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Abstract

Causal mediation analysis aims to examine the role of a mediator or a group of

mediators that lie in the pathway between an exposure and an outcome. Recent

biomedical studies often involve a large number of potential mediators based on high-

throughput technologies. Most of the current analytic methods focus on settings with

one or a moderate number of potential mediators. With the expanding growth of

omics data, joint analysis of molecular-level genomics data with epidemiological data

through mediation analysis is becoming more common. However, such joint analysis

requires methods that can simultaneously accommodate high-dimensional mediators

and that are currently lacking. To address this problem, we develop a Bayesian infer-

ence method using continuous shrinkage priors to extend previous causal mediation

analysis techniques to a high-dimensional setting. Simulations demonstrate that our

method improves the power of global mediation analysis compared to simpler alter-

natives and has decent performance to identify true non-null mediators. We also con-

struct tests for natural indirect effects using a permutation procedure. The Bayesian

method helps us to understand the structure of the composite null hypotheses. We

applied our method to Multi-Ethnic Study of Atherosclerosis (MESA) and identified

DNA methylation regions that may actively mediate the effect of socioeconomic status
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(SES) on cardiometabolic outcome.

1 Introduction

Causal mediation analysis has been of great interest across many disciplines [1, 2]. It investi-

gates how an intermediate variable, referred to as mediator, explains the mechanism through

which the exposure variable affects the outcome. Under certain regularity conditions, medi-

ation analysis allows us to disentangle the exposure’s effect into two parts: effect that acts

through the mediator of interest (indirect/mediation effect) and effect that is unexplained

by the mediator (direct effect). The state-of-the-art causal mediation analysis [3, 4], which

is built upon the counterfactual framework [5, 6], establishes rigorous assumptions regarding

the exposure-outcome, exposure-mediator and mediator-outcome relationships to justify ap-

propriate use of the classical formulas from Baron and Kenny in the linear regression setting

[7, 8] and creates a framework for other general extensions. Many of the existing methods

focus on univariate mediator analysis that analyzes one mediator at a time in the causal in-

ference framework, and are applicable to both continuous [9] and binary outcomes [10], and

also can account for exposure-mediator interactions [11]. These methods have been widely

applied in areas of social, economic, epidemiological and genetic studies [4, 8], including re-

cent extensions to multiple exposure variables that lead to more powerful single nucleotide

polymorphism (SNP) set tests in presence of gene expression data [12]. Several studies

have recently extended mediation analysis models to jointly account for multiple mediators.

However, most of the literature considered settings with two or three mediators, where each

mediator is ordered along a priori known mediation pathways and the path-specific effects

are estimated [13, 14]. In the presence of multiple unordered mediators, one often has to

rely on an ad hoc approach to fit a series of mediation models with one mediator and one

exposure [15, 16]/outcome [17] at a time and then summarize the mediation effects across

all the mediators. Such approach ignores correlation among mediators and the estimated

mediation effect does not necessarily have an intuitive interpretation, particularly when the

dimension of the potential mediators is truly large.

In this paper, building on the potential outcome framework for causal inference, we de-
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velop a Bayesian mediation analysis method in the presence of high-dimensional mediators.

Bayesian methods for mediation have primarily been proposed in a principal stratification

framework [18], in which the exposure effects on outcome are defined conditional on a single

mediator. For estimating natural direct and indirect effects, recent work applied Bayesian

non-parametric models, especially Dirichlet process mixture models [19, 20] in multiple me-

diators analysis. In contrast, here, we rely on Bayesian variable selection models to simulta-

neously analyze a relatively large number of mediators with potentially a small number being

truly active. With sparsity inducing priors on mediator effects, we assume that only a small

proportion of mediators may mediate the exposure effect on the outcome. This sparsity

assumption allows us to extend previous univariate mediator analysis to a high-dimensional

setting by casting the identification of active mediators as a variable selection problem and

applying Bayesian methods with continuous shrinkage priors on the effects. Unlike previous

methods developed for multiple mediators analysis, ours can simultaneously analyze much

larger number of mediators without making any path-specific or causal ordering assump-

tions on mediators. Our method enables us to identify both the indirect effect of a specific

mediator and the joint indirect effects of all the mediators, and propagates uncertainty in

inference in a principled way.

While our method is generally applicable to many settings, we examine the performance

of our method in the setting of genomics studies. Due to fast advances in high-throughput

biological technologies, genomics studies can nowadays measure a large number of molecular-

level traits such as gene expression and DNA methylation (DNAm) levels. Recent studies

have proposed these molecular traits may act as a mechanism through which various aspects

of socioeconomic status (SES) and neighborhood disadvantages affect physical health. For

example, childhood SES, adult SES, social mobility, and neighborhood crime rates have

recently been shown to influence DNAm in several genes related to stress and inflammation

[21, 22]. DNAm of inflammatory markers have also been associated with the status of

cardiovascular disease (CVD) [23] and type 2 diabetes (T2D) [24]. Here, we show through

simulations and data analysis that our high-dimensional mediation analysis framework can

increase power of a joint analysis and facilitate the identification of individual mediators.
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2 Notation, Definitions and Assumptions

In this paper, we focus on causal mediation analysis for the setting where there is a single

exposure of interest but a high-dimensional set of candidate mediators that may mediate

the effect of exposure on an outcome. Suppose our analysis is based on a study of n subjects

and for subject i, i = 1, ..., n, we collect data on exposure Ai, p candidate mediators Mi =

(M
(1)
i , M

(2)
i , ..., M

(p)
i )T , outcome Yi, and q covariates Ci = (C

(1)
i , ..., C

(q)
i )T . In particular, we

focus on the case where Yi and Mi are all quantitative variables.

We adopt the counterfactual (or potential outcomes) framework to formally define mediators

and their causal effects. Let the vector Mi(a) = (M
(1)
i (a), M

(2)
i (a), ..., M

(p)
i (a)) denote the

ith subject’s potential (or counterfactual) value of the p mediators if, possibly contrary to

fact, he/she received exposure a. Let Yi(a, m) denote the ith subject’s potential outcome

if the subject’s exposure were set to a and mediators were set to m. These potential

(or counterfactual) variables are hypothetical variables and may not be observed in real

data. To connect potential variables to observed data, we make the Stable Unit Treatment

Value Assumption (SUTVA) [25, 26], which is a commonly made assumption for performing

causal inference. Specifically, the SUTVA assumes there is no interference between subjects

and the consistency assumption, which states that the observed variables are the same

as the corresponding potential variables when their determinants are set to the observed,

i.e., Mi = Mi(a = Ai), and Yi = Yi(a = Ai, m = Mi). For simplicity in notation, we

define Yi(a) = Yi(a, Mi(a)), i.e., the potential outcome when exposure were set to a and

mediators were set to the value that would have been observed had the exposure were set

to a. Although potential or counterfactual variables are useful concepts in order to formally

define causal effects, they are hypothetical and actually most of them are not observed in

real data. For example, if Ai 6= a, then Yi(a) or Mi(a) are not observed. Also Yi(a) and

Yi(a
⋆) are never simultaneously observed for a subject.

We may decompose the effect of an exposure into its direct effect and effect mediated through

mediators. The controlled direct effect (CDE) of the exposure on the outcome is defined as

Yi(a, m) − Yi(a
⋆, m), which is the effect of changing exposure from level a⋆ (the reference

4
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level) to a while hypothetically controlling mediators at level m. The natural direct effect

(NDE) is defined as Yi(a, Mi(a
⋆)) − Yi(a

⋆, Mi(a
⋆)), which is the CDE when mediators are

controlled at the level that would have naturally been had the exposure been a⋆. The

natural indirect effect (NIE) is defined by Yi(a, Mi(a)) − Yi(a, Mi(a
⋆)), capturing the part

of exposure effect mediated through mediators, i.e., the change in potential outcomes when

mediators change from Mi(a
⋆) to Mi(a) while fixing exposure at a. The total effect (TE),

Yi(a) − Yi(a
⋆), can then be decomposed into natural direct effect and natural indirect effect,

written as Yi(a) − Yi(a
⋆) = Yi(a, Mi(a)) − Yi(a

⋆, Mi(a
⋆)) = Yi(a, Mi(a)) − Yi(a, Mi(a

⋆)) +

Yi(a, Mi(a
⋆)) − Yi(a

⋆, Mi(a
⋆)) =NIE+NDE.

Causal effects are formally defined in terms of potential variables which are not necessarily

observed, but the identification of causal effects must be based on observed data. Therefore,

similar to missing data problems, further assumptions regarding the confounders are re-

quired for the identification of causal effects in mediation analysis [15]. We will use A |= B|C

to denote that A is independent of B conditional on C. For estimating the average CDE,

two assumptions on confounding are needed: (1) Yi(a, m) |= Ai|Ci, namely, there is no un-

measured confounding for the exposure effect on the outcome; (2) Yi(a, m) |= Mi|{Ci, Ai},

namely, there is no unmeasured confounding for any of mediator-outcome relationship after

controlling for the exposure. The two assumptions are illustrated in the left panel of Figure

1, and controlling for exposure-outcome and mediator-outcome confounding corresponds to

controlling for C1, C2 in the figure. In practice, both sets of covariates C1 and C2 need not

to be distinguished from one another and can simply be included in the overall set of C that

we adjust for. The identification of the average NDE and NIE requires assumption (1) and

(2), along with two additional assumptions: (3) Mi(a) |= Ai|Ci, namely, there is no unmea-

sured confounding for the exposure effect on all the mediators; (4) Yi(a, m) |= Mi(a
⋆)|Ci,

which can be interpreted as there is no downstream effect of the exposure that confounds

the mediator-outcome relationship for any of the mediators. Graphically, assumption (4)

implies that there should be no arrow going from exposure A to mediator-outcome con-

founder C2 in Figure 1(a). It is thus violated in Figure 1(b) since the mediator-outcome

confounder L is itself affected by the exposure. The four assumptions are required to hold
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with respect to the whole set of mediators Mi(a) = (M
(1)
i (a), M

(2)
i (a), ..., M

(p)
i (a)). Finally,

as in all mediation analysis, in order for associations to represent causal effects, the temporal

ordering assumption also needs to be satisfied, i.e., the exposure precedes the mediators and

the mediators precede the outcome.

C1 A {M (1), M (2), ..., M (p)} Y

C2

C A {M (1), M (2), ..., M (p)} Y

L

Figure 1: Left (a): High-dimensional mediators ((M (1), M (2), ..., M (p))) between exposure (A)
and outcome (Y ) with exposure-outcome confounders C1 and mediator-outcome confounders C2;
Right (b): An example of mediator-outcome confounder L that is affected by the exposure A.

Now we show that if the above assumptions hold, then the average natural direct and indirect

effects can be identified from the observed data. We first notice that E[Yi(a, Mi(a
⋆)|Ci] can

be expressed as below (see Supplementary Materials for details),

E[Yi(a, Mi(a
⋆)|Ci] =

∫

m
E(Yi|a, m, Ci)P (Mi = m|Ci, a⋆)dm (1)

If we replace a with a⋆ in E[Yi(a, Mi(a
⋆)|Ci], then we get E[Yi(a

⋆, Mi(a
⋆)|Ci] =

∫

m E(Yi|a
⋆, m, Ci)∗

P (Mi = m|Ci, a⋆)dm . Therefore, we can express the average natural direct effect condi-

tional on C as,

E[Yi(a, Mi(a
⋆)) − Yi(a

⋆, Mi(a
⋆))|Ci]

=
∫

m
{E(Yi|a, m, Ci) − E(Yi|a

⋆, m, Ci)}P (Mi = m|Ci, a⋆)dm. (2)

If we replace a⋆ with a in E[Yi(a, Mi(a
⋆)|Ci], then we get E[Yi(a, Mi(a)|Ci] =

∫

m E(Yi|a, m, Ci)∗

6
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P (Mi = m|Ci, a)dm, and thus the average indirect effect conditional on C is given by,

E[Yi(a, Mi(a)) − Yi(a, Mi(a
⋆))|Ci]

=
∫

m
E(Yi|a, m, Ci){P (Mi = m|Ci, a) − P (Mi = m|Ci, a⋆)}dm. (3)

Finally, one can get the average NDE and NIE by taking expectation over C of the two

conditional effects defined in (2) and (3). Importantly, Equations (2), (3) show that, under

the assumptions we made, the average NDE and the average NIE can be identified by

modeling Yi|Ai, Mi, Ci and Mi|Ai, Ci using observed data.

3 Models and Estimands

As discussed in Section 2, effects of mediators (average NDE and NIE) defined in terms

of potential outcomes can be deduced from two conditional models for Yi|Ai, Mi, Ci and

Mi|Ai, Ci using observed data. Therefore, we propose two regression models for the two

conditional relationships and subsequently deduce the causal effects of mediators. For mod-

eling Yi|Ai, Mi, Ci, we assume for subject i (i = 1, ..., n), a continuous outcome of interest

Yi is associated with exposure Ai, p potential mediators Mi = (M
(1)
i , M

(2)
i , ..., M

(p)
i )T that

may be on the pathway from Ai to Yi, and q covariates Ci with the first element being the

scalar 1 for the intercept:

Yi = Mi
T βm + Aiβa + Ci

T βc + ǫY i (4)

where βm = (βm1, ..., βmp)T , βc = (βc1, ..., βcq)
T , ǫY i ∼ N(0, σ2

e). Here we assume there is

no interaction between Ai and Mi. Next for modeling Mi|Ai, Ci we consider a multivariate

regression model that jointly analyzes the p potential mediators:

Mi = Aiαa + αcCi + ǫMi (5)

where αa = (αa1, ..., αap)T , αc = (αc1
T , ..., αcp

T )T , αc1, ..., αcp are q-by-1 vectors, ǫMi ∼

MV N(0, Σ), Σ captures the correlation among the mediators. ǫY i and ǫMi are assumed

independent of Ai, Ci and each other.
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With assumptions made in Section 2 and under the regression models specified for the

outcome E(Yi|Ai, Mi, Ci) and for the mediators P (Mi|Ai, Ci), we can analytically calculate

the right-hand side of Equations (2), (3). We show in Supplementary Materials that the

average NDE, NIE and TE can then be computed as below, and in the rest of the paper,

we refer to NDE as direct effect and NIE as indirect/mediation effect.

NDE: E[Yi(a, Mi(a
⋆)) − Yi(a

⋆, Mi(a
⋆))|Ci] = βa(a − a⋆). (6)

NIE: E[Yi(a, Mi(a)) − Yi(a, Mi(a
⋆))|Ci] = (a − a⋆)

p
∑

j=1

(αa)j(βm)j. (7)

TE: E[Yi(a) − Yi(a
⋆)|Ci] = (βa + αa

T βm)(a − a⋆). (8)

According to Equation (7), to select active mediators among the potential high-dimensional

set of mediators is equivalent to identify the ones with marginsl indirect effect (αa)j(βm)j

being non-zero. On the other hand, any inactive (un-selected) mediator will naturally fall

into one of the following three categories: (βm)j is non-zero while (αa)j is zero; (αa)j is non-

zero while (βm)j is zero; both are zero. Such a refined partition for the high-dimensional set

of mediators provides useful and insightful interpretations on the way in which a mediator

links or does not link exposure to outcome, and furthermore facilitates understanding the

composite of non-mediating cases.

Regarding a global measure of the indirect effects, we note that the quantity in Equation

(7), summation of each mediator’s marginal mediation effect, is a good summary of the

global mediation effects when the marginal mediation effect for each mediator is of the same

direction. However, when marginal mediation effects have opposite directions, their effects

may cancel out and result in a small or zero indirect effect. Considering this, we propose

to use the L2 norm of the vector of marginal mediation effects [17] as a global measure of

8
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mediation effects, i.e.,

τ = ||((αa)1(βm)1, (αa)1(βm)2, ..., (αa)p(βm)p)||2

=
p

∑

j=1

{(αa)j(βm)j}
2. (9)

Such quadratic quantity, which involves a sum of squared terms, has been widely studied

for testing associations between rare genetic variants and complex human traits, and shown

to have reasonable power across a wide range of alternatives with correlated predictor set

[27].

4 Bayesian Method for Estimation

4.1 Prior Specification

In order to conduct high-dimensional mediation analysis, we need to make certain model

assumptions on the effect sizes. In genome-wide association studies, Bayesian sparse re-

gression models, such as Bayesian variable selection regression models (BVSR), have been

proven to yield better power in detecting relevant covariates [28]. For high-dimensional

mediation analysis, we also make the reasonable sparsity assumption, which implies that

only a small proportion of mediators mediate the exposure effects on the outcome. In prac-

tice, the exposure effects on the mediators and the mediator effects on the outcome may be

small but not exactly zero. Linear mixed models (LMM), on the other hand, assume that

every mediator transmits certain effects from exposure to outcome, with the effect sizes nor-

mally distributed. Therefore, in this paper, we propose Baysian Sparse Linear Mixed Model

(BSLMM), a hybrid between LMM and BVSR [29] that imposes continuous shrinkage on

the effects, for high-dimensional mediation analysis. The BSLMM is capable of learning

the underlying mediation architecture from the data, producing good performances across

a wide range of scenarios. Specifically, we assume a mixture of two normal components a

9
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priori for the jth mediator, j = 1, 2, ...p,

(βm)j ∼ πmN(0, σ2
m1) + (1 − πm)N(0, σ2

m0)

(αa)j ∼ πaN(0, σ2
ma1) + (1 − πa)N(0, σ2

ma0)

where σ2
m1 > σ2

m0, σ2
ma1 > σ2

ma0, and πm, πa denote the proportion of coefficients that belong

to the normal distribution with a larger variance.

For the other coefficients, we assume,

βa ∼ N(0, σ2
a) and βc, αc ∼ MV N(0, σ2

c I), σ2
c → ∞

Here we use a limiting normal prior for βc, αc with its variance going to infinity, since we

often have sufficient information from the data to overwhelm any prior assumptions. For

the convenience of modeling, we set the correlation structure among mediators Σ as σ2
gI.

For the hyper-parameters of variances in the model, we use the standard conjugate priors,

σ2
ms ∼ inverse-gamma(kms, lms), s = 0, 1

σ2
a ∼ inverse-gamma(ka, la)

σ2
mas ∼ inverse-gamma(kmas, lmas), s = 0, 1

σ2
e ∼ inverse-gamma(ke, le)

σ2
g ∼ inverse-gamma(kg, lg)

We set km0 = km1 = ka = kma0 = kma1 = ke = kg = 2.0, and lm0 = lma0 = 10−4, la = lm1 =

lma1 = le = lg = 1.0. Following [29], we place a uniform prior on log(πm), log(πa),:

log(πm), log(πa) ∼ U(log(10/p), log(1))

where p is the number of mediators. The priors were chosen so that πm and πa range

from 10/p to 1, and the lower and upper bounds correspond to an expectation of 10 and p

10
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covariates in each model. A uniform prior on log(πm) and log(πa) reflects the fact that the

uncertainty in πm, πa spans orders of magnitude.

4.2 Posterior Sampling Algorithm

We develop a Markov chain Monte Carlo (MCMC) sampling algorithm to obtain the pos-

terior samples from our Bayesian method. To facilitate MCMC, we introduce indicator

variables rm, ra ∈ {0, 1}p to indicate which normal component (βm)j and (αa)j come from,

and for the jth mediator, rmj = I((βm)j ∼ N(0, σ2
m1)), raj = I((αa)j ∼ N(0, σ2

ma1)). Let

θ1 = (βm, βa, πm, rm, σ2
m1, σ2

m0, σ2
a, σ2

e) denote all the unknown parameters in model (4), and

θ2 = (αa, πa, ra, σ2
ma1, σ2

ma0, σ2
g) for model (5). The joint log posterior distribution is,

logP (θ1, θ2|(Yi, Mi, Ai)
n
i=1)

=
n

∑

i=1

logP (Yi|θ1, Ai, Mi) +
n

∑

i=1

logP (Mi|θ2, Ai) + logP (θ1) + logP (θ2)

We use a Hastings-within-Gibbs algorithm to obtain posterior samples, and full details of

the sampling algorithm appear in Supplementary Materials.

For the jth mediator, we can estimate the posterior probability of both (βm)j and (αa)j

being in the normal components with larger variances as the posterior inclusion probability

(PIP), defined as P (rmj = 1, raj = 1|Data) in our model. The PIP estimated in this way

measures the association strength between exposure and mediators in model (5) and between

mediators and outcome in model (4). Therefore, we select mediators with the highest PIP

as the potentially active mediators.

4.3 Mediator Categorization

Under the above Bayesian mediation framework, active mediators are the ones whose (βm)j

and (αa)j both come from larger normal components. The three categories for the inac-

tive mediators are: (βm)j from larger normal component while (αa)j from smaller normal

component; (αa)j from larger normal component while (βm)j from smaller normal compo-

nent; both from smaller components. In addition to identifying true mediators, our method
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(βm)j Large component Small component
(αa)j

Large component rmj ∗ raj = 1 (Group 1) rmj = 0, raj = 1 (Group 2)
Small component rmj = 1, raj = 0 (Group 3) rmj = raj = 0 (Group 4)

Table 1: Mediators are categorized into four groups based on their relationships with exposure
and outcome; Group 1: Both (βm)j and (αa)j come from larger normal components; Group 2:
(αa)j from larger normal component while (βm)j from smaller normal component; Group 3: (βm)j

from larger normal component while (αa)j from smaller normal component; Group 4: Both (βm)j

and (αa)j come from smaller normal components.

automatically classifies all the mediators into four groups based on their relationship with

exposure and outcome. In practice, we have the indicator variables rmj and raj to denote

which component the coefficients (βm)j, (αa)j belong to and can easily obtain the posterior

probabilities for each group. The four groups are illustrated in Table 1,

4.4 Global Test of Mediation Effects

Typically the majority of mediators are not actively mediating the exposure effect on the

outcome, so it is natural to focus on the global null hypothesis and test for H0 : τ = 0,

τ = ||((αa)1(βm)1, (αa)1(βm)2, ..., (αa)p(βm)p)||2 =
p

∑

j=1

{(αa)j(βm)j}
2 (10)

One estimate for τ from our method is the sampling mean calculated from the posterior

samples, τ̂ = 1
L

∑L
i=1{

∑p
j=1{(α̂(i)

a
)j(β̂

(i)
m

)j}
2}, where {(α̂(i)

a
, β̂(i)

m
) : i = 1, ..., L} are the L

samples generated from posterior distributions.

It is difficult to analytically derive the composite null distribution of τ because the null

distribution depends on the proportion of mediators belonging to each of the four categories.

Instead, we resort to the permutation method. The global null indicates that none of the

mediators are active, and to construct the three null components for each mediator, the

following permutation procedures are brought up: (a) permute {Yi}
n
i=1 in Equation (4)

to dissolve the relationship between outcome and mediators and obtain the null estimates

of (βm)
(null)
j , (b) permute {Mi}

n
i=1 in Equation (5) to dissolve the relationship between

mediators and exposure and obtain the null estimates of (αa)
(null)
j . We then propose the

following three quantities: (i) {(βm)
(null)
j (αa)

(original)
j }2, (ii) {(βm)

(original)
j (αa)

(null)
j }2, (iii)
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{(βm)
(null)
j (αa)

(null)
j }2, where (βm)

(original)
j and (αa)

(original)
j are estimated from the original

data. For the jth mediator, (i), (ii) and (iii) correspond to the three components of the

null distribution: raj = 1, rmj = 0 (Group 2), rmj = 1, raj = 0 (Group 3), rmj = 0, raj = 0

(Group 4), respectively. Each quantity is then weighted by the posterior probability for that

group estimated from original data, and we finally sum the results across all the mediators

to obtain draws from the empirical null distribution of τ .

5 Simulations

We evaluate the performance of the proposed Bayesian mediation method and compare

it with two other existing mediation methods in our simulations. The two existing meth-

ods include single mediation analysis and multivariate mediation analysis. Single media-

tion analysis tests one mediator at a time for its mediation effect. We use the R pack-

age mediation to run single mediation analysis with the nonparametric bootstrap option

for standard error estimation. Multivariate mediation analysis [15], on the other hand,

jointly analyzes all the mediators in both model (4) and (5) and tests the product term

(βm)j(αa)j for each j at a time while controlling for all other variables. This method can

only be fit when a multivariate ordinary least squares regression model can be fit for the

outcome model (4). We implement the multivariate mediation analysis and compute the

standard error based on first and second order Taylor series approximation of the product

[30]: se((β̂m)j(α̂a)j) =
√

(β̂m)2
jV ar((α̂a)j) + (α̂a)2

jV ar((β̂m)j) + V ar((α̂a)j)V ar((β̂m)j).

Afterwards, we obtain a z-statistics for the jth mediator by dividing (β̂m)j(α̂a)j with its

standard error and compute the corresponding p-value based on asymptotic normality. We

use p-values for the two existing frequentist methods (univariate and multivariate) and PIP

for our Bayesian method as measures of the evidence for mediation. We compare the power

to identify active mediators based on either 5% or 10% false discovery rate (FDR).

We consider various simulation settings with n = 1, 000 samples and p mediators (p =

100 or 2,000). Since the multivariate mediation analysis can only be applied to settings

where the number of mediators is smaller than the number of observations (i.e. p < n),

we first examine the settings where p = 100 in order to include the multivariate mediation
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analysis for comparison. We will later consider the high-dimensional setting where p =

2, 000. For each simulation setting, we first simulate a set of continuous exposure variables

{Ai, i = 1, ..., 1000} independently from a standard normal distribution. We then generate

a p-vector of mediators for the ith individual from Mi = Aiαa + ǫMi. Here, each element of

αa, (αa)j (j = 1, ..., p), is simulated from a point-normal prior: πaN(0, 1)+(1−πa)δ0, where

δ0 is a point mass at zero. The residual errors ǫMi are simulated from a multivariate normal

distribution with mean zero and a covariance Σ. Σ accounts for the correlation among

mediators commonly seen in real data, and we use the sample covariance estimated from

the Multi-Ethnic Study of Atherosclerosis (MESA) data to serve as Σ. Because our Bayesian

mediation model does not explicitly account for the correlation structure of mediators in

the model between mediators and exposure, the simulations with correlated mediators allow

us to examine the robustness of our modeling assumption regarding independence. After

simulating Aiαa and ǫMi, we scale these two terms further so that the first term explains

a fixed proportion of variance: PV EA = V ar(Aiαa)/V ar(Mi), where V ar denotes the

sample variance.

Given the exposure and mediators, we then generate the outcome Yi from the linear model:

Yi = Mi
T βm + Aiβa + ǫY i. Here, each element of βm, (βm)j (j = 1, ..., p), is simulated from

πmN(0, 1) + (1 − πm)δ0, where δ0 is a point mass at zero, and βa from a standard normal

distribution. The residual error ǫY i is simulated independently from a standard normal dis-

tribution. We assume that only 10% of the mediators are truly mediating the exposure effects

on the outcome (i.e. active mediators), whose (βm)j and (αa)j are both sampled from the

large variance normal distribution. After simulating Mi
T βm, Aiβa and ǫY i, we scale these

three terms further to achieve two desirable PV Es: PV EIE = V ar(αa
T βmAi)/V ar(Yi) and

PV EDE = V ar(Aiβa)/V ar(Yi).

To explore a variety of simulation scenarios, we first examine a baseline scenario where we

set PV EA = 0.5, PV EIE = 0.4, PV EDE = 0.1, πa = 0.3, πm = 0.2. We then vary each of the

four parameters (PV EA, PV EIE, πa, πm) one at a time in different scenarios to investigate

their individual influences on the results. We perform 200 replicates for each simulation

scenario to do the power comparison.
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Figure 2: Power comparison among our Bayesian mediation method (yellow), multivariate me-
diation method (red) and single mediation method (orange) when the number of mediators is 100
and sample size 1,000. The x-axis marks the one parameter we change at a time from the baseline
setting. The average TPR at FDR = 0.05/0.1 and its error bar are calculated across 200 replicates.
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We first examine the settings for p = 100 and display the comparative results in Figure 2.

The results show that our Bayesian multivariate mediation method outperforms both the

univariate and multivariate mediation analysis methods in all scenarios. For example, in the

baseline setting, at 10% FDR, Bayesian mediation method achieves a power of 0.725, while

the univariate and multivariate methods achieve a power of 0.527 and 0.676, respectively.

The power of the three approaches increases with increasing PV EIE, which increases the

effect sizes of βm. In addition, the power of various approaches reduces with increased πa or

πm, which reduces the effect sizes of either αa or βm, respectively. As one would expect, the

advantage of our Bayesian method over the other two methods is more apparent in sparse

settings with smaller values of πa and πm. In terms of PV EA, which determines the effect

size of αa, we found that the power of different methods first increases slightly when PV EA

changes from 0.3 to 0.5 and then decreases slightly as PV EA changes further to 0.8. The

later decrease in power in the setting of PV EA = 0.8 is presumably due to the increased

correlation between the exposure and mediators, which makes it difficult for all the three

methods to distinguish between direct effects and indirect effects in model (4). Between the

two competing methods, the multivariate mediation analysis method yields better power

than the single mediation analysis method in all scenarios, as the multivariate mediation

analysis properly controls for the correlation among mediators.

Next, we examine the settings for p = 2, 000. Now we select 1% of the mediators to be

active and set πm = 2%, πa = 3% as the baseline setting with all other configurations being

same as in the baseline setting of p = 100. Since the multivariate mediation analysis is

unfeasible when p > n, we compare our method with single mediation analysis alone. We

use a threshold of 1% false positive rate (FPR) instead of false discovery rate due to low

power in the p = 2, 000 settings. The comparisons are shown in Figure 3. The Bayesian

mediation method yields more power than the single mediator analysis in all scenarios. For

example, in the baseline setting, at 1% FPR, Bayesian mediation method achieves a power

of 0.470, while the univariate method has a power of 0.357. The power of the two approaches

again increases with increasing PV EIE and decreases with increasing πa or πm. The power

of the Bayesian method decreases with increasing PV EA, while the power of the univariate
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Figure 3: Power comparison between our Bayesian mediation method (yellow) and single medi-
ation method (orange) when the number of mediators is 2,000 and sample size 1,000. The x-axis
marks the one parameter we change at a time from the baseline setting. The average TPR at FPR
= 0.01 and its error bar are calculated across 200 replicates.
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analysis method is relatively stable. In addition, our Bayesian method with continuous

shrinkage is more powerful than the univariate method especially when the model is most

sparse.

Finally, we examine the ability of our method to detect the overall mediation effect and

estimate the proportion of mediators in the four different categories. The four categories are

characterized by the effect of the mediator on the outcome and the effect of the exposure

on the mediator as shown in Table 1. We use πg1, πg2, πg3, πg4 to represent the proportion

of mediators in Group 1, Group 2, Group 3 and Group 4, respectively. We examine eight

different simulation scenarios based on different combinations of πg1, πg2, πg3 and πg4, which

include four null scenarios with πg1 = 0 and four alternative scenarios with πg1 6= 0. In these

simulations, we set PV Es to be the same as in the baseline setting (PV EA = 0.5, PV EIE =

0.4, PV EDE = 0.1; except when πg4 = 1 where PV EA and PV EIE are zero).

To detect the overall mediation effect, we obtain the posterior mean of τ . For each simulated

data, we apply the permutation procedure described in Section 4.4 with 100 permutations

and compare the estimated τ̂ with the empirical null distribution. We find that the global

test controls well the Type I error under four different null scenarios (Table 2). In addition,

the global test yields reasonable power under the four different alternative scenarios (Table

3). In most scenarios, the power is close to or above 0.8. Finally, we estimate the proportion

of mediators in each of the four different categories using posterior samples and find that our

method provides decent estimates for πg1, πg2, πg3 and πg4 across different scenarios (Tables

2 and 3). Note that our estimates for πg1, πg2, πg3 are slightly conservative due to the fact

that our model does not have full power to detect all the mediators.

6 Data Analysis

We applied the proposed Bayesian method to investigate the mediation mechanism of DNAm

in the pathway from adult socioeconomic status (SES) to glycated hemoglobin (HbA1c)

in the Multi-Ethnic Study of Atherosclerosis (MESA) [31]. The exposure, adult SES, is

indicated by adult educational attainment and is an important risk factor for cardiovascular

diseases. The outcome, HbA1c, is a long-term measurement of average blood glucose levels
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p Composition πg1 πg2 πg3 πg4 Size π̂g1 π̂g2 π̂g3 π̂g4 P̂ V EIE

100 A 0 0.2 0.1 0.7 0.005 0.003 0.195 0.074 0.728 0.397
B 0 0.1 0.2 0.7 0.003 0.003 0.097 0.115 0.786 0.420
C 0 0.1 0.1 0.8 0.005 0.001 0.098 0.076 0.824 0.399
D 0 0 0 1 0.008 0.001 0.004 0.021 0.974 0.006

2,000 A 0 0.03 0.02 0.95 0.005 0.000 0.028 0.005 0.967 0.417
B 0 0.1 0.02 0.88 0.006 0.000 0.098 0.007 0.895 0.429
C 0 0.1 0.1 0.8 0.006 0.000 0.098 0.001 0.901 0.450
D 0 0 0 1 0.010 0.000 0.000 0.000 1.000 0.001

Table 2: Empirical size of the proposed global test at level of 0.01 based on 1,000 simulations
when p = 100/2, 000. We denote πg1, πg2, πg3 and πg4 to represent the proportion of mediators
in Group 1, Group 2, Group 3 and Group 4 as defined in Table 1, and π̂g1, π̂g2, π̂g3, π̂g4 are the

estimated proportions from our Bayesian method. The true PV EIE = 0.4, and P̂ V EIE is the
estimated value.

p Composition πg1 πg2 πg3 πg4 Power π̂g1 π̂g2 π̂g3 π̂g4 P̂ V EIE

100 A 0.1 0.2 0.1 0.6 0.788 0.064 0.234 0.103 0.600 0.341
B 0.1 0.1 0.2 0.6 0.780 0.058 0.140 0.145 0.657 0.375
C 0.1 0.1 0.1 0.7 0.806 0.078 0.120 0.139 0.663 0.382
D 0.1 0 0 0.9 0.823 0.041 0.066 0.068 0.823 0.335

2,000 A 0.01 0.02 0.01 0.96 0.773 0.001 0.030 0.001 0.968 0.404
B 0.01 0.04 0.01 0.94 0.728 0.001 0.049 0.004 0.946 0.397
C 0.01 0.09 0.09 0.81 0.604 0.001 0.097 0.010 0.892 0.403
D 0.01 0 0 0.99 0.804 0.010 0.001 0.001 0.988 0.363

Table 3: Empirical power of the proposed global test at level of 0.01 based on 1,000 simulations
when p = 100/2, 000. We denote πg1, πg2, πg3 and πg4 to represent the proportion of mediators
in Group 1, Group 2, Group 3 and Group 4 as defined in Table 1, and π̂g1, π̂g2, π̂g3, π̂g4 are the

estimated proportions from our Bayesian method. The true PV EIE = 0.4, and P̂ V EIE is the
estimated value.
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and a critical variable for various diseases including T2D and CVD [32]. Thus, understanding

how methylation at different CpG sites mediates the effects of adult SES on HbA1c can shed

light on the molecular mechanisms of CVD. We provide our detailed processing steps for

MESA data in the Supplementary Materials. Briefly, we selected 1,231 individuals with

both adult SES and HbA1c measurements as well as DNA methylation profiles measured

from purified monocytes. Due to computational reasons, we focused on a final set of 2,000

CpG sites that have the strongest marginal associations with adult SES for the following

mediation analysis.

We applied both univariate mediation analysis and our Bayesian multivariate mediation

analysis to analyze the selected 2,000 CpG sites. For the multivariate analysis, we consider

Yi = Mi
T βm + Aiβa + C2i

T βc + ǫY i (11)

Mi = Aiαa + αcC1i + ǫMi (12)

where Yi represnts HbA1c levels; Ai represents adult SES values; and Mi represnts methy-

lation level for 2,000 CpG sites. In Equation (11), the model controls for age, gender and

race/ethnicity, and in Equation (12), we adjust for age, gender, race/ethnicity and enrich-

ment scores for 4 major blood cell types (neutrophils, B cells, T cells and natural killer

cells). All the continuous variables are standardized to have zero mean and unit variance.

The univariate analysis is applied in a similar fashion except that it is used to analyze one

site at a time.

To compare the power between the univariate analysis and our Bayesian mediation analysis,

we perform 100 permutations to obtain an empirical null distribution of PIP values following

the procedure in Section 4.4, with which we obtain empirical estimates of FDRs for both

univariate and Bayesian multivariate analysis. Consistent with simulations, our Bayesian

multivariate mediation method is more powerful than the univariate mediation method.

For example, at an FDR of 0.05, our Bayesian mediation method is able to identify 406

mediators while the univariate method is only able to identify 137. At an FDR of 0.10,

our Bayesian mediation method can identify 612 mediators while the univariate mediation
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Figure 4: Consider the trio: Adult SES → DNAm → HbA1c. The black dots are the estimated
posterior inclusion probability (PIP) for each CpG site from the Bayesian mediation method and
the red dots are the estimated PIPs when we permute the outcome once and fit the Bayesian
mediation method.

method can only identify 356.

We display PIP values for each of the 2,000 CpG sites from the Bayesian multivariate

analysis in Figure 4. Two CpG sites were identified with strong evidence (PIP > 0.5) for

mediating the adult SES effects on HbA1c. These two CpG sites are also among the top ten

sites with the smallest p-values obtained from univariate mediation analysis. In addition,

these two CpG sites are close to genes CCDC54 and CCND2, both of which are known

candidates associated with HbA1c. Specifically, the expression of CCND2 has been shown

to be associated with risk of T2D and the related glycemic traits of glucose, HbA1c, and

insulin [33]. The gene CCDC54 interacts with valproic acid and acrylamide, both of which

are associated with diabetes and blood insulin [34, 35]. Therefore, strong evidence suggests

that adult SES may act through these two genes to affect HbA1c.
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We also estimate the global mediation effects τ̂ as 0.0084 and its 95% credible interval

from the posterior samples as (0.0063, 0.0115). The p-value of the global test based on the

empirical null distribution is 0.02. And the P̂ V EIE is 0.096, indicating that approximately

10% of the outcome variance is indirectly explained by DNAm after controlling for covariates.

In addition, we estimate the proportion of CpG sites in each of the four categories as defined

in Section 4.3: π̂g1 = 0.002, π̂g2 = 0.031, π̂g3 = 0.001, π̂g4 = 0.966. We find that a small

proportion of DNAm has large effects on the HbA1c level, and a small proportion of DNAm

is notably associated with adult SES. The results also suggest that adult SES acts through

certain important DNAm sites to influence HbA1c.

7 Discussion

In this paper, we develop a Bayesian sparse linear mixed model for high-dimensional media-

tion analysis. The advantage of a Bayesian method is to propagate uncertainty for functions

of parameters in a natural way instead of resorting to Delta methods or two-step approaches.

Our method can simultaneously analyze a large number of unordered mediators without

making any causally ordering assumptions. By imposing continuous shrinkage priors on the

key regression coefficients for the mediation analysis, our method achieves up to 30% power

gain in identifying true non-null mediators compared with univariate mediation method and

approximately 10% power pain compared with multivariate method based on simulations.

The Bayesian method also provides better interpretations of the way in which a mediator

links or does not link exposure to outcome, and we construct tests for global indirect effects

based on the structure of the composite null hypothesis. Our global test is slightly con-

servative under the null and yields decent power under the alternatives. Implementing our

method to MESA, our Bayesian mediation method can detect more active mediators than

univariate mediation method at fixed FDR levels. We also identified two genes, CCDC54

and CCND2, with strong evidence for actively mediating the adult SES effects on HbA1c.

Both of them are candidate genes associated with diabetes and blood insulin.

Recent literature proposes a convex penalty on the product term of indirect effect [36],

which improves power of pathway selection and reduces estimation bias in the indirect
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effects. Under the Bayesian framework, direct shrinkage on the product term may be a

more appropriate choice, as it takes into account the correlation between the two models

in the mediation analysis and is more straightforward when the goal is to identify non-null

mediators. Directly incorporating the correlation between the mediators will be another

avenue to pursue. We leave that for future work.
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