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Bayesian Shape Localization for Face Recognition
Using Global and Local Textures
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Abstract—We present a fully automatic system for face recogni-
tion in databases with only a small number of samples (even single
sample) for each individual. In this paper, the shape localization
problem is formulated in the Bayesian framework. In the learning
stage, the RankBoost approach is introduced to model the likeli-
hood of local features associated with the fiducial point, while pre-
serving the prior ranking order between the ground truth position
and its neighbors; in the inferring stage, a simple efficient itera-
tive algorithm is proposed to uncover the MAP shape by locally
modeling the likelihood distribution around each fiducial point.
Based on the accurately located fiducial points, two popular mu-
tual enhancing texture features are automatically extracted and
integrated for human face representation: global texture features,
which are the normalized shape-free gray-level values enclosed in
the mean shape, and local texture features, which are represented
by the Gabor wavelets extracted at the fiducial points (eye cor-
ners and mouth, etc.). Global texture mainly encodes the low-fre-
quency information of a face, while local texture encodes the local
high-frequency components. The extensive experiments illustrate
that our proposed shape localization approach significantly im-
proved the shape location accuracy, robustness, and face recog-
nition rate; moreover, the experiments conducted on FERET and
Yale databases show that our algorithm outperformed the clas-
sical eigenfaces, fisherfaces, as well as other approaches utilizing
the shape, global, and local textures.

Index Terms—Bayesian shape localization, face recognition,
Gabor wavelet, RankBoost.

1. INTRODUCTION

HE face recognition problem has attracted significant in-

terests in the last decades[3], [4], [20], [22], [26], [30]. In
this paper, we mainly focus on the task for fully automatic face
recognition on a database with only a small number of sam-
ples (even single sample) for each individual. Here, “automatic”
means that the face images for training or to be identified do
not need to be manually labeled. Difficulties of this task mainly
lie in the image variations due to the differences in head pose,
position, size, facial expression, and illumination. A successful
face recognition methodology depends heavily on the face rep-
resentation and encoding method [17]; meanwhile, the conve-
nient approach for automatic feature extraction is expected by
a practical face recognition system [28], [32]. In this work, a
novel Bayesian shape localization approach is proposed for au-
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tomatic feature extraction; two types of robust and mutual en-
hancing features are integrated for human face representation,
i.e., the global texture and local texture, which characterize the
low- and high-frequency information of a face, respectively.

Recently, many new algorithms on face encoding and
shape localization are proposed. Liu et al. [17] introduced a
new face encoding and recognition method, Enhanced Fisher
Classifier, in which the face recognition is conducted using the
Enhanced Fisher Linear Discriminant Analysis on the feature
vector integrating the shape and texture, where fexture means
the shape-free gray-level values enclosed in the mean shape.
Heisele [11] introduced that the component-based approaches
outperform the global approaches since the local components
are more robust to head pose variations. Wiskott et al. [28]
proposed an approach named Elastic Bunch Graph Matching.
In this approach, a face is encoded in the form of image graph,
i.e., a set of Gabor jets at the fiducial points. The extraction of
image graph is guided by maximizing the objective function
evaluating the similarity between the image graph and the face
graph bunch (FGB), constructed from a small number of sample
images graphs. However, as it used the jets in the FGB as local
experts for similarity evaluation, the evaluation may easily
affected by the noise in the FGB; moreover, the term evaluating
the distorting of grid relative to the FGB has the assumption
that all the edges in the image graph are independent of each
other and have Gaussian distributions. This may not be the case
in the real world. The active shape model (ASM), developed
by Cootes and his colleagues [6], and its variations [10], [11],
[24], [29] are powerful tools for the shape localization problem.
However, there are some limitations in conventional ASM
algorithms.

1) The local features extracted at the neighborhood points
of a fiducial point are often similar to that extracted at
the fiducial point, which may cause ambiguity; moreover,
the most representative features are not always the best
discriminative features. The traditional principal compo-
nents analysis (PCA) is insufficient to present discrimina-
tive likelihood to differentiate the fiducial point from its
neighbors.

2) The conventional ASM searches for the optimal shape
without explicit objective function, thus it can not
guarantee that the searched shape has monotonously
increasing posterior probability in each step in the
sense of Bayesian modeling. It provides neither a robust
likelihood evaluation for the searched shape nor a stop
criterion for the entire searching process in a principled
manner.

The accurate localization of the shape, or so-called fiducial

points, of a face are essential to the face recognition problem
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[15], [16], [25]. In this paper, new approaches are proposed to
overcome the limitations of the conventional ASM approaches.
First, a semi-supervised learning algorithm, RankBoost, is in-
troduced to build the local likelihood model that ensures the
ground truth position will more likely have a higher likelihood
than its neighbors. It aims at providing more discriminative like-
lihood for the fiducial points and their neighbors. Second, we
present a simple effective iterative algorithm for the optimiza-
tion of the objective function by dynamically locally learning
the likelihood distribution around each fiducial point using the
locally weighted learning method. It guarantees that the objec-
tive function increases monotonously. These two approaches are
both based on accurate probability formulation, which naturally
leads to a robust likelihood measure for the searched shape. It
can be used as a stopping condition for the inferring process.

In general, face images vary with the change of head posi-
tion, size, expression, and environment illumination. A small
number of samples can not reflect all these variations, thus face
recognition based on the original raw features, i.e., gray-level
values, will suffer from insufficient representation ability of the
training samples. A natural way to overcome this problem is to
use shape free features or robust local features at the points with
explicit semantic. Therefore, we propose to use two types of fea-
tures, i.e., global and local texture features, for face representa-
tion. The global texture is a normalized shape-free gray-level
patch enclosed by the mean face shape warped from the orig-
inal images. The global texture image has the same edges and
contours and is insensitive to the shape variation due to the dif-
ferences in head pose and facial expressions. The local textures
around the fiducial points can be efficiently represented using
the Gabor-wavelet features on various scales and orientations.
They are DC-free and provide robustness against varying light-
ness in the image and head pose variations. In this work, the
global texture and local Gabor jets are integrated for face rep-
resentation for their mutual enhancing in discriminating power.
Note that there are some previous works using the global texture
[17] or local texture [28], [32] for face representation; however,
most of they used only one of them or just combined one of
them with the geometric shape information. Lanitis’ work [15]
is most related to the framework presented in this paper. It inte-
grated the shape, global texture and local gray-level models for
face recognition. There are two differences between them: 1) we
present a more robust and accurate shape localization approach
and 2) the work in [15] used only the profile perpendicular to the
shape contour, with single orientation and single scale, which is
less representative and robust than the Gabor jets used in our
framework.

The face recognition problem is a canonical pattern recog-
nition problem. A number of face recognition methods have
been proposed. These methods can be divided into two types,
namely, face-based and constituent-based. The face-based ap-
proaches, such as Eigenfaces and Fisherfaces [3], utilize the
original raw face as the feature vector, while the constituent-
based approaches extract the features based on the detected fa-
cial features (eyes, mouth, nose, and face contour), e.g., the
ASM and AAM based algorithms. Our proposed face recogni-
tion algorithm is constituent-based, and the extensive compara-
tive experiments presented in experiment section show that our

algorithm outperforms the face-based algorithms, like Eigen-
faces and Fisherfaces, and the other way utilizing global and
local texture.

Here, we summarize the novel contributions of our work.

1) A general Bayesian shape localization approach is intro-
duced for accurately localizing the fiducial points of a
face. It makes use of the prior ranking order between the
ground truth position of the fiducial point and its neigh-
bors in the construction of the local likelihood model. In
addition, a local model based iterative algorithm is pre-
sented to search for the optimal positions of the fiducial
points. The experimental results show that it outperforms
the conventional ASM significantly in position accuracy,
robustness, stability and the recognition accuracy.

2) Two popular mutual enhancing texture features: i.e.,
global texture and local texture (Gabor jets) are inte-
grated, which results in a robust face encoding method
for face recognition.

The rest of this paper is organized as follows. Section II in-
troduces our framework for face recognition. In Section III, the
Bayesian shape localization approach is introduced in detail.
Face recognition using global and local textures is discussed in
Section IV. The evaluations and experiments are presented in
Section V. Finally, the concluding remarks and future work are
given in Section VL.

II. SYSTEM OVERVIEW

In this paper, we mainly focus on the task for automatic face
recognition on database with a small number of samples (even
single sample) for each individual. There are three major prob-
lems for this task: 1) what kind of features used to encode the
human face are insensitive to the image variations due to the
differences in head pose, position, size, and illumination; 2)
how to automatically extract the desired features from a face
image without any user interaction; and 3) which kind of sim-
ilarity measure is optimal to match the gallery and probe face
image. In Sections II-A—C, we present our solutions to the above
three questions and a unified framework is presented for face
recognition.

A. Global and Local Textures for Face Representation

In real world applications, there are probably significant dif-
ferences between the geometrical structures of the training sam-
ples and those of the probing faces for an individual due to the
variations in face pose, position, and expression. A natural way
to collapse these variances is to use shape-free features or local
features extracted at the fiducial points with explicit semantic,
like the eye and mouth corners, nose tip, and face contour. Con-
sequently, we present a novel face encoding method by inte-
grating the global and local textures, which characterize the low-
and high-frequency components of a face, respectively.

Global texture is a normalized shape-free gray-level patch en-
closed in the mean face shape. It is a shape normalized image
transformed from the original face image. The warping opera-
tion uses the triangular meshes, as shown in Fig. 1, to build the
correspondence between the original image and warped image.
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Fig. 1.

The triangular mesh constructed from the mean shape and four warped global texture samples from the FERET database.
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Fig. 2. Gabor wavelet representation: examples of three kernels from the images in the FERET database.

An affine transformation is performed for each triangular re-
gion. Some warped texture samples from FERET [23] database
are listed in Fig. 1. After the warping operation, all the images
have the same shape and contour, and the local details are weak-
ened in most cases; thus the global texture mainly characterizes
the low frequency components of the original face image.

The local texture is defined as a small patch of gray-level
values in a face image [ around a fiducial point ¥ = (z,y). A
typical representation of the local texture is the Gabor wavelet,
i.e., Gabor jet [14], [19], [21], which is defined as a convolution
based on the Gabor-wavelet transformation function

1@ = [ 1&)0,@-5) m

where Gabor kernels
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is the two-dimensional (2-D) plane wave with wavelet vector Ej
restricted by a Gaussian envelope function with relative width

6. We set 6 = = in all our experiments and use a discrete set of
five different frequencies and eight orientations as follows:
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where m = 0,...,4,n =0,...,7, 5 = 8n + n. Thus, there
are 40 features for each Gabor jet. Two examples with three of
the Gabor kernels are showed in Fig. 2. In our study, only the
magnitudes are used, since they are insensitive to the position
while the phrases are very sensitive to position. The Gabor jet
directly represents the local properties and mainly characterizes
the high frequency information of a face.

The global texture and local texture characterize two different
parts of the information in a face, and they can mutually enhance
the discriminating power of each other. In our work, these two
kinds of textures are integrated to encode a face.
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B. Automatic Feature Extraction by Bayesian Shape
Localization

A practical system should be able to automatically extract
the features for face encoding, especially for a real time face
recognition system. Elastic Bunch Graph Matching (EBG) and
ASM are two popular algorithms for automatic localization of
the fiducial points. They have been widely used in the tasks such
as shape localization, expression analysis and face recognition.
Compared with EBG, ASM has its advantages at building the
global shape model and local likelihood/appearance models in
a statistical framework. All the similarity measures efficiently
make use of the prior distribution of the features. A typical ASM
algorithm has two steps: single point localization and shape pa-
rameter estimation. Different methods are proposed to improve
the performance of these two steps. However, there are some
limitations in the ASM framework. First, the local likelihood
model characterizes only the local features at the ground truth
positions, whereas the feature that best characterizes the ground
truth positions is not always able to best distinguish the ground
truth position from its neighbors. Thus, the ground truth posi-
tion may have a lower likelihood than those of its neighbors.
This may happens even on the training samples. Second, there
is no explicit objective function to be optimized for the fiducial
point localization problem. Consequently, it provides neither a
robust evaluation for the searched shape nor a stop criterion for
the entire searching process in a principled manner.

In this paper, we formulate the shape localization problem in
a Bayesian framework and propose a set of new approaches to
overcome the limitations of the conventional ASM algorithms.
First, a new ranking prior likelihood model is introduced to en-
sure that ground truth position will more likely have a higher
likelihood than its neighbors via the RankBoost algorithm [5],
[9]. It aims at providing correctly ordered likelihoods for the
candidate points by efficiently combining the “weak” evalua-
tion functions, which are built using different combinations of
the principal components of the local features. Second, since
the proposed objective function is complex and has no close
form solution, we propose an adaptive local likelihood distri-
bution model motivated by a lazy learning algorithm called lo-
cally weighted learning [1], [2], to optimize the objective func-
tion iteratively.

C. Face Similarity Measure Methods

As discussed previously, we mainly focus on the face recog-
nition on the database with a small number of training samples,
even a single face, for each person. The similarity can be eval-
vated in the original feature space and the dimensionality re-
duced space. In the original feature space, we systematically
compared the performance by using L; distance, Euclidean dis-
tance, and cosine distance for similarity measure. Moreover, we
evaluate the performance in the reduced representation subspace
obtained by PCA. It is important to note that LDA and its varia-
tions are not suitable to the case that only a single face per indi-
vidual is available. This is because the intra-class scatter matrix
is a zero matrix in this case.

In Sections III-VI, we first introduce our proposed Bayesian
shape localization algorithm in detail, and then the face recog-
nition algorithm using global and local textures are presented.

III. BAYESIAN SHAPE LOCALIZATION

The task of shape localization is to infer the optimal face
shape with the maximal posterior probability from an image I,
ie.,

S* = arg m%xp(SH) )
SESs

where S; is the low-dimensional shape space [7], [8], [13]
learned by principal component analysis (PCA) from the
training shapes [6]. A shape S = ((21,v1),...,(ZK,yK)) €
R2K is a sequence of K fiducial points of a face. In (4),
S is reconstructed from the shape parameter s € S as:
S = Ts.(S + Us), where S is the average shape and U is
composed of the first & leading eigenvectors; T's.(-) is the 2-D
geometry transformation function based on four parameters:
scale (), rotation (6), and translations T, 7).

From the Bayesian rule and the assumption that the local
features from different fiducial points are independent to each
other, the problem can be reformulated as

S* =arg max P(I|S)P(S)

K
=arg néaéxlj[l P™(1]S;) x P(S) (5)

where P[*'(1I|S;) is the likelihood of the :th fiducial point with
n; being the normal direction to the shape contour at .S;.

The local likelihood model plays an important role in the
shape localization problem. It presents the fundamental likeli-
hood evaluation for the candidate positions of fiducial points.
In order to accurately locate the fiducial points, it is desirable
that the local likelihood model should present higher likelihood
for the ground truth position than its neighbors. However, the
conventional local likelihood models in ASMs characterize only
the local features at the ground truth positions and ignore the re-
quirement for accurate shape localization. Thus the accuracy is
affected by the incorrectly ranked likelihoods provided by these
models in many cases.

Given an image, it is difficult to obtain the optimal shape
of (5) because of the difficulties in exploring the global struc-
ture of P (I].S;). In a conventional ASM, the solution shape is
approximated using a two-step iterative framework. First, each
point is relocated to the new position with the maximal like-
lihood P["(I|S;) in the neighborhood of the original position
using the local likelihood models; then the relocated shape is
constrained by the statistical shape space S;, which implicitly
maximizes P(S). Due to the lack of the constraints of the term
P(S), the first step is easily affected by noise, which under-
mines the accuracy and stability of the previous algorithms.

A. Ranking Prior Local Likelihood Model

It is often the case that, in fiducial point localization, the
points around a ground truth position have similar local features
especially in the low-resolution images. The ambiguity between
the ground truth position and its neighbors demands that the
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local likelihood model should be able to correctly rank the likeli-
hoods of these ambiguous positions. A natural way is to take into
account the ranking priors of these positions in the construction
of the local likelihood model. Consequently, we propose a novel
ranking prior local likelihood model to not only characterize the
local features of a ground truth position as conventional ASM
algorithms do, but also preserve the likelihood ranking order be-
tween the ground truth position and its neighbors.

Our proposed ranking prior local likelihood model is con-
structed using a newly emerged boosting algorithm RankBoost
[5], [9]. Boosting is a method to produce highly accurate predic-
tion rule by combining many “weak” rules, which may be only
moderately accurate. RankBoost is a variation of the boosting
algorithm. It aims at providing high accurate ranking evalua-
tion and was originally used in the applications like web page
ranking.

For the sake of simplicity, we shall omit the point sequence
number in the deduction of the ranking prior local likelihood
model. For a fiducial point, let x = {x: local feature vector at
ground truth position or its neighbors } be the sample space.
The crucial pairs with prior ranking orders are presented in set
Q= {(z,2") : R(z,z") > 0}R(x,z") where R(x,z') is the
likelihood difference evaluation function; It is normalized to sat-
isfy 3=, »yeq LUz, ") = L. In the shape localization problem,
x and z’ are the local features extracted at the ground truth posi-
tion and its neighbors, respectively. Let F = {f;,i =1,..., L}
denote the “weak” ranking evaluation function set, where L is
the number of the functions;f; satisfies 0 < f; < 1 for all
x € X. RankBoost is designed to find a likelihood evaluation
function H : x — R with “minimal” weighted number of the
incorrectly ranked crucial pairs, i.e.,

* : / !/

H* = arg min Z R(z,z") ’VH(:Lx )-I (6)
(z,x")EQ
where H(z,2') = H(z) — H(2'); [ﬁz(m')] = 1if
H(x,2") < 0 which means that « and &’ are misranked, else
0; SF is the likelihood evaluation function space spanned by
the functions in F'. The whole process of RankBoost is referred
to in [9]. In our local likelihood models, we set the bounds
for the coefficient at each step for better stability and faster
convergence.

As the projection to each principal component of the local
features at the ground truth position presents fundamental
ranking evaluation for all the samples, we construct the “weak”
ranking evaluation function set using different combinations
of these principal components. Denoting L’ as the number of
the principal components, there are (2L' — 1) kinds of different
combinations

1 32,
o= 335 o
k=1"7%

where 2, is the projection of x to the jkth principal compo-
nent, Ajj, is the jkth largest eigenvalue, and 1 < j1 < j2 <
¢--- < jl < L'. Since the ranking order of candidate pairs is
only determined by the sign of their likelihood difference, we
normalize § H(z)dz = 1.

By taking into account the prior information in the modeling
process, the ranking prior local likelihood model is able to
present more accurate likelihoods for the candidate positions
than the traditional model does. We have conducted exper-
iments to compare single point localization accuracy of the
ranking prior model and the traditional model. It is observed
that only 76% of the ground truth positions have higher likeli-
hoods than their neighbors by using traditional local likelihood
models, while the number is increased to over §89% by using
our proposed ranking prior local likelihood models.

B. Locally Weighted Learning for Optimal Shape Inferring

As analyzed previously, it is difficult to directly undertake
the optimization process for the complex global structure of
distribution P**(I|S;). In the control theory literature, locally
weighted learning [1], [2] is a widely used lazy learning algo-
rithm. It dynamically models the complex function using simple
local models, with no necessity to find an appropriate structure
for the global distribution. We extend this idea to locally model
the complex function P]"*(I|S;) using semi-Gauss functions.
Consequently, the optimum of the shape localization problem
in the neighborhood of the original shape can be obtained using
these local models, namely adaptive local likelihood distribu-
tion models. In Sections III-B1 and 2, we will first introduce
this new model and then present a new optimization approach
for the shape localization problem.

1) Adaptive Local Likelihood Distribution Model: There is
no closed-form solution for the shape localization problem. A
natural way is to search for the solution in an iterative approach.
Let S* be the initial shape for the kth iteration, the task of each
step is to find the optimal shape in the neighborhood of S*
using local optimization approach. Following the ideas of the
locally weighted learning approach, P*(I|S;) can be locally
approximated around S* using the likelihoods presented by
the 7th ranking prior local likelihood model. Note that n; can
be approximated by n¥ in the neighborhood of S¥. This local
model dynamically approximates the likelihood distribution
around each fiducial point, so called adaptive local likelihood
distribution model. Its construction process has two steps:
1) local neighbor selection and 2) local distribution model
construction.

In the first step, the local neighbors of S¥ are sampled ac-
cording to the following distribution:

p(z,y) = {5527 glslzn |z, y) = SF|| <6, ®

where 6 is the coefficient which determines the sampling range
around the point S¥. Denoting {A£,’§ ’7’)} as the sample set, the
likelihood for each sample can be obtained as

Cfi (A%D) = i (v (A% nk)) ©

where x(A,(TI: ’i)./ nf) is the local features extracted at Agf ) and

H;(-) is the learned ranking prior local likelihood evaluation
function for the sth fiducial point.
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In the second step, the likelihood distribution in the neighbor-
hood of S¥ is approximately modeled from the samples {A (k, Z)}
and their likelihoods {C' fz( m’ )}

k

%

(10)

where parameters C, ¥, and Zf can be easily learned by using
least square method.

2) Shape Parameter Inferring: From (5), we can write the
object function for shape localization problem as

K
F(S,I) =[] P (118:) x P(S). (11)

=1

In the (k+ 1)th iteration, F'(.S, 1) can be optimized in the neigh-
borhood of S* in term of the adaptive local likelihood distribu-
tion model, then the object function is changed to

K

=Py 1)

Thus, the local optimum of the shape localization problem can
be derived using the energy function

Fyst)(S, 1)

P(S). (12

K
nk
S* — arggéigri ZERNE(S?.")(I; Si) + En(S)
1=1

k()2 82
_ +§_J
ulHE:f i

where En(-) is the corresponding energy function of the dis-
tribution p(-), namely p(z) o exp{—FEn(z)}, K’ is the di-
mension of S, A; is the jth largest eigenvalue of the covari-
ance matrix of the training shapes, s is the corresponding shape
parameter, M* = S + Us, and T's,. is the geometry trans-
formation function based on the transformation parameter ¢ =
(T7 0,7, Ty)

Tsc(z,y) =Tr ( >+<T>
-0 D) 0)+ (%)
where a = rcosf,b = rsinf.

In (13), the optimization function is multinomial and has no
close form solution. As discussed in [12], the solution can be
approximated iteratively using a two-step optimization method
as following.

Transformation parameter estimation given s: Given the

shape parameters s, M?, and En(S) are constant. In this case,
we only need to minimize the following energy function:

13)

K
=arg gégi Zz:; ||TSC(M

(14)

2

— T, :
() () -l
Yy

15)

=1

In order to obtain the optimal transformation parameter, we set
the partial derives of En(c) to zero. That is, the optimal param-
eters are obtained by solving the following linear functions:

B[R e ()

i

Shape parameter estimation given c: Given the transforma-
tion parameter c, the energy function is changed to

K

>

=1

a7

Tr(S; + U;s) + <£m> — uk

Y

where U; is a matrix consisting of the (2; — 1) and 27 row of U.
Using the same approach as above, s can be obtained by solving
the following linear functions:

K k
> (TrU)" Y (TrUy) )+ 1
i=1

i

S

J

K k
=Y (TrU)TY (uf = TrSi—T) (18)
=1

%

where T = (T3, T,)".

For a given image, we start with the mean shape using proper
transformation parameter cy, i.e., S = Ts,,(S). The whole
iterative searching process of the shape localization problem can
be outlined as follows:

Set the iteration number K = 0.

Construct the adaptive local likelihood distribution model for
each fiducial point using the points sampled from the distribu-
tion function (8) and their corresponding likelihoods provided
by the learnt ranking prior local likelihood model.

The shape S¥+1 with optimal parameter s and the transfor-
mation parameter c in the neighborhood of S* are derived using
the above iterative parameter inferring method.

If F(S¥+1 1) — F(S*,1) < 0 or k > Kpmax(0) is the least
decreased value that F'(S* 1) must achieve in each iteration,
K ax 1s the manually defined maximal iteration number), exit;
otherwise, let k = k + 1, go step 2.

IV. FACE RECOGNITION USING GLOBAL AND
LocAL TEXTURES

Three types of features: shape, global, and local textures, can
be extracted from a shape localization approach. In this work,
we integrate the global and local textures for face encoding due
to the following observations and analysis.

1) The shape is unstable for the head pose and facial expres-
sion variations; it may be mislocated due to the ambigui-
ties especially for the contour points, while the local tex-
tures are more robust comparatively.
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2) The global and local textures characterize the low and
high frequency components of a face, respectively; and
they can enhance each other in discriminating power.

With our proposed Bayesian face localization approach, the

manually defined fiducial points in a face can be located in an
iterative way. Let S denote the final searched fiducial points.
The global texture is extracted by warping the gray levels en-
closed by the shape S to the mean shape via the triangular mesh
[6]. Let z8° € RM denote the extracted normalized global tex-
ture, i.e., H:cgloHZ = 1, where N is the number of the fiducial
points. The local Gabor jets are computed as (1) at the searched
fiducial points of S¢. Let #'°¢ € RE X2 denote the normalized
local Gabor features in a matrix form, i.e., ||£'°||2 = 1. Now,
the human face can be represented as a high-dimensional vector,
ie, z = [(#81)T (zP)T,..., (22)T]T. The face recogni-
tion may be conducted in the original space characterized by the
global and local textures and the dimensionality-reduced space.
PCA and LDA are two of the most popular subspace learning al-
gorithms for face recognition. In this paper, PCA is applied for
dimensionality reduction, since LDA cannot work in the case
that only a single sample is available for each individual, like
our experiments on the FERET database.

A. Recognition in the Original Space

In the original space, we first conduct the down sampling at
the global textures for robust representation. We systematically
investigated three similarity measures.

1) The Cosine distance:

= — (19)
z (@9°)2 3 (y2'°)?

=1

where )\; is a suitable constant. The first term, defined as in [28],

measures the similarity of the local Gabor wavelet features and

the second term measures the similarity of the global textures.
2) The distance:

K N,
loc loc
SL1(‘T7y) KXNQZZ|$ yl]
=1 j=1
1 &
lo lo
oD e =95 20)
j=1
where )5 is a suitable constant.
3) The L/Euclidean distance:
K N
lO(’ la('
Sp, (2, y) K>< oA E;ZIIIJT — 45l
i=1j
A Z |z9" = 42|2 @21)

where )3 is a suitable constant.

Our experiments show that the recognition using L; distance
outperforms that by the other two methods.

B. Recognition in the Dimensionality-Reduced Space

Sometimes it may be beneficial to perform dimensionality re-
duction before we utilized any classification techniques. High
dimensionality creates several problems for face recognition.
First, learning from examples is computationally infeasible if
it has to rely on high-dimensional representations. The reason
for this is known asthe curse of dimensionality: the number of
examples necessary for reliable generalization grows exponen-
tially with the number of dimensions. Learnability thus neces-
sitates dimensionality reduction. Second, for storage and effi-
ciency concern, dimensionality reduction is needed.

PCA is optimal as to reducing redundancy. The leading
components obtained by PCA maximize the data variance
in those directions, and hence capture the most informative
features of the data set. Let P denote the projection matrix
whose column vectors are the leading eigenvectors of the data
covariance. Thus, the face image can be represented in the
reduced subspace as follows:

(22)
In the dimensionality-reduced subspace, we investigated
the face recognition performance by using different similarity

measures, i.e., cosine distance, L distances, and Euclidean
distance.

T = Pux.

V. EXPERIMENTS

In this section, two types of experiments were systematically
conducted. We first conducted experiments to evaluate the ac-
curacy, robustness and stability of our proposed Bayesian shape
localization algorithm; then three types of face recognition ex-
periments on FERET and Yale databases were presented: 1) the
performance of our algorithm using different similarity mea-
sure; 2) comparison with the classical Eigenfaces and fisher-
faces on the Yale database; and 3) comparison of the different
approach utilizing the shape, global and local texture.

A. Bayesian Shape Localization

The experiments have been conducted on a data set consisting
of 500 frontal face images, in which each face area contains
about 150 * 150 pixels and many faces have ambiguous fiducial
points such as those shown in Fig. 6. All faces were manually
labeled with 83 fiducial points. Four hundred of them were ran-
domly selected for model construction and the remaining 100
for testing.

For comparison, ASM and our proposed Bayesian shape lo-
calization approach, referred as RPBF (Ranking Prior likeli-
hoods for Bayesian shape localization Framework) were trained
on the same data set, in a four-level image pyramid (Resolu-
tion is reduced 1/2 level by level). All results were obtained by
searching maximally five times per layer (exit each layer as de-
scribed in Section I1I-B2). RPBF is a fast algorithm. It costs only
80 ms per iteration (on P4 1.8G computer with 512M memory)
although it is slower than the classical ASM for the consumption
at locally learning of the local likelihood distribution. It takes
about eight iterations to converge in average. As we discuss in
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Fig. 4. The capture range comparison of in-plane rotation angle: ASM versus RPBE.

the following, it greatly outperforms ASM in accuracy, stability,
and robustness.

The most commonly used criterion to evaluate the searched
shape is the average point—point or point—curve distance be-
tween the searched shape and the ground truth. In all our exper-
iments, the results were evaluated using the average point—point
distance.

1) Accuracy and Robustness of Shape Localization: The
statistics of the average point—point distance between the
searched shape and the manually labeled shape of ASM and
RPBF are presented in Fig. 3. The vertical axis represents the

distribution of point—point distances. It shows that most results
of RPBF have smaller point—point distances than those of
ASM.

The capture range of in-plane rotation angle is an impor-
tant criterion to evaluate the shape localization algorithms. The
results illustrated in Fig. 4 demonstrate that RPBF can cap-
ture larger percentage of cases in range of the in-plane rotation
[—40°,40°].

2) Algorithmic Stability: The algorithm stability was mea-
sured by the standard deviation of the results from different ini-
tializations. The results of RPBF and ASM are compared in
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Fig. 5, where the vertical axis describes the average standard
deviation of the results obtained from nine different initializa-
tions. The result shows that RPBF is more stable for initializa-
tions compared to the conventional ASM.

The comparison between RPBF and ASM is presented in
Fig. 6. As can be seen, ASM failed to accurately locate the con-
tour points due to the ambiguity caused by the furrow on the
face, while RPBF accurately located the contour. Fig. 7 shows
some results of the images from the FERET database and they
were directly used for global and local textures extraction in the
following face recognition experiments.

B. Face Recognition Experiments

In this subsection, we tested our face algorithm using global
and local textures based on RPBF on the FERET and YALE
databases. The algorithm performance was evaluated based on
the automatically extracted global and local textures using our
proposed automatic Bayesian shape localization approach. We
systematically compared the performance of different combina-
tions of the features; and we evaluated the performances of our
algorithm using the following similarity measures: L; distance,
Euclidean distance and cosine distance; moreover, experiments
comparing our proposed algorithm with the classical Eigenfaces
and Fisherfaces on the Yale database were also conducted.

1) Performance on the Feret Database: The FERET data-
base was provided by the U.S. Army Research Laboratory. We
used 450 face images corresponding to 150 individuals such
that each person has three images in gallery “ba” (frontal face),
“be” (face with pose +15°) and “bf” (face with pose —15°) of
size 256 * 384 with 256 gray-level values. We systematically in-
vestigated the performance by using one image per person for
training. The fiducial points were automatically located using
our proposed Bayesian shape localization approach as described
in Fig. 7. The results from using different way utilizing the
shape, global and local texture based on the similarity measure

Standard deviation of results derived from different initializations for each example compared between ASM and RPBF.

(a) (b)
(a) A case ASM fails for the ambiguous furrow (b) PRSSL performs

Fig. 6.
well.

criterion Sy, at the original feature space are listed in Table I. It
is observed that the recognition rate obtained by using integrated
global and local textures is always higher than that obtained by
using only one of the features; meanwhile, it also shows that
our proposed Bayesian shape localization algorithm improves
the recognition rate comparing to the classical ASM algorithm
due to its better accuracy at shape localization. Meanwhile, it
shows that mostly the face recognition performance using inte-
grated shape, global texture, and local gray levels as [15] (in the
experiments, we used the same weights for the three types of
parameters) is worse than that using local texture and is always
worse than that using integrated global and local texture (Gabor
jets).

To evaluate the performance of our algorithm with dif-
ferent similarity measures, we conducted the experiments
using gallery “bf’ as training samples and gallery “be” as
testing samples. These experiments ware performed in the
dimensionality reduced subspace by PCA. Fig. 8 shows that
face recognition using L distance outperforms that using the
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Fig. 7. Some shape localization results of RPBF from the images of the FERET database.

TABLE 1
RECOGNITION RATES IN THE ORIGINAL FEATURE SPACE USING L; DISTANCE ON THE FERET DATABASE WITH ONLY ONE SAMPLE FOR TRAINING PER PERSON.
NOTE THAT THE FIRST FIVE EXPERIMENTS WERE CONDUCTED BASED ON THE SHAPE LOCALIZATION RESULTS FROM RPBF; AND THE LAST ONE WAS
CONDUCTED BASED ON THE SHAPE LOCALIZATION RESULTS FROM ASM AND USED THE GLOBAL AND LOCAL TEXTURES

Training Testing  Results  Results 153 efs Elll ;s] Results Rtssjﬁs
Gallery  Gallery  (Global) (Local) (G+L) (G+L)
ba be 91.33% 98.00%  92.67% 99.33% 94.67%
ba af 9533% 95.33%  95.33% 98.00% 93.33%
be ba 92.67% 9733%  9533% 98.67% 93.33%
be bf 71.33% 9333%  89.33% 94.67% 90.00%
b ba 92.00% 94.00%  93.33% 94.67% 89.33%
bf be 70.00% 93.33%  94.00% 96.00% 91.33%

other two similarity measures; and face recognition using the
Euclidean distance performs worst.

2) Performance on the Yale Database: The Yale face
database [27] was constructed at the Yale Center for Compu-
tational Vision and Control. It contains 165 grayscale images
of 15 individuals. These images demonstrate variations in
lighting condition (left-light, center-light, right-light), facial
expression (normal, happy, sad, sleepy, surprised, and wink),
and with/without glasses. We systematically compared the
performance of four methods using the shape, global and local
textures. All these experiments were conducted in the original
feature space using Cosine distance for similarity measure and
we tested their performances when using different number of

training samples. As can be seen in Fig. 9, the recognition
method integrating the global and local textures outperforms
the other three methods in all the experiments with different
number of training samples; the recognition method using
global textures and shape outperforms that using only global
textures, but is worse than that using local textures and much
worse than our algorithm.

Eigenfaces and Fisherfaces are both face-based algorithms.
The face-based algorithm directly utilizes the gray-level values
of the original raw image which are sensitive to changes of
head pose and expressions. Meanwhile, the Fisherfaces algo-
rithm can only produce a small number of discriminating fea-
tures, which limits its recognition performance. Table II system-
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TABLE 1I
RECOGNITION ACCURACY COMPARISON ON THE YALE DATABASE USING SIX
SAMPLES FOR TRAINING AND THE OTHER FIVE FOR TESTING EACH
INDIVIDUAL: EIGENFACES, FISHERFACES, FACE RECOGNITION USING
GLOBAL TEXTURE, LOCAL TEXTURE, AND INTEGRATED GLOBAL AND
LocAL TEXTURES. NOTE THAT THE BEST RESULT FOR EIGENFACES IS
ACHIEVED IN THE SUBSPACE WITH DIMENSION 33

. ] . Global Local G&L
Eigenfaces/Dim Fisherfaces Testure Testure Testures
74.67%433 81.33% 77.33% 94.66% 96.00%

atically compares the following face recognition approaches:
Eigenfaces, Fisherfaces, and three face recognition algorithms
utilizing global and local textures on the Yale database. For each
individual, six images were randomly selected for training, and

the remaining five for testing. We used cosine distance for sim-
ilarity measure for all these experiments. The results show that
face recognition in the original feature space using the warped
global texture outperforms Eigenfaces approach; and Fisher-
faces outperforms Eigenfaces; moreover, our algorithm using
integrated global and local textures performs better than all the
other four algorithms.

VI. DISCUSSIONS AND FUTURE WORK

In this paper, a unified framework is introduced for fully au-
tomatic face recognition. A novel Bayesian shape localization
approach is proposed for automatic fiducial point localization
and the automatically extracted global and local textures are in-
tegrated for face encoding.
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The shape localization problem is formulated in a Bayesian
framework and two novel methods are proposed for highly
confident inference of the optimal shape. The likelihood of
the local features associated with the fiducial point is modeled
using the RankBoost method which is introduced to ensure that
the ground truth position has higher likelihood than its neigh-
bors. This model is learned in a semi-supervised manner and
presents discriminative likelihood output for the local features.
On the other hand, the optimal shape is inferred in an iterative
method that locally models the likelihood distribution around
each fiducial point via the semi Locally Weighted Learning
method and simplifies the task into a general multinomial
optimization problem in each step.

The global and local textures (Gabor jets) characterize the
low- and high-frequency information of a face, respectively.
They are both robust to head position, which results in a robust
face representation for face recognition, especially for the data-
base with only a small number of samples per individual. The
experiments have shown that our algorithm has better accuracy,
robustness, and stability in shape localization and outperforms
the classical face recognition approaches, such as Eigenfaces
and Fisherfaces. Moreover, we systematically investigated the
performance of face recognition using different combinations
of the features and using different types of similarity measures.

In this paper, our proposed framework has shown good per-
formance for near frontal face recognition. Our framework can
be easily extended to automatic multiview shape localization
by using three-dimensional face modeling and face recognition
may be conducted using stronger classifier like using Fisher dis-
criminant analysis. We are currently exploring these extensions
in theory and practice.
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