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1. Introduction

Gibbs point processes are a natural class of models for point patterns exhibiting interactions

between the points. By far the most widely applied form in practical analyses is that of

pairwise interaction, where the scale and strength of interaction between two points are

determined by a so-called pair potential function. For a stationary and isotropic process the

pair potential is a function of the distance between the two points.

The estimation of Gibbs processes is notoriously dif®cult because of their analytically

and numerically intractable normalizing functions. A summary of some of the methods

developed for an approximate likelihood estimation can be found in Diggle et al. (1994).

Geyer (1998) gives a comprehensive and highly recommendable exposition of the likelihood

inference using Markov chain Monte Carlo (MCMC).

Nonparametric estimation has been largely ignored by researchers. One exception is the

suggestion to use the nonparametric estimation of the pair correlation function and its

approximate relation to the pair potential through the Percus±Yevic equation (Diggle et al.

1987; Fiksel 1988). The approximation is a result of a cluster expansion method, and it is
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accurate only for sparse data. Van Lieshout and Baddeley (1996) introduced a nonpara-

metric measure of the strength and range of interaction, but its statistical properties seem to

be somewhat problematic.

This paper introduces a method which can be viewed as the ®rst step towards a truly

nonparametric Bayesian estimation of Gibbs processes with pairwise interactions. The pair

potential is approximated by a step function having a large number of ®xed jump points.

The induced high dimension of the parameter space causes two kinds of problem. First,

each component of the suf®cient statistic is typically a function of a small number of point

locations, which causes instability in the estimation. Second, the computational complexity

increases rapidly with the dimension.

To combat the ®rst problem we apply Bayesian smoothing by choosing a Markov chain

prior which penalizes large differences between nearby values of the pair potential function.

This idea originates in Bayesian image analysis; see Besag (1986).

As regards the computational complexity, we have found the full posterior analysis to be

too demanding with the currently available machinery. Consequently, we have concentrated

on the task of locating the posterior mode, which is computationally equivalent to that of

®nding the maximum likelihood estimate (MLE). Starting from the Monte Carlo Newton±

Raphson algorithm of Penttinen (1984) and the Monte Carlo likelihood approach of Geyer

and Thompson (1992), we arrived at an ef®cient algorithm by modifying the former into an

MCMC approximation of the Marquardt algorithm (Marquardt 1963) and then combining

the two. The ®rst approximation to the posterior mode is obtained using the Monte Carlo

Marquardt algorithm, where the ®rst two differentials of the log-posterior are approximated

by MCMC as in Penttinen (1984) and the ®nal estimate is calculated using the Monte Carlo

likelihood approximation. (The naming conventions applied here were introduced by Geyer

1998.)

Our approach of an approximating step function and a smoothing prior was motivated by

the ideas in Arjas and Gasbarra (1994). Dealing with a tractable likelihood, they were able

to perform a full posterior analysis over the space of all step functions, where also the

number and locations of the jump points were variable. Further work along these lines can

be found in Green (1995), Arjas and Heikkinen (1997), and Heikkinen and Arjas (1998;

1999). Denison et al. (1998) used sequences of piecewise polynomials instead of our step

functions. Although we had to compromise by ®xing the jump points and restricting to the

posterior mode estimation, the rapid development of the MCMC methodology and the

increasing computing power available may soon offer the tools for truly nonparametric pair

potential estimation in the spirit of these authors.

The rest of this paper is organized as follows. In Section 2 we give a short introduction

to Gibbs point processes and to some Monte Carlo methods for their estimation (Section

2.2). Section 2 also includes a more speci®c discussion of the problems associated with a

high-dimensional parameter space (in Section 2.2.3). Section 3 describes our new approach,

with the smoothing prior built in Section 3.1 and the hybrid algorithm for posterior mode

estimation detailed in Section 3.2. The amacrine cells data, presented in Diggle and Gratton

(1984), are analysed in Section 4 using the proposed technique. In addition, the result is

compared with other solutions as summarized in SaÈrkkaÈ (1993), and a related simulation

study is reported.
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2. Gibbs point processes

Our method has been developed for the analysis of mapped point patterns x �
fx1, . . . , xng � E � R

d having a ®nite number n � n(x) of points in a bounded sampling

window E. Let Ùn, n. 0, be the set of the con®gurations with n points, and let Ù0 � fÆg.
Then the space of ®nite point patterns on E is Ù � [1

n�0Ùn.

A point process on E can be de®ned as a random variable on the exponential space

(Ù, B , ì) over the measure space (E, A, í), where A is the Borel ó-®eld of E and í is

the Lebesgue measure on E (Carter and Prenter 1972). The ó-algebra B is a family of sets

B � Ù such that B \Ùn is an element of An. The probability measure ì given by

ì(B) � eÿí(E) 1(Æ 2 B)�
X

1

n�1

1

n!

�

En

1(fx1, . . . , xng 2 B)
Y

n

i�1

í(dxi)

( )" #

(2:1)

is the distribution of the homogeneous Poisson process with unit intensity, that is, the number

n(x \ A) of points in A 2 A has the Poisson fí(A)g distribution and the counts in disjoint

sets are independent. The Poisson process provides a model for point patterns with no

interaction in the sense that locations of a subset of points do not contain any information on

the locations of the rest.

In general, a Gibbs point process can be any random variable on (Ù, B , ì) having a

density f with respect to ì. Normally this density is assumed to satisfy the hereditary

condition: f (x). 0 implies f (x9). 0 for all x9 � x. The model is usually speci®ed via an

energy function U : Ù ! R [ f1g so that

f (x) � Zÿ1 expfÿU (x)g, (2:2)

where the partition function Z �
�

Ù
eÿU (x) ì(dx) (a function of U ) normalizes f into a

density.

2.1. Pairwise interaction processes

A stationary and isotropic process with pairwise interaction is de®ned by letting

U (x) � án(x)�
X

j, k

ö(kx j ÿ xkk), (2:3)

where the parameter á is known as the chemical activity, and ö: (0, 1) ! R [ f1g is the

pair potential function which has the following interpretation. Values ö(r). 0 indicate lower

probability density for inter-point distances r than under the Poisson process; there is

repulsion (or inhibition) at distance r. If ö(r), 0, we say that there is attraction at distance

r. Usually a ®nite range of interaction, R, is assumed such that ö(r) � 0 for r. R. If

ö(r). 0 for r < R, then typical realizations will be more or less regular compared to a

completely random arrangement.

For illustration and interpretation it is convenient to transform the pair potential function

ö into the interaction function h � exp(ÿö). This way the in®nities transform to zeros and
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h(r) is roughly the likelihood of the occurrence of a pair of points at distance r from each

other.

Some constraints are needed for á and ö in order for exp(ÿU ) to be integrable. In

particular, negative (or partly negative) potentials may lead to improper or unstable

distributions (Kelly and Ripley 1976; Gates and Westcott 1986), which means that the

pairwise interaction processes are not very useful models for clustering. Things become

much simpler if we condition on the event n(x) � n for some ®xed n. This eliminates the

parameter á, and we obtain a process with density

fö(x) � Z(ö)ÿ1 exp ÿ
X

j, k

ö(kx j ÿ xkk)

( )

(2:4)

with respect to the n-fold product í n of í, a measure on Ùn. The normalizing function

Z(ö) �
�

Ù n
expfÿ

P

j, kö(kx j ÿ xkk)gí
n(dx) is now ®nite for all pair potentials ö :

(0, 1) ! R [ f1g. When modelling an observed pattern x, n is naturally chosen to be

the observed number of points n(x).

Even these conditional models seem to fail in exhibiting moderate clustering (Geyer and

Thompson 1995; Mùller 1998; Geyer 1998). Thus the models for clustering should be built

on some other basis. One possibility is to use the nearest-neighbour Markov point processes

(Baddeley and Mùller (1989); see Baddeley and van Lieshout (1995), Baddeley et al.

(1996) and Mùller 1998) for some recent work along these lines.

In most applications only a part of the whole pattern is observed, and the unobserved

points outside E interact with those of x. Then it is more appropriate to consider

conditional distributions of the form (2.4) conditioned on the points outside E (see Stoyan

et al. 1995, Section 5.5.3), and account for the unobserved part by some kind of edge

correction. A review of them is given in Ripley (1988, Chapter 2); for an alternative

approach, see Geyer (1998).

2.2. Monte Carlo estimation

In general, it is impossible to evaluate the partition function Z by analytic or numerical

integration, which makes the exact likelihood (or posterior) analysis infeasible. The idea of

Monte Carlo estimation is to express the required quantities as expectations of functionals of

x, and approximate these by the corresponding averages in a sample simulated from f . While

producing independent realizations of a Gibbs point process is usually either impossible or

very slow, we can always apply MCMC to simulate dependent realizations of a Markov chain

whose stationary distribution is f . Good reviews of MCMC in general are given in Tierney

(1994), Besag et al. (1995), Green (1995), and Geyer (1998); related methods for simulating

point processes can also be found in Preston (1977), Ripley (1979), Stoyan et al. (1995),

Geyer and Mùller (1994) and Mùller (1998).

Processes conditioned to have a ®xed number of points can be simulated by the original

Metropolis method (Metropolis et al. 1953). In the version used in this study a sequence

x(1), x(2), . . . , x(T) of realizations is produced by starting from an arbitrary pattern x(0), and

in the tth step performing the transition from x( tÿ1) to x( t) as follows. Select an index
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i � i t 2 f1, . . . , ng randomly. Choose a uniform random point zi from E, and set z j �
x
( tÿ1)
j for j 6� i. Accept z as x( t) with probability minf1, fö(z)= fö(x

( tÿ1))g, otherwise let

x( t) � x( tÿ1). The resulting sequence of point patterns is a realization of a Markov chain

with invariant distribution fö.

Although the estimation methods discussed below are applicable in a much more general

setting (see Geyer 1998), it is suf®cient for our purposes (and notationally somewhat

simpler) to consider exponential families f fè: è 2 Èg of Gibbs point processes having the

energy function

Uè(x) � ÿè . y(x), (2:5)

where y : Ù ! R
p is the canonical statistic, and È � fè 2 R p : Z(è),1g. The log-

likelihood of an observation x is then

l(è) � è . y(x)ÿ log Z(è): (2:6)

2.2.1.Monte Carlo root-®nding algorithms

In Penttinen (1984) the Newton±Raphson algorithm was considered for the maximization of

the log-likelihood l. The values of the gradient g(è) � =l(è) and the Hessian H(è) � =
Tg(è)

are required at the current parameter value è(k) to perform the update

è(k�1) � è(k) ÿH(è(k))ÿ1g(è(k)): (2:7)

By the usual formulae for exponential families they can be expressed as

g(è) � y(x)ÿ Eèy (2:8)

and

H(è) � ÿvarè y: (2:9)

The Monte Carlo Newton±Raphson algorithm is obtained by replacing the expectation and

the variance by their MCMC approximations. In each update an MCMC sample x(1), . . . , x(T)

with target distribution fè( k) is drawn, the sample mean vector y and the sample covariance

matrix Sy of y(x(1)), . . . , y(x(T )) are computed, g(è(k)) in equation (2.7) is replaced by

ĝ(è(k)) � y(x)ÿ y (2:10)

and H(è(k)) by

Ĥ(è(k)) � ÿSy: (2:11)

The MCMC approximations of g and H can naturally be used in any numerical root-

®nding algorithm. We have found the Marquardt algorithm (Marquardt 1963) to be

particularly useful, since Hÿ1 can be extremely unstable at early stages of the iteration,

especially when we have a high-dimensional parameter space and the initial value of è is

far from the MLE. This is a well-known problem even when the ordinary (deterministic)

Newton±Raphson method can be used, but it is made still more severe by the randomness

of the MCMC approximations. In the Marquardt algorithm the Hessian is stabilized by
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multiplying its diagonal by 1� ë, where ë is positive and tends to zero as the root is

approached. The version given in Press et al. (1992, pp. 681±688) runs as follows. De®ne

the merit function ÷2 by

÷2(è) �
X

p

i�1

g i(è)
2, (3:8)

whereby the task of ®nding the root of g is equivalent to minimizing ÷2. Let Ië(è), ë > 0, be

the inverse of the matrix obtained by multiplying the diagonal elements of H(è) by 1� ë.
Choose an initial parameter value è(0), set ë � 0:001, and iterate the following steps for

k � 0, 1, . . . until ÷2 decreases only by a negligible amount:

1. Given the current iterate è(k), propose è9 � è(k) ÿ Ië(è
(k))g(è(k)) to be the next one.

2. If ÷2(è9) > ÷2(è(k)), refuse the proposal, increase ë by a factor of 10 and return to

step 1.

3. Otherwise, accept è9 as the new state è(k�1) and decrease ë by a factor of 10.

Again, the Monte Carlo Marquardt algorithm is de®ned to be the version where the values of

g and H are replaced by their MCMC approximations (2.10) and (2.11).

When considering the stopping rules one should note a fundamental difference between

numerical root-®nding algorithms and their Monte Carlo counterparts. Instead of

deterministic sequences, these Monte Carlo algorithms produce Markov chains in the

parameter space, and their convergence must be understood in the sense of weak

convergence to a stationary distribution. The transition laws of these chains are highly

complicated, depending on the behaviour of the MCMC sampler, and analytical convergence

results are very dif®cult to obtain. However, the consistency of the MCMC method implies

that, with large samples, the Monte Carlo algorithm approximates the behaviour of the

corresponding deterministic algorithm.

2.2.2.Monte Carlo likelihood

Geyer and Thompson (1992) used importance sampling to obtain an MCMC approximation

of the partition function over a range of ès using a sample from just one distribution fè0 . This

is based on the relation

Z(è)

Z(è0)
� Eè0 [expf(èÿ è0) . yg], (2:13)

yielding

l(è)ÿ l(è0) � (èÿ è0) . y(x)ÿ log Eè0[ exp f(èÿ è0) . yg]: (2:14)

Thus, in principle, a sample from fè0 provides a Monte Carlo approximation of the entire log-

likelihood, the Monte Carlo likelihood, and an approximate MLE can be obtained by

maximizing the MCMC approximation of the right-hand side of (2.14). With a reasonable

sample size, however, the approximation is accurate only in the vicinity of the pivot value è0,

and an iteration of successive constrained optimizations is required. When è0 is far from the
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mode, the approximate log-likelihood may fail to have a maximum. Then also the constrained

maximization in a high-dimensional space becomes complicated. For è0 near the mode, on

the other hand, this method seems to surpass the Monte Carlo root-®nding algorithms, which

in turn provide simple and quick means of getting near the mode.

In order to evaluate the log-likelihood ratio l(è9)ÿ l(è) when è and è9 are far apart,

Geyer (1991) proposed a Monte Carlo likelihood approximation based on a sample from a

mixture f �
PM

m�1 fèm
of distributions in the model family instead of just one. The

sequence è1, . . . , èM of parameter values is chosen from the line segment between è and

è0 so that the distributions of the canonical statistic have considerable overlap in the

samples under any two consecutive values. The ratios Z(èm)=Z(è1), m � 2, . . . , M , needed

to calculate the appropriate importance weights, are estimated by the method of `reverse

logistic regression' introduced in Geyer (1991).

2.2.3. Bayesian estimation

Let us now turn to Bayesian estimation, and assume that a prior distribution with density ð is

speci®ed for è. Then the posterior density p(èjx) of è given the observation x is proportional

to ð(è) fè(x), and the posterior mode estimator can be found by maximizing log p(èjx),
which is equivalent to maximizing logð(è)� l(è). Hence the methods described in the

previous subsections can be directly applied by de®ning

g(è) � = logð(è)� y(x)ÿ Eèy (2:15)

and

H(è) � =
T
= logð(è)ÿ varèy (2:16)

for the root-®nding algorithms (Section 2.2.1), or by adding logð(è)ÿ logð(è0) to the right-

hand side of equation (2.14) for the Monte Carlo likelihood approximation (Section 2.2.2). It

is only required that ð and the ®rst two differentials of logð can be easily evaluated at any è.

In principle, the full posterior analysis could be conducted by MCMC sampling from the

posterior distribution. In order to do this, however, the posterior ratios p(è9jx)=p(èjx)
should be available for any current state è and for any possible update proposal è9 in the

sampler chain. Again, this is computationally equivalent to calculating the likelihood ratios,

and in theory the Monte Carlo likelihood approximation based on a mixture (see the ®nal

paragraph of Section 2.2.2) could be applied. However, a large number of these update

steps must be taken, and it is not practically possible to produce a new MCMC

approximation at each. The only practical alternative seems to be that of having a mixture

which covers that part of the parameter space where the posterior puts appreciable mass to

begin with. In a low-dimensional case this is possible; an application was given in Higdon

(1994, Chapter 7) in the context of image analysis. In a high-dimensional case we do not

know of any practical way to choose a suf®cient collection of parameter values for the

mixture.

Bayesian smoothing in the estimation of the pair potential function 1125



3. Pair potential estimation by Bayesian smoothing

Just as continuous functions can be approximated by step functions, so we can approximate

an arbitrary pairwise interaction Gibbs process by a process of the multi-scale family

(Penttinen 1984), in which pair potentials are step functions with given jump points

0 � r0 , r1 , � � � , r p. With the conditioning n(x) � n, and using the parametrization

ö �
X

p

i�1

ÿèi1(riÿ1,ri], (3:1)

we obtain an exponential family f fè : è 2 È � (R [ fÿ1g) pg, whose canonical statistic

y � (y1, . . . , y p) is given by the pair counts

yi � yi(x) � #f( j, k) : 1 < j, k < n, riÿ1 , kx j ÿ xkk < rig: (3:2)

We can obtain an almost nonparametric estimate of the pair potential by ®tting a multi-

scale process of large order p. The problem is that with short intervals (riÿ1, ri] only few

observed point locations contribute to each component yi of the suf®cient statistic.

Consequently, the sampling variance of yi is large compared to its expectation, which in

turn causes instability in the maximum likelihood estimation of è (for an example, see Fig.

4).

Such a problem is familiar in image analysis, for example in the restoration of noisy

pixel images. There a common remedy is to adopt a Bayesian approach and choose a prior

distribution which gives higher probabilities to smoother images. This idea can be applied

here as well. We specify a prior distribution ð preferring such potentials ö in which the

jumps jèi ÿ èiÿ1j are small. Analogously to the use of Markov random ®elds in image

analysis, we choose ð to be a Markov chain with zero mean jumps.

3.1. The smoothing prior

First we need to decide on p, the resolution of the multi-scale potential, and on the locations

ri of the jump points. The radius of interaction r p should be chosen so that the interaction

beyond r p is negligible. Often some background knowledge is available for the determination

of r p. Otherwise, a safe way would be to estimate the radius of interaction, by the method of

van Lieshout and Baddeley (1996) for example, and then make r p substantially larger than

the estimated value. The choice of p determines how nonparametric the inference is. The

computational load, of course, increases with p. A conventional choice for the other ri
(i � 1, . . . , pÿ 1) is to have them equally spaced between r0 � 0 and r p.

Second, the Markov chain prior ð(è) needs to be speci®ed. Expecting no interaction

beyond r p, it is convenient to start the chain from è p with Eðè p � 0. A simple choice is to

take the `initial' distribution and the transition kernels to be Gaussian with Eð(èij
èi�1) � èi�1. The degree of smoothing is then determined by the variances

ó 2
i �

varðè p, if i � p,

varð(èijèi�1), otherwise:

(

(3:3)
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In general it is not reasonable to assume the ó 2
i to be equal. An extreme example, the

hard-core process (e.g., Ripley 1977), corresponds to èi � ÿ1 for ri , R. The interaction

parameters çi � exp(èi), on the other hand, are bounded between 0 and 1 for repulsive

potentials, and typically the interaction function h � exp(ÿö) behaves more regularly than

the pair potential. Hence, a feasible simpli®cation is to assume the conditional variances

varð(çijçi�1) equal rather than the ó 2
i . The induced expressions of the ó 2

i are available: if

è � N (ìi, ó
2
i ), then ç � exp(è) follows the log-normal distribution (see Antle 1985) with

variance ó 2 � exp(2ìi � ó 2
i )fexp(ó

2
i )ÿ 1g, yielding

ó 2
i � log[1

2
� fó 2 exp(ÿ2ìi)�

1
4
g1=2] �: só (ìi): (3:4)

We thus suggest a prior distribution de®ned by

è p � N (0, ó 2
p),

èijèi�1, . . . , è p � N (èi�1, ó
2
i ), (3:5)

where ó 2
i � só (èi�1), for i � 1, . . . , pÿ 1, ó 2

p � só (0), and the smoothing parameter ó

determines how much weight we give to the prior compared to the data. The formulae for the

joint prior distribution ð(è) become somewhat complicated but still tractable. They are given

in the Appendix.

In our prior the marginal variances varð(èi) � ó 2
i � � � � � ó 2

p are larger for smaller i.

This re¯ects our assumption that è p should be nearly 0, whereas only vague prior

knowledge is assumed of è1. An alternative smoothing prior can be found in Arjas and

Heikkinen (1997), where the two-sided conditionals p(èijèiÿ1, èi�1) are speci®ed.

For pair potentials that exhibit abrupt changes (such as the hard-core process) there is

naturally the danger of oversmoothing. A more robust prior could be obtained by using the

t-distributions; see Besag and Higdon (1993, Section 3), Besag et al. (1995, Section 5.6) or

Besag and Higdon (1997, Section 2.4).

3.2. An algorithm for the posterior mode estimation

Next we describe a procedure for locating the posterior mode. First, it should be noticed that

the unimodality of the posterior is dif®cult to check. For example, with a small prior variance

ó 2 one local mode could well be at èi � 0 for all i. The main interest lies, however, in the

local mode, which is in best agreement with the data. Hence, we use the MLE (with a small

modi®cation) as the starting point of the iteration. Accepting èi � ÿ1 for

i 2 I0 � I0(x) :� fi : yi(x) � 0g, the MLE always exists and is unique. Second, based on

the considerations in Section 2.2 and on our experiences in modelling the data of Section 4,

we propose that the Monte Carlo Marquardt algorithm is an ef®cient way of ®nding a pivot

parameter for the Monte Carlo likelihood approximation suf®ciently near the posterior mode.

An outline of the suggested procedure is as follows:

1. Find an approximation è̂(ML) to the MLE using the Monte Carlo Marquardt algorithm.

2. Let è(0) be a slight modi®cation of è̂(ML) such that è
(0)
i .ÿ1 for all i.
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3. Find an approximation è̂(MCM) of the posterior mode using the Monte Carlo Marquardt

algorithm initialized by è(0).

4. Obtain the ®nal estimate è̂ using the Monte Carlo likelihood approximation with pivot

parameter è0 � è̂(MCM).

Useful starting values for step 1 can be obtained by applying the Poisson approximation

(Penttinen 1984, p. 40), yielding

èi � log
yi(x)

K i

, (3:6)

where

K i �
ð

2í(E)
n2(r2i ÿ r2iÿ1): (3:7)

The MLEs for èi, i 2 I0, are equal to ÿ1. Hence, in step 1 we ®x èi � ÿ1 for i 2 I0, and

update only the rest of the parameter values. In the smoothed estimate we require ®nite

values for each èi, and therefore we need to do the modi®cation of step 2. A natural way is to

transform into the interaction parameters ç̂(ML) � exp(è̂(ML)), whereby ç̂(ML) � 0 for i 2 I0,

and to construct ç(0) as follows:

· If p 2 I0, let ç
(0)
p � 1

2
, which is a compromise between exp Eðè

(0) � 1 and ç(ML) � 0.

· Iteratively for i � pÿ 1, . . . , 1, if i 2 I0 then let ç
(0)
i � ç

(0)
i�1=2, with the same

reasoning as above.

Step 2 is completed by setting è(0) � logç(0).

Given the Monte Carlo approximation of the (log) posterior, step 4 consists of a routine

numerical optimization, for which standard stopping rules can be applied. In steps 1 and 3,

on the other hand, the randomness must be acknowledged when stating a stopping rule (see

Section 2.2.1). The merit function ÷2 does not converge to zero, but ends up oscillating

around a strictly positive value instead.

To get a rough idea of the expected behaviour of ÷2 near the mode, let us ®rst note that

the central limit theorem holds for the MCMC approximations of the g i(è). Given è 2 È,

let I1 � fi : èi � ÿ1g. Then the set Ù�
n � fx 2 Ùn : fè(x). 0g consists of those patterns

x for which I0(x) � I1. Within this set the density fè is bounded from above by

exp(èmax ymax)=Z(è) and from below by exp(èmin ymax)=Z(è), where ymax � n(n� 1)=2 is the

maximal pair count, èmin � mini=2 I1èi and èmax � maxfè1, . . . , è p, 0g. Hence the conditions

of Corollary 3 in Tierney (1994) are satis®ed, the sampler chain is uniformly ergodic, and

the central limit theorem holds for all square-integrable functionals of x (Tierney 1994,

Theorem 5).

In particular, the MCMC approximation ĝ i(è) based on a sample of size T can be

regarded as an approximate realization from the normal distribution with mean g i(è) and

variance ô2i =T , where ô2i � ô2i (è) is unknown but ®nite. If è were the root of g and the

ĝ i(è), i � 1, . . . , p, were independent, then the MCMC approximation

÷̂2(è) �
X

p

i�1

ĝ i(è)
2

ô2i
(3:8)
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of the normalized merit function would follow the central ÷2p distribution.

Based on these considerations, we suggest the following stopping rule for steps 1 and 3.

Estimate (by the method of Geyer 1992, for example) the Monte Carlo variances ô2i of the

pair counts yi from an MCMC sample under the initial è-value, and substitute these

estimates for the ô2i in equation (3.8). Stop when ÷̂2 reaches the 95th percentile of the ÷2p
distribution. This rule is based on very crude approximations: The ĝ i clearly cannot be

independent, and we cannot expect the ô2i be the same at the root of g as at the initial

value. Also the 95th percentile seems quite liberal. But it is not necessary to be very

accurate at this stage, because the aim is only to get reasonably near the root. It actually

turned out that even this stopping rule was unnecessarily strict in our example (see

Section 4).

Finally, we should mention that the estimate è̂ can always be checked by comparing the

absolute values of the obtained ĝ i(è̂) to their estimated Monte Carlo errors.

4. Example

We applied our procedure to the rabbit's eye amacrine cells data presented in Diggle and

Gratton (1984). The study area E is a rectangle of 10703 600 ìm; the locations of the 152

cells within E are shown in Fig. 1.

We used the multi-scale process of order p � 30, with change-points equally spaced

between r0 � 0 and r p � 120 ìm. In each simulation we used the Metropolis algorithm

with 110 000 basic update steps; after a burn-in period of 10 000 steps every 100th

realization was collected to form a sample of size T � 1000. Periodic boundaries were used

both in calculation of the yis and in simulation. Here we report brie¯y steps 3 and 4 of the

run with ó 2 � 0:01.

Figure 1. Locations of 152 amacrine cells in a rabbit's eye; from Diggle and Gratton (1984).
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For step 3 of our algorithm the ÷2 approximation suggested in Section 3.2 yields stopping

rule ÷̂2 < 43:77 (the 95th percentile of the ÷230 distribution). This was reached in seven

iterations of the Monte Carlo Marquardt algorithm with 13 evaluations of ÷̂2. The values are

as follows with those corresponding to the accepted è-values underlined (see steps 2 and 3

of the Marquardt algorithm):

93 918, 290 429, 15 005, 484, 168, 119, 63, 59, 116, 139, 101, 65, 27:

The ç-values of some selected iterations are shown in Fig. 2. The ®nal estimate, using the

Monte Carlo likelihood approximation, is practically equal to that given by the Monte Carlo

Marquardt algorithm.

In Fig. 3 our estimate is compared to earlier (parametric) interaction function estimates,

based on a summary in SaÈrkkaÈ (1993). For easier comparison we have constructed a

continuous version of our estimate by joining the midpoints of the steps. For intermediate

distances our estimate seems to agree best with that of Diggle and Gratton. There is some

evidence of attraction at longer distances, which may re¯ect higher-order interactions.

We also estimated the posterior modes corresponding to milder smoothings ó 2 � 0:05,
ó 2 � 0:2 and ó 2 � 1. The estimates are compared in Fig. 4. Clearly, the posterior modes

are far from being simple smoothings of the MLE.

Finally, we performed a related simulation study. Nine realizations were drawn using

Diggle and Gratton's potential, and the above procedure (with p � 20 and ó 2 � 0:01) was

Figure 2. The ç values after selected iterations of the Monte Carlo Marquardt algorithm for the

posterior mode estimate with ó 2 � 0:01: initial values ´ ´ ´ ´ ´ ´, ®rst iteration - - - -, second iteration

± ± ±, third iteration , and ®nal values ÐÐ.
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Figure 3. Continuous version (see text) of our posterior mode estimate (solid line) compared to

various parametric estimates: Diggle and Gratton (1984) ´ ´ ´ ´ ´ ´, Fiksel and Stoyan (unpublished)

- - - -, Ogata and Tanemura (1984) ± ± ±, Penttinen (unpublished) ÐÐ, and SaÈrkkaÈ (1993) ± : ±:

Figure 4. Continuous versions of the posterior mode estimates under various values of the

smoothing parameter: ó 2 � 0:01 ÐÐ, ó 2 � 0:05 ÐÐ, ó 2 � 0:2 ± ± ±, ó 2 � 1 - - - -, and

ó 2 � 1 (MLE) ´ ´ ´ ´ ´ ´.
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applied to each. The stepwise means plus and minus standard deviations of the estimates

are shown in Fig. 5.

5. Discussion

We have presented an approach to the nonparametric estimation of the pair potential function.

As such it is comparable to that of Diggle et al. (1987). In their approach the nonparametric

estimate of the pair correlation function and an approximate equation are used, and the

properties of the ®nal estimator are not directly accessible. Our method is more direct and, in

principle, allows for full posterior analysis. Furthermore, unlike analytic approximations, the

MCMC approximations can be made arbitrarily accurate by increasing the sample size. On

the other hand, the computational effort required in our approach is substantial, even for the

posterior mode.

It may be argued that a step function is not a proper estimator of the pair potential,

which is usually assumed continuous. The major argument in favour of step functions is in

their simplicity; among other things, they allow for the simple form of the suf®cient

statistic y. Speci®cation of the prior can also be done in a natural way. Rather than using

splines, for example, we see variable change-points as a natural extension towards more

Figure 5. A step function approximation (p � 20) of Diggle and Gratton's interaction function

(broken line), and stepwise means plus and minus standard deviations of the posterior mode

estimates under ó 2 � 0:01 from nine patterns simulated from Diggle and Gratton's model (solid

lines).
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¯exibility. The posterior mean would then usually be a smooth curve (see Arjas and

Gasbarra 1994).

We conditioned on the number of points only in order to clarify the basic idea. In the

unconditional case an additional parameter (the chemical activity) would have to be

estimated, and some constraints would be required for the parameters in order to stay in the

class of integrable densities.
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Appendix: Differentials of logð

Below we shall derive some formulae concerning the joint distribution ð(è) de®ned by (3.5).

Let

A(è) � ó 2 exp(ÿ2è),

s(è) � log[1
2
� fA(è)� 1

4
g1=2],

and let s0 � s(0). Then the joint density is de®ned by

ð(è) /
Y

p

i�2

s(èi)
ÿ1=2 exp ÿ

1

2
s(èi)

ÿ1(èiÿ1 ÿ èi)
2

� �

" #

exp ÿ
1

2
sÿ1
0 è2p

� �

and its logarithm is

logð(è) � cÿ
1

2

X

p

i�2

flog s(èi)� s(èi)
ÿ1(èiÿ1 ÿ èi)

2g � sÿ1
0 è2p

" #

,

where c does not depend on è. The gradient of the log-prior is given by

@

@è1
logð(è) �

è2 ÿ è1

s(è2)
,

@

@èi
logð(è) �

èiÿ1 ÿ èi ÿ
1
2
s9(èi)

s(èi)
�
èi�1 ÿ èi

s(èi�1)
�

s9(èi)

2

èiÿ1 ÿ èi

s(èi)

� �2
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for i � 2, . . . , pÿ 1, and

@

@è p

logð(è) �
è pÿ1 ÿ è p ÿ

1
2
s9(è p)

s(è p)
ÿ
è p

s0
�

s9(è p)

2

è pÿ1 ÿ è p

s(è p)

� �2

,

where

s9(è) � f4A(è)� 1gÿ1=2 ÿ 1:

The Hessian is a (symmetric) tridiagonal matrix with diagonal elements

@2

@è21
logð(è) � ÿ

1

s(è2)
,

@2

@è2i
logð(è) � ÿ

1

s(èi�1)
ÿ

1

s(èi)
ÿ

s 0(èi)

2s(èi)
�
1

2

s9(èi)

s(èi)

� �2

�
s 0(èi)

2

èiÿ1 ÿ èi

s(èi)

� �2

ÿ
2s9(èi)(èiÿ1 ÿ èi)

s(èi)2
ÿ
fs9(èi)(èiÿ1 ÿ èi)g

2

s(èi)3

for i � 2, . . . , pÿ 1, and

@2

@è2p
logð(è) � ÿ

1

s0
ÿ

1

s(è p)
ÿ

s 0(è p)

2s(è p)
�
1

2

s9(è p)

s(è p)

� �2

�
s 0(è p)

2

è pÿ1 ÿ è p

s(è p)

� �2

ÿ
2s9(è p)(è pÿ1 ÿ è p)

s(è p)2
fs9(è p)(è pÿ1 ÿ è p)g

2

S(è p)3
,

and (non-zero) sub-diagonal elements

@2

@èi@èiÿ1

logð(è) �
1

s(èi)
�

s9(èi)(èiÿ1 ÿ èi)

s(èi)2
,

for i � 2, . . . , p, where

s 0(è) � 4A(è)f4A(è)� 1gÿ3=2:
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