicitly means that
GkQkG

T
k → Q̃k in (13).

The result above suggests that regardless of the type
of fusion, centralized or hierarchical, we only need to cor-
rectly calculate the process noise covariance if the mea-
surements/estimates arrive in asynchronous, but locally
fixed, time intervals.

5 EVALUATION

In this section we test the sensor fusion methods on the
problem of object tracking with multiple sensors. For the
purpose of simulating a moving object we used a nearly co-
ordinated turn rate model with large process noise [20] (see
APPENDIX A). This model differs intentionally from the
model used in prediction which is defined in Section 2.1
since it is possible that true dynamics of the object are
unknown (consider the problem of people tracking). The
tracked object is observed at all time by two sensors, one
being more precise than the other. The measurements of
the first and the second sensor are both corrupted with
white Gaussian noise. Figure 1 shows an example of the
simulated trajectory and the measurements of the sensors.
For the purpose of more extensive analysis we have per-
formed 50 Monte Carlo runs, each of which consisted of
randomly generated trajectories like the one presented in
Fig. 1. Hereafter, we assume that only one object is being
tracked and that all the sensor measurements arrive syn-
chronously. For monitoring tracker performance we utilize
entropy and root-mean-square-error (RMSE).

5.1 Entropy and RMSE

We utilize entropy H(xt) as a measure of the tracker
performance. Entropy is a very useful measure of informa-
tiveness, and therefore we use it to track ‘confidence’ of
the tracker in its estimates. This way we can analyze how
sensor fusion affects the tracker’s informativeness. Ideally,
by including more sensors, even the less precise ones, we

0 10 20 30 40
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0
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30

x [m]

y
[m

]

sensor 1
sensor 2
true trajectory

Fig. 1. An example of a simulated trajectory of a mov-
ing object and measurements of two sensors with different
noise parameters

should experience an increase in informativeness, i.e. a
decrease in entropy.

A measure of entropy can take many analytical forms.
Shannon entropy can be difficult to analytically work with,
e.g. Shannon entropy of a mixture of distributions can-
not be expressed in closed-form, and therefore we chose to
work with Rényi entropy which usually offers a more suit-
able framework for analytical calculations [29]. The Rényi
quadratic entropy of a random variable xt with a Gaussian
distribution is given by

H2(xt) =
n

2
log 4π +

1

2
log |Pt|, (52)

where n is the state dimension and the entropy is propor-
tional to the logarithm of the determinant of the covariance
Pt.

Entropy calculation of continuous random variables is
based on the probability density functions of these vari-
ables. In order to calculate entropy of a particle filter,
which rather represents the density and not the function,
we need a non-parametric method to estimate the pdf. As
in Section 4.2 we will utilize the Parzen window method
[27] which estimates the density as a sum of Gaussian
kernels for which an analytical solution for the quadratic
Rényi entropy exists [30]:

H2(xt) = − log
1

P 2

P∑

i=1

P∑

j=1

N (xit − xjt ; 0, 2Kh(xt)).

(53)
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Table 1. Evaluation results of the sensor fusion for 50
Monte Carlo runs (number of particles was 250)

RMSE position [m] (velocity [m/s])

EIF UIF PF

Centralized 0.11 (0.17) 0.08 (0.17) 0.08 (0.34)
Sensor 1 0.19 (0.24) 0.13 (0.32) 0.18 (0.45)
Sensor 2 0.12 (0.18) 0.13 (0.34) 0.08 (0.26)

Hierarchical 0.11 (0.17) 0.13 (0.34) 0.09 (0.31)

Arbitrary local EIF local PF fused EIF

0.06 (0.20) 0.25 (0.47) 0.07 (0.34)

local EIF local PF fused PF

0.06 (0.20) 0.25 (0.47) 0.29 (0.60)

Table 2. Evaluation results of the sensor fusion for the
given synthetic data example (number of particles was
1000)

RMSE position [m] (velocity [m/s])

EIF UIF PF

Centralized 0.69 (1.59) 0.46 (0.85) 0.10 (0.59)
Sensor 1 1.10 (2.13) 0.23 (0.70) 0.25 (0.98)
Sensor 2 0.77 (1.72) 0.22 (0.68) 0.10 (0.66)

Hierarchical 0.70 (1.61) 0.22 (0.69) 0.13 (0.54)

Arbitrary local EIF local PF fused EIF

0.10 (0.66) 0.11 (0.66) 0.09 (0.59)

local EIF local PF fused PF

0.10 (0.66) 0.11 (0.66) 0.11 (0.60)

The RMSE is calculated both for the position and ve-
locity as follows

epos =

√√√√ 1

T

T∑

k=1

(x̂t − xt)2 + (ŷt − yt)2

evel =

√√√√ 1

T

T∑

k=1

(ˆ̇xt − ẋt)2 + (ˆ̇yt − ẏt)2,

(54)

where T is the simulation length, (x̂t, ŷt) are estimated co-
ordinates and (xt, yt) are true coordinates at time index k,
while (ˆ̇xt, ˆ̇yt) are the estimated velocities and (ẋt, ẏt) are
true velocities at time index k.

5.2 Comparative analysis

In this section we will present the entropy and the
RMSE for the cases of centralized, hierarchical fusion and
for the examples of fusing an EIF and a PF through a

0 10 20 30 40 50 60
−10

−5

0

5

t [s]

en
tr

op
y

sensor 1
sensor 2
fused

Fig. 2. Entropy of the EIF tracker with the first sensor, with
the second sensor, and the entropy of the fused hierarchical
EIF tracker for the given synthetic example

global EIF and PF. Table 1 shows the the obtained po-
sition and velocity RMSE results of 50 Monte Carlo runs,
where the the top and bottom performing 10% were re-
moved and the mean was taken from the rest of the results.
Table 2 shows the obtained position and velocity RMSE
for the given example of the simulated trajectory. In cen-
tralized fusion all the measurements from the sensors were
communicated to the fusion node which in turn ran an esti-
mator and fused the measurements via (21) and (22), (30)
and (31), and (38) for the cases of EIF, UIF, and PF, re-
spectively. In the case of hierarchical fusion each sensor
ran its own local estimator, which communicated its es-
timate to the fusion node, which then via (41) and (42),
and (44) fused the local estimates. Figs. 2, 3 and 4 show
the given example entropy of sensor 1, sensor 2, and the
fused EIF,UIF and PF, respectively. For all the exam-
ples of hierarchical fusion we can notice a pattern in which
the fused estimator had similar RMSE as the more pre-
cise sensor, but smaller entropy than any of local sensor
estimators indicating a reduction in uncertainty as can be
seen in Figs. 2, 3, and 4. This result showed that although
we fused a very precise sensor with a less precise one, the
resulting estimator did in fact have a benefit in form of a
reduced uncertainty.

Another parameter that has been analyzed is the execu-
tion time 3 of each of the fusion algorithms by averaging
the time of each of the 50 Monte Carlo runs. Consider-

3The experiments were conducted on a laptop computer with an In-
tel Core i7 CPU@1.60GhZ, Matlab 2010a and Ubuntu 12.04 operating
system
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Fig. 3. Entropy of the UIF with the first sensor, with the
second sensor, and the entropy of the fused hierarchical
UIF for the given synthetic example
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Fig. 4. Entropy of the PF with the first sensor, with the
second sensor, and the entropy of the fused hierarchical
PF for the given synthetic example

ing the centralized fusion, the EIF,UIF and PF had exe-
cution times of 0.20 ms, 0.95 ms and 1.84 ms, respectively,
while in the case of the hierarchical fusion the aforemen-
tioned filters had execution times of 0.13 ms, 0.38 ms and
294.20 ms. In the case of the hierarchical fusion only the
time of the fusion was measured, i.e. no calculation of the
filter correction equations was required, just expressions

(41) and (42) needed to be calculated. The reason behind
the complexity of the PF fusion step is that both the pre-
dicted pdf and the posterior pdf need to be first estimated
by means of kernel density estimation, thus resulting in a
fusion process where the weights of the particles of the
fusion filter need to be evaluated on both of the density es-
timate mixtures. Considering arbitrary filter fusion, for the
cases when the global filter was EIF and PF the execution
times were 0.38 ms and 240.28 ms, respectively.

6 CONCLUSION

In this paper we have presented Bayesian methods for
sensor fusion which were divided in two groups based
on the information that each sensor modality reported: a
centralized independent likelihood fusion where each sen-
sor only reported its measurement, and hierarchical fusion
where each sensor ran its filter and reported its own esti-
mate along with the uncertainty. The solution for sensor fu-
sion in the former case was an elegant multiplication of lo-
cal sensor likelihoods and the central (global) prior, while
the solution for the latter case was a bit more involved and
required a division of the local posterior and prior in order
to extract only the new information which was then mul-
tiplied with the central (global) prior. The aforementioned
approaches were given concrete expressions in the form of
the EIF, UIF, and PF. The experiments were conducted on
synthetic data generated from multiple Monte Carlo runs
modeling a situation of dynamic object tracking with sev-
eral sensor modalities.

The benefits and the importance of proper sensor fusion
was demonstrated by depicting entropy of the trackers. We
have shown that the fused estimates have lower entropy
than the most precise sensor, even when being fused with
a more imprecise sensors. Furthermore, we also discussed
the problem of arbitrary sensor fusion, i.e. situations in
which one sensor tracks the object with one type of a fil-
ter, e.g. a EIF, while the other tracks the object with a PF.
We proposed a solution and demonstrated the approach by
fusing local EIF and PF with a global PF and a global
EIF. All the previous results were based on the assump-
tion that the measurements/estimates arrive synchronously
to the fusion center. Furthermore, we also discussed a so-
lution with necessary modifications in the case of asyn-
chronous fusion, which mostly pertained to the correct sys-
tem prediction, i.e. calculation of the process noise covari-
ance matrix.

APPENDIX A

The dynamics of the simulated moving object were
governed by the nearly coordinated turn model given by
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the follwing expression [20]:

xk = Axk−1 + Gvk

=




1 sinω∆T
ω 0 − 1−cosω∆T

ω 0
0 cosω∆T 0 − sinω∆T 0
0 1−cosω∆T

ω 1 sinω∆T
ω 0

0 sinω∆T 0 cosω∆T 1


xk−1

+




∆T 2

2 0 0
∆T 0 0

0 ∆T 2

2 0
0 ∆T 0
0 0 ∆T



vk,

(55)

where the state vector from the Section 2.1 was augmented
with the turn rate ω = 0.5 rad/s, and the process noise was
simulated with vk ∼ N3×1(0, 0.5). This solution is pre-
sented here for completeness only, and was not used in the
simulations.
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