o~
&, 1
p—

o
23
=

5 E
© o
RSl
o c
=
©
2
=
@2
23
> 2
O +
o <
=
@ ©
nQ
i
b
58
O ®©
2
£y
32
=
.-QQ-
= C
@ 9
S 3
o2
2 E
T O
o2
o2
T ©
T
1]
0 £
c .2
e

o
==
— O
£ 3

O O
= £
E -
c
[e]
8 e
S =
o O
<E
w_
©
= C
e o
=
Q35
Z-c
=<

DECISION ANALYSIS

Vol. 6, No. 4, December 2009, pp. 222-238
1SN 1545-8490 | 155N 1545-8504 | 09 | 0604 | 0222

1orms}

por110.1287/deca.1090.0151
©2009 INFORMS

Bayesian Simulation and Decision Analysis:
An Expository Survey

Jason R. W. Merrick

Department of Statistical Sciences and Operations Research, Virginia Commonwealth University,
Richmond, Virginia 23284, jrmerric@vcu.edu

he aim of this expository survey on Bayesian simulation is to stimulate more work in the area by decision

analysts. We discuss the main areas of research performed thus far, including input analysis, propagation
and estimation of output uncertainty, output analysis, making decisions with simulations, selecting the best
simulated system, and applications of Bayesian simulation methods. Throughout, we offer avenues of future
research in Bayesian simulation that may be of interest to decision analysts.
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1. Introduction

From a managerial perspective, the main use of a
simulation of a system is to aid in making decisions.
Banks et al. (2005, p. 3) define a simulation as “an
imitation of the operation of a real-world or proposed
process or system over time.” Simulation involves
“the generation of an artificial history to draw infer-
ences concerning the operating characteristics of the
system.” Traditionally, such inference has followed
the frequentist paradigm. More recently, researchers
have proposed Bayesian approaches to simulation
model construction and inference.

The term simulation can mean different things to
different people. In this paper, we discuss stochastic
simulation of systems over time, and particularly dis-
crete event or system simulation where each replica-
tion is expensive in computational effort. Researchers
have also applied simulation techniques to Bayesian
calculations, specifically Markov chain Monte Carlo
(MCMC) methods (Gilks et al. 1996, Gamerman and
Lopes 2006) and Bayesian model averaging (BMA;
Draper 1995). One could refer to such techniques as
Bayesian simulation, and we use them in the work
discussed herein. However, they are not the simu-
lations of interest in our discussion. Similarly, the
Bayesian work on modeling parameter uncertainty
with deterministic models is not our focus. Although

one can apply many of the methods discussed in
Monte Carlo simulation, Monte Carlo is not our focus.
The models discussed herein include stochastic ele-
ments in the model itself, as well as uncertainty
in the parameters, and in some cases model uncer-
tainty. Law and Kelton (2001), Banks et al. (2005),
and Henderson and Nelson (2006) provide excellent
overviews of the frequentist perspective on this type
of simulation.

Stochastic simulations are models of the aleatory
uncertainty about a system. In simpler terms, they
model the randomness of the system itself. We model
the uncertainty about interarrival times, service times,
failure times, and other random quantities with prob-
ability distributions. In classical simulation, one esti-
mates the parameters of these distributions using
point estimates based on available data. In Bayesian
simulation, one models knowledge about the param-
eters using prior distributions that one updates when
data is available. The prior (or posterior) distribu-
tions represent the epistemic uncertainty, or the lack
of knowledge about the system. Thus, both sources
of uncertainty are included in a Bayesian simula-
tion model. The analyst can also include uncertainty
about the correct family of distributions or the correct
model into this framework. A more complete repre-
sentation of uncertainty is beneficial when we use the
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simulation in analyzing a decision. The analyst can
estimate how much uncertainty is due to each source
and determine whether he or she needs additional
input data or additional replications of the simula-
tion. The very nature of Bayesian simulation makes
the area fertile for decision analysts.

There have been a number of applications of
Bayesian simulation methods in recent years. Popova
and Morton (1998) used stochastic optimization for
work force scheduling with Bayesian models and
inference. Herzog (2002) used Bayesian models for
insurance and mortgage problems using Monte Carlo
simulation. Mufioz (2003) discussed a model of air-
line reservations and overbooking costs, applying
the model uncertainty framework of Chick (2001).
McCabe (2003) modeled schedule risk with a Bayesian
belief network version of a PERT (program evaluation
and review technique) network and used Monte Carlo
simulation to obtain posterior schedule completion
probabilities. Chick et al. (2003) modeled the spread of
waterborne infectious diseases using Bayesian infer-
ence from simulations, expert judgment, and field
data. The applications of the techniques discussed
herein are widespread and varied.

We aim to introduce the area of Bayesian simu-
lation to the decision analysis community. We hope
that they can apply more decision analytic tools and
approaches in the area. There have been several fine
tutorials on Bayesian simulation written for the sim-
ulation audience (Chick 1997a, 2000, 2004, 2006a, b).
We review each of the areas of research in Bayesian
simulation to provide a thorough background on the
research performed thus far, like each of these tutori-
als. However, we discuss areas of research that deci-
sion analysts can develop further.

In the next section, we depict a simple Bayesian
simulation of a queue using influence diagrams. This
illustrates the nature of Bayesian simulations from
both an input and an output perspective. We then
discuss each of the research areas in turn. We dis-
cuss simulation input analysis, output sampling and
uncertainty estimation, and simulation output analy-
sis and metamodels. We discuss using simulations to
make decisions and selecting the best from a set of
simulated decisions with minimal replications. Each
section gives an overview of the work performed in
the area and makes suggestions for research in the

area that might particularly suit the readers of this
journal.

Section 3 discusses Bayesian modeling of simula-
tion inputs. Readers with an interest in model uncer-
tainty and semiparametric Bayesian analysis should
pay particular attention to §3. Section 4 discusses the
analysis of uncertainty in simulation outputs, includ-
ing parameter uncertainty and model uncertainty, as
well as the stochastic nature of the simulation itself.
Readers interested in MCMC sampling techniques
and BMA will find applications in this section. Read-
ers with an interest in Bayesian regression should
focus on §5 on output analysis using metamodels
and Bayesian response-surface methods. In §5, we
also discuss how to allocate additional input data col-
lection and simulation replications to reduce output
uncertainty. This area could benefit from considera-
tion of the value of information. All decision analysts
will find §6.1 on using simulations in the decision pro-
cess of interest. Section 6.2 concerns the algorithms
for choosing among alternative simulation models to
choose the best simulated system alternative. This
includes loss function approaches that lead to the best
algorithms in empirical testing on benchmark prob-
lems. Readers with an interest in stochastic optimiza-
tion and algorithms for choosing the best alternative
should examine §6.2. We finish with a discussion of
applications of Bayesian simulation in §7, including
illustration of one application of Bayesian simulation.
The final section summarizes the recommendations to
decision analysts for further research avenues.

2. Influence Diagrams of a Simple

Bayesian Simulation of a Queue
Bayesian simulation differs from classical simulation
analysis in that we use probability distributions to
represent the uncertainty about model parameters,
rather than point estimates and confidence intervals.
We apply such treatment to both the random inputs of
the model and the outputs from the model. In the lan-
guage of uncertainty, classical simulation models only
aleatory uncertainty (the randomness of the system
itself), whereas Bayesian simulation models both the
aleatory and epistemic uncertainty (the lack of knowl-
edge about the system). As an example, let us con-
sider a simulation of an M/M/s queue. We assume
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the times between arrivals to a single line, T}, T, ...,
to be exponentially distributed with parameter A.
s servers take entities from the queue on a first-come,
first-served basis with the system starting empty at
time 0. Service times, S;, S,, ..., follow an exponen-
tial distribution with parameter u, and entities then
leave the system. Neither A or u are known, so we
have a prior distribution on each, 7(A) and 7(u | A),
and the decision maker has observed some input data
for each to obtain posterior distributions on A and u,
m(A |t ty, ..., t,) and 7(w]|s,, s, ..., 8, A), where
bty .oty and s, s, ..., s, are p realizations of
T;, T,, ... and q realizations of S;, S,, ..., respectively.

Suppose for demonstration purposes that we are
going to simulate this system for n entities. Figure 1
shows this situation as an influence diagram. We
represent random or uncertain quantities by circular
nodes, decisions by square nodes, objectives by octag-
onal nodes, and calculated quantities by double-
walled circles. W;, W,, ..., W, are the waiting times
of the n simulated entities, and W, is their aver-
age. W;, W,, ..., W, are calculated nodes because if
we know §,,S,,...,S5,and T;, T,, ..., T,, then we can
calculate W,, W,, ..., W,. W, is then also a calculated
node given A, u, 5, S,,...,S,,and Ty, T,, ..., T,. The
decision here is the number of servers, and the objec-
tive is to minimize costs including both server and
waiting costs.

Figure 1 is a good example to highlight the nature
of simulation from a Bayesian perspective. When one
considers all the inputs to the simulation and our
uncertainty about them, the simulation output is just
a deterministic calculation. The randomness of the
system itself, called stochastic uncertainty in the sim-
ulation literature or aleatory uncertainty in the deci-
sion and risk analysis literature, is represented by the
distributions of S, S,,...,S, and T;, T,, ..., T,. The
uncertainty about the parameters of these models,
called parameter uncertainty in the simulation litera-
ture or epistemic uncertainty in the decision and risk
analysis literature, is represented by A and u.

There is also a possible model uncertainty, usually
considered to be uncertainty about the distribution
of 5,S,,...,5,and T, T,, ..., T,, but also including
uncertainty about the validity of the calculations used
to obtain W,, W,,..., W, and W, from S,,S,,...,S,
and T;, T,, ..., T,. There are two cases of interest here.

Figure 1

Influence Diagram of a Decision About the Number of
Servers in an ///M/s Queue Including the Inputs to
the Simulation

If we are interested in a fixed n or if we wish to sim-
ulate for a fixed time (making the number of entities
that arrive in the system stochastic), then we have
a terminating simulation. If we are interested in the
distribution of W, — 6 as n — oo, then we have a
steady-state simulation. We refer the reader to Banks
et al. (2005, Chapter 11) for further discussion of these
distinctions.

Evidently, W, | A, i (or 6| A, u in the steady-state
case) has a distribution that is defined by the distri-
butions of §;,S,,...,S,|pand T, T,, ..., T, | A and
Wy, W,, ..., W, given §,,S,,...,S, and T, T5, ..., T,
through the law of total probability, namely,

/dSl.../dsndel... dTn(Wn|51,...,5n, T,...,T)

Ty, ., T,IN(S,, -, Sy | ) AT, -~ AT, dS, - dS,. (1)

This expression may then be integrated over w(A | f;,
ty,....t,) and w(u [ sy, s, ...,s,). However, we can-
not perform this calculation analytically except in the
single server case (McGrath and Singpurwalla 1987),
so we need to simulate and we may only sample
from (1). Figure 2 shows the influence diagram for a
simplification of Figure 1 where the distributions of
5,5,...,5, 1, T,,..., T, A and u have been inte-
grated into the distributions of W;, W,, ..., W,; thus,
we are only including the outputs of the simulation.
Bayesian inference is difficult without a known prob-
ability model to define a likelihood; thus, one may
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Figure 2 Influence Diagram of a Decision About the Number of
Servers in an M/ /M /s Queue Considering Only Outputs

from the Simulation

assume a distribution on W, | A, u (or | A, w), called
a metamodel. We define prior distributions on the
parameters of this distribution and update the priors
given samples from the simulation.

We will discuss different forms of metamodels later,
but for now it is critical to realize that the marginal
distribution of W;, W,, ..., W, is not known, other-
wise we would not use simulation. This example
shows the nature of Bayesian simulation modeling,
but more machinery is necessary to perform such
analysis.

3. Input Analysis

In Bayesian simulation, we incorporate input uncer-
tainty in the analysis to reflect the limited data
available to populate the parameters of the arrival
processes in a simulation model. Suppose we con-
sider arrivals to the system with n separate arrival
processes. These arrival processes can often be mod-
eled by the standard renewal process (Law and Kelton
2001), with a probability distribution chosen to model
the interarrival times. We calculate historical interar-
rival times from data. Let T, T}, ..., T¥, be the m*
conditionally independent interarrival times for the
kth random input process (k =1,2,...,n). In our
example of the previous section, k =1 could represent
the arrival time inputs, and k =2 could represent the
service time inputs.

3.1. Classical Input Analysis
In a classical simulation approach, one usually
chooses the probability model by determining the

best estimates of the parameters from the input data
for several possible families of distributions and com-
paring the fit of each distribution to the input data
using fit statistics such as the Anderson-Darling,
Chi-squared, or Kolmogorov-Smirnov statistics (Law
and Kelton 2001). Suppose Ef(t | ©F), Ef(t | ©%), ...,
Ef(t]@}) are p families of probability distributions,
such as the exponential, Weibull, gamma, or log-
normal distributions. The superscript k is included
throughout because we can model each arrival
process by a different probability distribution and
will certainly have different parameter values.
@, @5, ..., 0, are the parameters of the p potential
probability distributions for the kth input process.
We obtain best estimates of each set of parameters,
(:);-‘, from the data D" = {T{f =}, T =t}, ..., T", =t* },
using maximum likelihood, method of moments, or
other estimation procedures. We choose the best-fit
distribution by taking either the fitted distribution
with the lowest appropriate fit statistic or at least a
fitted distribution that the corresponding hypothesis
test does not reject and that has desirable properties,
such as simple manipulation of the mean or variance.

3.2. General Bayesian Input Analysis

Under the Bayesian paradigm, we specify prior distri-
butions for the parameters of the postulated distribu-
tions, denoted by {(®}), m5(05), ..., 75(0F), and we
use the data to update these priors using the standard
Bayesian machinery to obtain posterior distributions
denoted by 7{(®f | D*), m5(®5 | D), ..., wk(@F | DY).
One approach here is to use a model selection cri-
terion to choose between potential probability distri-
butions given input data, such as deviance informa-
tion criteria (Spiegelhalter et al. 2002), Bayes factors
(Kass and Raftery 1995), or posterior predictive den-
sities (Gelfand 1996). This approach mirrors the clas-
sical approach and is taken, for instance, in Merrick
et al. (2005b).

3.3. Uncertainty About the Input Model

Chick (1999) offers a different approach to such model
uncertainty by placing a probability distribution on
the input model itself. Chick’s model includes a prob-
ability that each given distribution is correct. Chick
then conditions each distribution on the event that
this distribution is the correct one. Chick assigns prior
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probabilities on the probability of each distribution
being correct for the kth input process, 7*(m) for
m=1,2,...,p, as well as prior distributions on each
set of parameters given that distribution is correct,
mk(OF |m) for m=1,...,p. One can then find the
probability that a given model m is correct given input
data using

P(D* | m)mr(m)
11 P(DX [ (D)

One can find P(D* | m) using [ E,(D*|6)m(6%)dok,
which is the same term one uses in the calculation
of Bayes factors. Chick discusses techniques for find-
ing prior distributions on parameters and calculating
posteriors, such as above, including using conju-
gate priors, numerical approximations, and MCMC
techniques.

w(m | DF) = 2)

3.4. Semiparametric Analysis: Mixtures of
Known Distributions

Cheng and Currie (2003) provide a similar frame-
work, but with a different approach. Rather than
assuming that the p models are different, they assume
that the input process is a mixture of distributions
from the same parametric family. However, the num-
ber of components in this mixture is unknown. Cheng
and Currie propose an importance sampling proce-
dure for handling posterior analysis, but suggest that
other inference methods such as reversible MCMC
jumpers (Richardson and Green 1997) could be more
efficient at performing this calculation. Thus, rather
than assuming that the input distribution must take
a simple, parametric form, but one that is unknown,
Cheng and Currie (2003) assume that the form is more
complex, but can be represented by a mixture of dis-
tributions from the same parametric family. Such a
finite mixture covers a wider space of possible distri-
butions than any one single-parametric distribution.

3.5. Other Approaches

We have discussed two approaches above to mod-
eling uncertainty in the Bayesian paradigm, namely,
placing a prior distribution on the probability that
each of a finite number of models is the correct
one, and using finite mixtures of either one or many
models. These two approaches differ in the nature of
the mixing distribution. In one case, the mixing dis-
tribution is the prior. In the other case, the mixing

distribution is part of the model, and we place priors
on its parameters.

Decision analysts and Bayesian statisticians have
used other approaches when there is uncertainty
about the probability model. Bayesian nonparamet-
ric approaches include Dirichlet and Gaussian pro-
cesses, where one assumes that the prior distribution
on the cumulative distribution function, hazard func-
tion, or some other function that defines a general dis-
tribution (Dey et al. 1998). Bayesian semiparametric
approaches include unknown mixture distributions,
such as an extension of Cheng and Currie (2003), to
assume an unknown mixing distribution depicted by
a Dirichlet process prior on the cumulative distribu-
tion function. This implies that the probability model
is a Dirichlet process mixture (Kuo 1986, Escobar and
West 1995), an approach used recently in the decision
analysis literature by Merrick (2007) for expert judg-
ment aggregation.

4. Analyzing Sources of Output

Uncertainty

Chick (1997a) first discussed the problem of sampling
from input models to obtain correct output samples.
The algorithm in Figure 3 propagates input uncer-
tainty to the outputs through multiple replications
of the simulation. In our example of the M/M/s
simulation, the algorithm would sample a value for
A and w for each replication. The algorithm would
then sample values for S, S,,...,S,and T}, T, ..., T,
given those values of A and u within each replication.
In this manner, aleatory uncertainty, or the random-
ness of the system itself, is represented within each
replication, whereas epistemic uncertainty, or uncer-
tainty about the parameter values, is represented
across multiple replications. This sampling approach
becomes obvious when examining Figure 1. A is rel-
evant to the distributions of all S, S,,...,S,, so we
must use one sampled value of A for sampling one
set of values for S, S,, ..., S,.

The same is true for w and Ty, T, ..., T,. These val-
uesof §,,S,,...,S5,and T}, T, ..., T, are then used to
obtain one replication of W;, W,, ..., W, and 6. This is
more complex than frequentist simulation, where one
estimate of A and one estimate of u are used for all
replicates of the simulation, meaning that parameter



-
D)
‘;"6
24
£
5 E
© o
o
o c
=
©
e c
5
22
23
o
3 =
o <
-
© ®
nQ
L ie)
-
=
O ®©
» .2
£g
(&)
o
3o
el
® 9
= 0
S o
°
e E
c ©
o2
=T
O c
T ©
T
2
wn
c 2
=l
o
==
— O
£5
D ©
==
E -
C
o
8 e
35
<E
w_
IS
= C
e o
=
035
Z-c
= <

Merrick: Bayesian Simulation and Decision Analysis: An Expository Survey

Decision Analysis 6(4), pp. 222-238, ©2009 INFORMS

227

Figure 3 Algorithm from Chick (1997a) for Sampling from Outputs of

Bayesian Simulations

For r=1,2,...,n replications of the simulation:
1. For each model m=1,2,...,p.
(a) Sample values from the posterior distributions for the
parameters, 7(®F | D¥), to be used in the rth replication
for each input process k.
2. For the rth replication of the simulation:
(a) Sample random variates for each simulation input given
the parameter values sampled in Step 1;
(b) Generate the simulation output y, for these random
variates.
End loop

uncertainty is not represented, and output confidence
intervals do not fully cover the range of uncertainty
in the output (Inoue and Chick 1998).

Chick (2001) extends this general algorithm to han-
dle the input uncertainty framework from Chick
(1999) and provides a general sampling algorithm
for sampling from the Chick (1999) framework.
Although each of these algorithms obtains correct
samples from the simulation outputs that are con-
sistent with equivalent probabilistic calculations for
non-simulation-based analysis and that are intuitively
correct from examination of Figure 1, they do not
allow us to decompose the output uncertainty into
its constituent pieces, namely, stochastic, model, and
parameter uncertainty. Zouaoui and Wilson (2003)
provide an extension of the Chick (1997a) algorithm
that allows separation of stochastic and parameter
uncertainty using Bayesian model averaging (Draper
1995). Zouaoui and Wilson (2004) further extend this
approach to separate stochastic uncertainty, model
uncertainty, and parameter uncertainty for the model
uncertainty framework in Chick (2001).

Figure 4 shows the extension of Figure 3 proposed
by Zouaoui and Wilson (2004), which uses each input
model and each sampled input model parameter for
a fixed number of simulation replications. The final
calculation is a weighted mean where the weights
are the posterior probability of each model given
the input data. We calculate components of the out-
put variance by considering variations for a given
model and variations between models. We estimate
the output variance due to model uncertainty by

1.7 _ P :2
;Zﬂmw(%—ZMmmm),

m=1 m=1

Figure 4 Algorithm from Zouaoui and Wilson (2004) for Estimating
Stochastic, Model, and Parameter Variance of Simulation
Outputs

For r=1,2,...,n iterations:

1. For each model m=1,2,...,p.
(a) Sample values from the posterior distributions for the
parameters for the mth model, @ (®F | m, D¥), to be
used in the rth replication for each input process k.
(b) For s=1,2,...,t iterations:
(i) Sample random variates for each simulation input
from the model m given the parameter values sam-
pled in Step 1(a);
(ii) Generate the simulation output y,,, for these ran-
dom variates.
End loop
End loop
End loop

where y, = (1/nt) X' ! Y, and m(m | D) is the
posterior probability of model m given the input data.
We estimate the output variance due to the stochastic
nature of the simulation by

; n t - )
p(t_l)ggl(ym yrm)>

and the output variance due to parameter uncer-
tainty by

fw(mlD)(

1
p m=1

1 14 1 n ot _
L3 7001 D)7 E X =

m=1 r=1s=1

1 U _
- m Z Z(yrms - yrm)z) s

r=1s=1

where

~ 1 t - 1 n t
yrmzizyrms and ymzazzyrms

s=1 r=1s=1

5. Output Analysis and Reducing
Output Uncertainty

The presence of input uncertainty means there will
be uncertainty in the outputs as well. As we have
seen, this will include both the stochastic and param-
eter uncertainty from the input uncertainty propa-
gated through the simulation, and possibly model
uncertainty. The data obtained from the simulation in
each replication will be the samples from the distribu-
tion for each output of the simulation. For example,
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one might collect the total number of entities that
leave the simulation or the average waiting time in
a given queue as an output. One interesting feature
of simulation is the ability to influence the variance,
whether through running additional simulation repli-
cates of one or more alternative simulated systems,
through common random numbers to reduce variance
between alternative simulated systems, or through
antithetic variables for reducing variance for a single
simulated system. One can exploit this ability for out-
put analysis, as discussed in this section, and decision
making, as discussed in the following sections.

Chick (1997a) suggests that the decision maker
hypothesize a probability model for the random out-
put data, as in Figure 2, and specify her prior beliefs
about the parameters of this output model. As we
have mentioned, Chick notes that we can think of
this as a Bayesian version of metamodeling (Law
and Kelton 2001). Chick (1997a) provides a general
framework for such a metamodel, including Bayesian
expressions for calculating the posterior distribution
of the parameters of the output metamodel given sim-
ulation replicates, and the posterior predictive dis-
tribution of the simulation output given simulation
replicates. As an example, suppose we are interested
in a count of the number of entities that pass through
a given process in the simulation, then the data is the
count occurring in each replication of the simulation,
denoted N,, for the rth replication (r=1,2,...,s for
s replications). Because our example output data is
in the form of a count, one model could be a Pois-
son distribution with rate u, with a conjugate gamma
distributed prior on w. The predictive distribution of
the number of entities passing through our simulated
process is then a Poisson-gamma distribution in the
sense of Bernado and Smith (2000).

Cheng (1998) fits a Bayesian regression model to
simulation output to form a metamodel that one can
use in prediction and decision making. The indepen-
dent variables in the regression model can either be
input model parameters, such as A and w in our
M/M/s example, or decision or control variables,
such as s in our M/M/s example. Cheng (1998) allows
for an unknown number of nonlinear components in
the regression and assumes that the error terms are
normally distributed and independent. Thus, we can

write the metamodel as
Q

Y, =) Bifi(6) +z,
i=1

where Y; is the simulation output for the jth repli-
cation, 0 is a vector of the control variables for the
simulation (either input model parameters or deci-
sion variables), f;(0) is the ith regression term , f3;
is the regression parameter for the ith regression
term, and z; is the normally distributed error term.
Q is the number of terms in the model, and Cheng
(1998) assumes it to be uncertain in this work. Cheng
(1998) uses a Metropolis-Hastings algorithm for infer-
ence with the assumption that any regression param-
eter taking a value within a specified value d of
zero represents a regression component that need
not be included. This allows Cheng to estimate the
number of components effectively using the derived
parameter sample. Bayesian statisticians call this a
derived chain MCMC method, because the algorithm
does not handle the number of components by sam-
pling from its posterior distribution. Cheng (1999)
extends this approach to allow for nonnormal errors,
a situation that will commonly occur in queuing
simulations.

In the previous section, we discussed estimates of
output variance due to stochastic, model, and param-
eter uncertainty. Ng and Chick (2001) address the
issue of optimally reducing output uncertainty by col-
lecting additional input data. Ng and Chick (2001)
propose a regression metamodel where the simula-
tion output follows a normal distribution with a mean
that is a function of the input distribution parame-
ters. They then find the predictive distribution of the
simulation output by integrating the regression meta-
model over the posterior distributions of each input
distribution parameter given available input data. The
posterior distribution on the simulation input param-
eters is asymptotically multivariate normal. The use
of asymptotic approximations does limit the appli-
cability of the approach to cases where there is suf-
ficient input data. Similarly, the simulation output
is asymptotically normal with a mean that one can
approximate locally as a linear sum of the input
parameters. This allows a closed-form approximation
of the parameter uncertainty based on the input data



o~
&, 1
p—

o
23
=

5 E
© o
RSl
o c
=
©
2
=
@2
23
> 2
O +
o <
=
@ ©
nQ
i
b
58
O ®©
2
£y
32
=
.-QQ-
= C
@ 9
S 3
o2
2 E
T O
o2
o2
T ©
T

1]
0 £
c .2
e

o
==
— O
£ 3

O O
= £
E -
c
[e]
8 e
S =
o O
<E
U,_
©
= C
e o
=
Q35
Z-c
=<

Merrick: Bayesian Simulation and Decision Analysis: An Expository Survey

Decision Analysis 6(4), pp. 222-238, ©2009 INFORMS

229

already available and the simulation replications per-
formed thus far and written as a function of the
number of additional input data points that are to be
collected, denoted V., (m, m,, ..., my), where m is
the number of additional input data points to be col-
lected for the kth input process. Again, though, the
asymptotic approximation limits use to cases where
one has performed a sufficiently large number of ini-
tial simulation replications prior to these calculations.
Ng and Chick (2001) define the optimization problem
as determining the optimal number of additional data
points for each input distribution to minimize the out-
put variance subject to a constraint on the amount of
data collection:

min V,,.(my, my, ..., my)

st m, >0

K
Z Cpimy, = Br
k=1

where ¢, is the cost of each additional input data point
for the kth input process and B is the total budget
available for additional input data collection. Ng and
Chick (2006) extend this approach to nonnormal dis-
tributions from the exponential family using Bayesian
model averaging.

Beyond reducing output uncertainty by collecting
additional input data (Ng and Chick 2001, 2006), Ng
and Chick (2004) determine how to optimally allo-
cate simulation replications, specifically through a
Bayesian design of follow-on simulation experiments.
The approach can be used to allocate additional sim-
ulation replications for given parameter values or
for given control variable values or decision alter-
natives. One aim of the allocation is to differentiate
between the simulation models that result from dif-
ferent parameter or control variable values. The other
aim is to enhance parameter estimation for the meta-
model. The metamodel used is again a linear regres-
sion with the input parameters and control variables
(decisions) as independent variables and the simula-
tion output as the dependent variable. The approach
is fully decision analytic with a Bayesian analysis of
the regression model and the design decision made by
maximizing expected utility. The utility function used
is interesting from a decision analysis point of view.

Previous work has used Shannon’s information mea-
sure, or entropy, as an experimental design criterion
or utility function (Abbas 2004). One version averages
the entropy difference between each possible pair of
models, a utility function that leads to good model
discrimination in Bayesian experimental design; this
utility function is often denoted by MD. Another ver-
sion averages the entropy across all possible models,
a utility function that leads to good parameter estima-
tion; this utility function is often denoted by SP. The
utility function proposed by Ng and Chick (2004) can
be written as

o, MD=MDuy .~ SP—SPy
oo MDmax - MDmin o SPmax - Spmin ’

where w,,, and wg, are the weights for MD and
SP, respectively, and w,,, + wsp = 1. The utility func-
tion SQ is a standard additive linear utility function
combining two attributes: MD to measure the objec-
tive of maximizing model discrimination and SP to
measure the objective of maximizing parameter esti-
mation. We scale each attribute to the [0, 1] interval,
and the weights represent the relative importance of
each objective to the decision maker. From a decision
analysis perspective, this obviously assumes a linear
preference scale for each attribute and additive util-
ity independence of the two attributes (Keeney and
Raiffa 1993). Ng and Chick (2004) provide a closed-
form approximation of the expected utility for normal
errors that numerically maximize this term to find the
optimal design.

The introduction of multiattribute techniques and
entropy methods in designing simulation experiments
suggests an avenue for research by decision ana-
lysts. Are MD and SP additive utility independent,
or is another multiattribute utility form more suit-
able? Are MD and SP the best entropy formulations
to use? Chick (2004) also points out that another
interesting problem is determining optimal simula-
tion replication plans for reducing uncertainty in the
output metamodel. There has been significant fre-
quentist work in this area and work for determin-
istic models using a technique called Kriging (see
van Beers and Kleijnen 2008). Bayesian experimental
design (Chaloner and Verdinelli 1995) for simulations
is also a promising area for future research.

We have not addressed several additional areas
thus far. Andradéttir and Bier (2000) briefly discuss
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the issue of model validity from the Bayesian per-
spective. Suppose Y is an output of a simulation
for which we have posterior predictive distribution
7(Y | C) after observing some number of simulation
replications, denoted by C. Now suppose Z is the
same output for the real system, and 7(Z | D) is its
posterior predictive distribution after observing real-
world data, denoted by D. What does it mean if
7(Y | C) and w(Z | D) do not have posterior mass at
similar values of Y and Z, respectively? Is this due to
misspecification of the model, either the calculations
or the choice of input models, or misspecification of
the distributions of the input parameters? Andradoéttir
and Bier (2000) suggest that we should jointly update
the input and output distributions to learn about both
possibilities, but the usual flow of information is in
the input-to-output direction. To update the priors on
the parameters of the input distributions given unex-
pected output samples would require a reversal of
this route of information. One possibility is the use of
metamodels, such as those discussed in this section,
to flow information about outputs back to the inputs.
Work in this area is ongoing and should prove inter-
esting if this issue can be resolved.

An alternative approach that might appeal to deci-
sion analysts would be to treat the simulation output
Y as expert forecasts that provide additional infor-
mation to update the decision maker’s knowledge
about Z. The work in aggregation of expert fore-
casts allows such updating (for a survey of such
approaches, see Clemen and Winkler 1999) and allows
for bias in the forecasts. The difference here is that
the usual forecast aggregation assumes that the expert
provides a full distribution of Y, but a simulation can
only provide samples from the distribution of Y. This
will require modification of previous work that deci-
sion analysts could make.

Last, we point out that just as input model uncer-
tainty can be approached using Bayesian nonpara-
metric and semiparametric approaches, so too can
output model uncertainty. Dirichlet process, gamma
process, and Dirichlet process mixtures, for example,
are also suitable output metamodels, either on indi-
vidual outputs or as part of response surface mod-
els for outputs or regression models on output.
Gelfand (1996) and Merrick et al. (2003, 2005a) dis-
cuss approaches for nonparametric and semiparamet-
ric Bayesian regression.

6. Making Decisions with

Bayesian Simulations

Thus far we have discussed the construction of a
Bayesian simulation and several methods for making
decisions about a simulation, specifically what input
data to collect and what simulation replications to
perform to meet various objectives. In this section,
we will discuss making decisions with simulations. In
recent years, researchers have performed considerable
work on algorithms for selecting the best simulated
system. Given a set of alternatives, one performs sim-
ulation runs for each alternative, and researchers have
developed statistical procedures to assess whether
there is sufficient evidence in favor of any one alter-
native (Matejcik and Nelson 1995; Bechhofer et al.
1995; Goldsman and Nelson 1998; Chick and Inoue
2001a, b). The frequentist literature in this area con-
centrates on choosing the simulated system with the
highest (or lowest) mean for a given output. The
Bayesian work in this area falls into two camps. In
§6.1, we discuss decision analytic work that concen-
trates on finding the simulated system with the high-
est expected utility, for both single-attribute and mul-
tiattribute problems. In §6.2, we discuss work that
concentrates on using Bayesian machinery to develop
algorithms that are often better than the frequentist
algorithms at finding the simulated system with the
best mean for a given output.

6.1. Including a Simulation in the

Analysis of a Decision
Consider the problem of selecting the best simulated
system under the decision analytic paradigm, namely,
choosing d* from a set of alternatives A ={d;, d,, ...}
that maximizes

r?Ean[V(d) - / u(d, X)p,(X) dX], 3)

where u(d, X) is the decision maker’s utility function
and p,;(X) is the distribution of simulation output X
under decision d that influences the decision maker’s
utility. We may consider this problem as an influence
diagram in Figure 5.

In a more general decision analytic setting, the con-
ditional distribution p,(X) has a known functional
form. However, in the case of simulation decision
problems, we cannot calculate p,(X), but we can sam-
ple from it by running an iteration of the simulation.



o~
&, 1
p—

o
23
=

5 E
© o
RSl
o c
=
©
2
=
@2
23
> 2
O +
o <
=
@ ©
nQ
i
b
58
O ®©
2
£y
32
=
.-QQ-
= C
@ 9
S 3
o2
2 E
T O
o2
o2
T ©
T
1]
0 £
c .2
e

o
==
— O
£ 3

O O
= £
E -
c
[e]
8 e
S =
o O
<E
U,_
©
= C
e o
=
Q35
Z-c
=<

Merrick: Bayesian Simulation and Decision Analysis: An Expository Survey

Decision Analysis 6(4), pp. 222-238, ©2009 INFORMS

231

Figure 5 Influence Diagram for Selecting the Best Simulated System

Decision Simulated
d output
X(d)

Thus, we cannot calculate V(d) in closed form. Note
that this influence diagram depicts the real-world
decision to be made as discussed in this section, not
the decision of how much to sample from each simu-
lation alternative; the sampling decision is discussed
in the next section.

Chick and Gans (2009) perform an analysis that is
probably most appealing to practicing decision ana-
lysts. Rather than assuming that the objective of mini-
mizing costs applies just to the real system, Chick and
Gans (2009) minimize the cost of both the decision
situation and the simulation project itself. The cost of
input data collection and the cost of running addi-
tional simulation replicates are included along with
the cost and revenues from the decision about the sys-
tem that the analyst has simulated. In this manner, we
can consider work to improve the validity of the sim-
ulation through its impact on the eventual decision,
or its value of information. Although Chick and Gans
(2009) assume the decision maker to be risk neutral,
such a purely economic analysis would be appeal-
ing if the decision maker could accurately estimate all
costs.

Chick (1997b) provides the first formulation of
selecting the best simulated system by maximizing
expected utility. Chick (1997b) derives expressions for
the probability that the expected utility of System
A is greater than the expected utility of System B
with a general utility function. In an example, Chick
(1997b) assumes a normal metamodel for the simula-
tion output for independent replications, then a multi-
variate normal metamodel for dependent replications.
Dependent replications allow the use of common ran-
dom numbers for variance reduction (Law and Kelton

2001). This increases the utility dominance proba-
bilities for a given number of simulation replicates
and, therefore, discrimination between the expected
utilities of the alternative simulated systems. Chick
(1997b) compares the Bayesian dominance probabil-
ity to the frequentist p-value under the assumption of
equal means.

Often simulations have multiple outputs that rep-
resent multiple attributes involved in the decisions.
This situation suggests the use of multiattribute util-
ity functions to represent such trade-offs and the
associated attitude to multiattribute risk. Morrice
et al. (1998) first proposed such an approach, with
later extensions and elaborations in Morrice et al.
(1999) and Butler et al. (2001). This work extends the
approach of Chick (1997b) to consider multiattribute
utility functions. However, the approach uses a fre-
quentist ranking and selection procedure to find the
system with the best mean utility score based on the
output samples.

Morrice et al. (1998) solve a fully decision theo-
retic problem using frequentist approximations to find
the best alternative. This raises an interesting point,
namely, that even with a decision analytic setup using
Bayesian simulation and maximizing expected util-
ity, one may obtain samples from x;, x,, ..., x,, from
p4(X) by running the simulation for decision d, calcu-
late u(d, x;), u(d, x,), ..., u(d, x,), and estimate V(d)
using i(d) = (1/n) X, u(d, x,).

Andradéttir and Kim (2007) criticize Butler et al.
(2001) because their approach does not explicitly
handle constraints, because the ranking and selec-
tion procedure used is inefficient for large numbers of
alternative simulated systems, and because Andradét-
tir and Kim (2007) believe it is difficult to find an
appropriate multiattribute utility function. Decision
analysts would disagree with this last point, and
Morrice and Butler (2006) have extended the approach
to model constraints using value functions. A hard
constraint value function takes full value when the
constraint is met and zero value when it is not. A soft
constraint value function smoothly decreases value in
a neighborhood around the constraint boundary. We
should also note that the use of multiattribute utility
functions in all this work does not require the use of
the ranking and selection procedure from Butler et al.
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(2001); one can use any ranking and selection pro-
cedures, including the decision analytic methods dis-
cussed in the next section.

Again, there appear to be several directions in
which decision analysts could continue this research.
A simulation is just one tool that a decision maker
can use. The work of Chick and Gans (2009) shows
that decisions about the simulation are just the same
as decisions about obtaining other sources of infor-
mation. This suggests approaches using the expected
value of sample (simulation) information. As we dis-
cussed at the end of the previous section, this also
suggests that one can consider simulations as anal-
ogous to experts, although a simulation provides
samples rather than full distributions. The work by
Morrice and Butler (2006) in multiattribute methods
may also lead to further avenues of research for deci-
sion analysts.

6.2. Ranking and Selecting the Best
Simulated System

The fact that the expected utility can be estimated by
a mean output implies that any of the methods for
selecting the highest mean output can be used to find
the best simulated alternative, whether frequentist or
Bayesian. Thus, we now turn our attention to such
methods that rely on Bayesian machinery and their
comparison to frequentist methods.

All approaches discussed in this section are based
on the same basic setup. Suppose we have to decide
between K simulated systems. Let X; ; be the jth repli-
cate of the output of interest for simulated system i,
fori=1,2,...,Kand j=1,2,.... We assume that
X;,; follows a normal distribution with mean w; and
precision A;. We denote the ordering of the means
from lowest to highest by wy; < wp < -+ < W
At any given stage of performing simulation repli-
cates, we have n; replicates of simulation i and can
estimate w; by the sample mean X; = (1/n;) Z}ll X; -
We denote the current ordering of the sample means
by X4 < Xp < -+ < X Thus, (i) denotes the ith
largest sample mean, and [i] denotes the ith largest
true mean. At the end of any given algorithm, we
have selected the best simulated system if the sys-
tem selected, denoted by D = (K), has the highest
true mean, D = [K]. Let C = {X,-,]., i=1,2,...,K,
j=1,2,...,n;} be the set of all simulation replicates
performed thus far.

Inoue and Chick (1998) define a Bayesian proba-
bility of correct selection, defined as P(W; < Wy,
Vi# K| C), or the probability that the currently cho-
sen system D = (K) has a true mean that is greater
than all other systems given all current simulation
replications. They show that the Bayesian probabil-
ity of correct selection is greater than the frequen-
tist equivalent based on Bonferroni approximations.
However, the calculation for the Bayesian probability
is based on Monte Carlo simulation from the posterior
distributions of the w;, a computationally expensive
calculation. Chen (1996) provides a lower bound for
the probability of correct selection. Chen defines the
lower bound as

K-1

l_[ P(W(i) < W(K) |C),

i=1

or the probability that the true mean for the system
currently chosen as the best so far does have a higher
mean that all other systems, given all simulation repli-
cates observed thus far. Chen et al. (1996) uses this
lower bound for the probability of correct selection
to allocate a fixed number of simulation replications
across the set of alternative systems. The procedure
has two stages. The first stage runs a fixed and equal
number of simulation replications to allow estima-
tion of the lower bound on the probability of correct
selection. The procedure then optimally allocates sim-
ulation replications for a second stage to alternative
simulated systems using the steepest ascent optimiza-
tion method and an approximation of the gradient of
the objective function, the lower bound on the proba-
bility of correct selection. Chen et al. (1997) improves
on Chen et al. (1996) by using a simpler gradient
approximation. The authors show that the simpler
method provides superior results and call the method
optimal computing budget allocation (OCBA).

Chick and Inoue (2001a) propose a procedure with
a similar first round of an equal number of simula-
tions of each system and show that the posterior of
each mean is a Student t-distribution. They propose
the use of Bayesian loss functions with two specific
forms. The 0-1 loss function,

0 =Wy,
Lo-l(i>={ to = L1

1 otherwise,
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takes the value 0 for the best system and 1 for all other
systems. Using the 0-1 loss function, the expected loss
for choosing the system with the highest current esti-
mated mean is

Ew\C[LO-l(DZ (K) | Cl= 1_P(W(i) < W(K)/ Vi#K|C),

or the probability that system i is not the best system.
The linear loss function, also called the opportunity
cost and written

Loc(i) = Wi — Wiy

takes a value equal to the mean of the best system
minus the mean of the system considered. In this case,
the expected loss for choosing the system with the
highest current estimated mean is equal to

Ew|c[Loc(D = (K)) | C] = EW\C[W[K] - W(K) | C]/

the expected difference between the best system and
system i.

Chick and Inoue (2001a) develop approximations
for estimating the expected loss in each of these cases
given each possible number of additional replications
of each possible system. They then allocate replica-
tions to systems by minimizing the expected loss
when the eventual decision will be to pick system
D = (K) with the highest overall mean. One version
of the linear loss algorithm adds the cost of replica-
tions to the expected loss in the minimization (called
LL) and another adds a constraint on the total cost of
replications (called LL(B)). Similarly, Chick and Inoue
(2001a) give two versions of the algorithms for the 0-1
loss function, called 0-1 and 0-1(B).

Chick and Inoue (2001b) assume a multivariate nor-
mal distribution of the mean output of each alternative
system. This allows the use of common random
numbers in the simulation replications to reduce
output uncertainty and, therefore, sharpen compar-
isons. Chick and Inoue (2001b) use a Bonferroni-type
approximation of the Bayesian probability of correct
selection for this dependent case. Again, Chick and
Inoue (2001b) develop versions of their algorithms
with both linear loss and 0-1 loss functions.

Branke et al. (2007) compare a frequentist proce-
dure called KN + + (Goldsman et al. 2002) that has
performed well in empirical testing to Bayesian proce-
dures based on 0-1(B), LL(B), and OCBA. They make

each procedure purely sequential where each stage
allocates only one additional replication. Branke et al.
(2007) implement each procedure with three differ-
ent stopping rules. One stopping rule is reaching the
total allowed budget, which is the same as consid-
ered before in 0-1(B), LL(B), and OCBA. However,
the authors add two additional stopping rules, one
where the probability that the best system is 9* better
than that currently chosen (called the probability of
bad selection) reaches a sufficiently small level, and
one where the expected opportunity cost lost reaches
a sufficiently small level. The test problems include
the following:

* a slippage configuration, where all systems have
equal means except the best, which is better by a
parameter 9* divided by the noise;

* monotone decreasing means, where each succes-
sive mean has a linearly decreasing mean;

e random problem instances, where the means
and precisions of the systems are sampled from a
normal-gamma distribution in one version and an
exponential-gamma distribution in another version.

For the slippage configuration and the monotone
decreasing means, LL and OCBA (modified to con-
sider linear loss) are superior when used with the
expected opportunity cost stopping rule. For the ran-
dom problem instances, the LL, OCBA, and the fre-
quentist procedure all work well with the probability
of bad selection stopping rule. However, the frequen-
tist procedure is not as good as the number of systems
considered increases. Branke et al. (2007) conclude by
recommending LL and OCBA with linear loss as the
best overall procedures, and using either the prob-
ability of bad selection or the expected opportunity
cost stopping rules depending on the desired goal.
Thus, based on the latest testing of procedures, deci-
sion theoretic methods provide the best procedures
for finding the simulated system with the highest
mean output.

As can be seen in this section, algorithms for choos-
ing optimal decisions from simulations have focused
on statistical loss (utility) functions, such as 0-1
and LL. The multiattribute work of Butler et al. (2001)
and the economic work of Chick and Gans (2009)
have taken steps in the direction of decision analy-
sis, but considerable further work is possible. Because
we can depict the simulation decision problem as
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an influence diagram, algorithms for solving influ-
ence diagrams may be applicable, such as augmented
probability sampling (Bielza et al. 1999). Extensions to
the multiattribute case may also be possible by depict-
ing utility dependence using the utility diagrams of
Abbas and Howard (2005) along with influence dia-
grams. Algorithms specifically designed for the mul-
tiattribute case may work better for such problems
than simply applying the single-attribute algorithms.
It is also noteworthy that methods developed thus far
have concentrated on discrete sets of alternatives and
not ventured into continuous decision variables.

7. A More Detailed Application
To provide a more detailed application example,
we will discuss our use of Bayesian methods to
assess uncertainty in simulation-based maritime risk
assessment. Merrick et al. (2005b) and Merrick and
van Dorp (2006) provide a full description of this
work; here we will give an illustrative summary.
Risk management has become a major part of
operating decisions for companies in the maritime
transportation sector, and thus an important research
domain (National Research Council 2000). The Exxon
Valdez disaster cost Exxon $2.2 billion in clean up
costs alone. This led to the immediate questions of
how to prevent such accidents in the future and
how to mitigate their consequences if they should
occur. The Prince William Sound Risk Assessment
(Merrick et al. 2000, 2002), Washington State Ferries
Risk Assessment (van Dorp et al. 2001), and an
exposure assessment for ferries in San Francisco Bay
(Merrick et al. 2003) are three examples of success-
ful risk studies in this domain. Decision makers have
used their results in major investment decisions and
have played a significant role in the management
of maritime transportation in the United States. In
a maritime port system, traffic patterns change over
time in a complex manner. The dynamic nature of
these traffic patterns and, indeed, other situational
variables, such as wind, visibility, and ice conditions,
mean that risk levels change over time. This requires
the use of simulation to model the impact of changes
that affect the traffic patterns accurately, such as intro-
ducing new traffic rules and increases or decreases
in the volume of traffic in a given port. However,
for decision makers to make well-informed decisions,

they must understand not only risk estimates of the
alternative simulated systems, but also the stochastic
and parameter uncertainty in such estimates.

Merrick et al. (2005b) use the simulation to count
the frequency of situations in which the ferries could
be involved in an accident. They define these situa-
tions through such factors as the proximity of other
vessels, what type of vessels they are, the presence
of fog or high wind, and the training and experience
of the crew. We may then define the probability of a
collision using the law of total probability,

k
P(Collision) ="y P(Collision | Situation;) P(Situation;),

j=1
)
where Situation; denotes the jth of all possible sit-
uations for j=1,...,k, and k is the total number
of possible combinations. One can then calculate the
expected yearly frequency of collisions by multiply-
ing the probability in (2) by the number of simulated
periods in a year. A simulation of the maritime system
is used to estimate P(Situation;), whereas P(Collision |
Situation;) is estimated using a combination of expert
judgment and accident data (Merrick et al. 2006).

In this risk assessment methodology, the data
obtained from the simulation in each replication will
be a count of the number of vessel interactions occur-
ring in each replication of the simulation. Follow-
ing the Bayesian approach, Merrick et al. (2005b)
hypothesize a Poisson metamodel for the random out-
put data and specifies our prior beliefs about the
parameters of this output model using the conjugate
gamma distribution. The predictive distribution of
P(Situation;) is then a Poisson-gamma distribution in
the sense of Bernado and Smith (2000). Note that the
aleatory uncertainty here can be reduced by running
longer simulations, the epistemic uncertainty cannot;
this would require additional traffic data.

We start by examining the number of situations
that could occur under each alternative, a result from
Merrick et al. (2005b). Figure 6(a) shows an aggregate
comparison of the alternatives by the total expected
yearly number of situations, in this case when a ferry
is close enough to other vessels that the situation
could lead to a collision.

The lines in Figure 6(a) are actually box plots show-
ing the predictive distribution with the interquartile
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Figure 6 Expected Yearly Situations Comparison
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range as the box and the 5th and 95th percentiles of
the distribution as the whiskers. However, because
the remaining uncertainty in these estimates is low,
they do not show up on this comparison scale, and we
repeat them in Figures 6(b)-6(e) using different scales.
It is evident from Figure 6 that there is an increase in
the number of situations across the alternatives and
that the amount of uncertainty is small relative to the
size of the differences between the alternatives.
Because there is wide variability and significant
uncertainty about P(Collision | Situation;), the analysis
from Merrick et al. (2005b) is useful, but not defini-
tive. Instead, we must examine the collision proba-
bility itself, P(Collision). Figure 7(a) shows a similar
pattern of increase for the expected yearly number
of collisions as seen for the expected yearly situa-
tions. However, with the introduction of estimated
collision probabilities based on expert judgments fol-
lowing Merrick et al. (2006), there is significantly
more uncertainty evident in these results, and we can-
not remove this uncertainty by simply running more
simulations. The largest uncertainty remains about

Figure 7 Expected Yearly Collisions Comparison
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Alternatives 2 and 1. However, there are almost cer-
tainly a higher expected number of collisions in Alter-
native 1 than Alternative 2. There is not such certainty
when comparing the base case to Alternative 3.

Whereas there was an almost certain ranking in
terms of the expected yearly number of situations,
this is not true for the expected yearly number of
collisions. Because the comparison is not clear on a
scale that includes Alternatives 2 and 1, Figures 7(b)
and 7(c) show the box plots for the base case and
Alternative 3, respectively; the 90% credibility inter-
vals for the two alternatives are (0.45, 3.44) for the
base case and (0.54, 3.99) for Alternative 3. These dis-
tributions do indeed overlap, and the best we can say
is that Alternative 3 stochastically dominates the base
case in the sense that their cumulative distribution
functions do not cross.

8. Conclusions and Areas for
Research by Decision Analysts

We have reviewed the literature on Bayesian sim-
ulation and covered many types of decisions that
one can address using Bayesian methods. These deci-
sions have included which input data to collect
to minimize output uncertainty, which simulation
replications to run to differentiate between alterna-
tive systems, which simulated system has the high-
est mean output, and which simulated system has
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the highest expected utility, including both single-
attribute and multiattribute cases.

In each section, we have discussed possible avenues
for further research by decision analysts. In the area of
simulation input modeling, we pointed out opportu-
nities for Bayesian nonparametric and semiparamet-
ric approaches for handling model uncertainty. This
would also require extensions of the BMA algorithms
for analyzing sources of uncertainty in simulation
outputs. In the area of output analysis, possible devel-
opments include the following:

e work on entropy utility functions and alternative
multiattribute formulations for designing simulation
experiments to maximize information,

e work on updating simulation inputs when unex-
pected simulation outputs are observed,

e work on treating simulation outputs as expert
forecasts in the form of samples instead of full
distributions,

e the use of Bayesian nonparametric and semipara-
metric approaches for handling model uncertainty for
outputs.

In the area of making decisions using simulations,
there are opportunities in multiattribute simulation
decision making and in treating decisions about the
simulation as part of the overall real-world deci-
sion that the analyst has built the simulation to
help with. In choosing the best simulated system,
algorithms used in choosing the best alternative for
influence diagrams may prove fruitful, and one can
develop specific algorithms for multiattribute simula-
tion problems.

The aim in writing this review was to introduce
the area of Bayesian simulation to the decision analy-
sis community in the hope that they can apply more
decision analytic tools and approaches in the area.
We hope that we have provided enough background
to give a general understanding of the area and that
we have identified enough open problems to wet the
appetites of decision analysts to work in this area.
No doubt, readers will have identified opportunities
beyond those mentioned. We look forward to seeing
work on Bayesian simulation in the decision analysis
literature.
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