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Bayesian Solution Uncertainty Quantification

for Differential Equations∗

Oksana A. Chkrebtii†, David A. Campbell‡, Ben Calderhead§, and Mark A. Girolami¶

Abstract. We explore probability modelling of discretization uncertainty for sys-
tem states defined implicitly by ordinary or partial differential equations. Account-
ing for this uncertainty can avoid posterior under-coverage when likelihoods are
constructed from a coarsely discretized approximation to system equations. A for-
malism is proposed for inferring a fixed but a priori unknown model trajectory
through Bayesian updating of a prior process conditional on model information.
A one-step-ahead sampling scheme for interrogating the model is described, its
consistency and first order convergence properties are proved, and its computa-
tional complexity is shown to be proportional to that of numerical explicit one-step
solvers. Examples illustrate the flexibility of this framework to deal with a wide
variety of complex and large-scale systems. Within the calibration problem, dis-
cretization uncertainty defines a layer in the Bayesian hierarchy, and a Markov
chain Monte Carlo algorithm that targets this posterior distribution is presented.
This formalism is used for inference on the JAK-STAT delay differential equation
model of protein dynamics from indirectly observed measurements. The discussion
outlines implications for the new field of probabilistic numerics.

Keywords: Bayesian numerical analysis, uncertainty quantification, Gaussian
processes, differential equation models, uncertainty in computer models.

1 Quantifying uncertainty for differential equation

models

Many scientific, economic, and engineering disciplines represent the spatio-temporal
evolution of complex systems implicitly as differential equations, using few but readily
interpretable parameters. Differential equation models describe the natural dependence
between system states and their rates of change on an open spatio-temporal domain,
D ⊂ R

d. Their relationship, represented by the function F , is fully specified up to some
physical constants θ belonging to a parameter space Θ. Mathematically, system states,
u : D ×Θ → R

p satisfy the partial differential equation (PDE),

F

(

x, t,
∂u

∂t
,
∂u

∂x1
,
∂u

∂x2
,

∂2u

∂x1∂x2
, . . . , u, θ

)

= 0, (x, t) ∈ D ∪ ∂D,
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and constraints at the boundary ∂D of D. When states evolve with respect to a single
variable, such as time, the model simplifies to an ordinary differential equation (ODE).
The explicit solution, denoted u∗ : D×Θ → R

p, of a differential equation problem over
spatio-temporal locations, (x, t) ∈ D, is used to explore system dynamics, design exper-
iments, or extrapolate to expensive or dangerous circumstances. Therefore, increasing
attention is being paid to the challenges associated with quantifying uncertainty for
systems defined by such models, and in particular those based on mathematical de-
scriptions of complex phenomena such as the weather, ocean currents, ice sheet flow,
and cellular protein transport (Ghanem and Spanos, 2003; Kaipio et al., 2004; Huttunen
and Kaipio, 2007; Marzouk et al., 2007; Marzouk and Najm, 2009; Stuart, 2010).

The main challenge of working with differential equation models, from both mathe-
matical and statistical perspectives, is that solutions are generally not available in closed
form. When this occurs, prior exploration of the mathematical model, u∗(x, t, θ), cannot
be performed directly. This issue is dealt with throughout the literature by replacing the
exact solution with an N dimensional approximate solution, ûN (x, t, θ), obtained using
numerical techniques over a size N grid partitioning of the domain D. Inference and
prediction based on ûN (x, t, θ) then inform the reasoning process when, for example, as-
sessing financial risk in deciding on oil field bore configurations, or forming government
policy in response to extreme weather events.

Limited computation and coarse mesh size are contributors to numerical error which,
if assumed negligible can lead to serious misspecification for these highly nonlinear mod-
els. The study of how uncertainty propagates through a mathematical model is known
as the forward problem. Numerical error analysis provides local and global discretization
error bounds that are characterized point-wise and relate to the asymptotic behaviour
of the deterministic approximation of the model. However, accounting for this type of
verification error for the purpose of model inference has proven to be a difficult open
problem (Oberkampf and Roy, 2010), causing discretization uncertainty to be often
ignored in practice. For complex, large-scale models, maintaining a mesh size that is
fine enough to ignore discretization uncertainty demands prohibitive computational cost
(Arridge et al., 2006), so that a coarse mesh is the only feasible choice despite associ-
ated model uncertainty (Kim, J.-h. et al., 2014). Furthermore, some ODE and PDE
models exhibit highly structured but seemingly unpredictable behaviour. Although the
long term behaviour of such systems is entrenched in the initial states, the presence of
numerical discretization error introduces small perturbations which eventually lead to
exponential divergence from the exact solution. Consequently, information about initial
states rapidly decays as system solution evolves in time (Berliner, 1991).

The calibration or statistical inverse problem concerns the uncertainty in unknown
model inputs, θ, given measurements of the model states (Bock, 1983; Ionides et al.,
2006; Dowd, 2007; Ramsay et al., 2007; Xue et al., 2010; Brunel, 2008; Liang and
Wu, 2008; Calderhead and Girolami, 2011; Campbell and Steele, 2011; Gugushvili and
Klaassen, 2012; Campbell and Chkrebtii, 2013; Xun et al., 2013). However, inference
for differential equation models lacking a closed form solution has mainly proceeded
under the unverified assumption that numerical error is negligible over the entire pa-
rameter space. From the perspective of Kennedy and O’Hagan (2001), the discrep-
ancy between the numerical approximation, ûN , and the unobservable mathematical
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model, u∗, at the observation locations (x, t) ∈ DT would be modelled by the function,
δ(x, t) = u∗(x, t, θ) − ûN (x, t, θ). Estimation of δ(x, t) requires observations y(x, t)
from u∗(x, t, θ). However, magnitude and structure of discretization error change with
θ, while δ(x, t) is agnostic to the specific form of the underlying mathematical model,
treating it as a “black box”. Consequently exploring the model uncertainty for given
values of θ requires observations for each parameter setting or the assumption that
δ(x, t) is independent of θ. Alternatively, in the discussion of Kennedy and O’Hagan
(2001), H. Wynn argues that the sensitivity equations and other underlying mathemat-
ical structures that govern the numerical approximation could be included in the overall
uncertainty analysis.

1.1 Contributions and organization of the paper

This paper develops a Bayesian formalism for modelling discretization uncertainty
within the forward problem, and explores its contribution to posterior uncertainty in
the model parameters. We substantially expand and formalize ideas first described by
Skilling (1991) and develop a general class of probability models for solution uncertainty
for differential equations in the so-called explicit form,

A = f(x, t,B, θ), (x, t) ∈ D ∪ ∂D, (1)

where A and B are subsets of the deterministic solution u = u(x, t, θ) and its partial
derivatives, and the function f is Lipschitz continuous in B. Although (1) is very general,
Sections 2 and 3 consider ordinary differential equations for expositional simplicity,
where A = du(t, θ)/dt := ut and B = u(t, θ) := u for t ∈ [0, L], L > 0, i.e. ut =
f(t, u, θ), with a given initial condition. Sections 4 and 5 extend this to the generality
of (1), showcasing a wide class of ODEs and PDEs, such as mixed boundary value
problems with multiple solutions, delay initial function problems, and chaotic differential
equations.

Section 2 considers fixed model parameters θ, hyperparameters Ψ, and discretization
grid of size N . Prior uncertainty about the solution u and its derivative ut is encoded in
a probability model [u, ut | θ,Ψ] on a space of functions satisfying the initial condition.
Section 3 describes a sequential model interrogation method that consists of (i) drawing
a sample un−1 from the marginal [u | f1, . . . , fn−1, θ,Ψ], and (ii) using this to compute
model interrogations fn ≡ f(tn, u

n−1, θ) at grid locations tn ∈ [0, L], L > 0. Conditioning
on these incrementally obtained interrogations defines the sequence of models [u, ut |
f1, θ,Ψ], . . . , [u, ut | f1, . . . , fN , θ,Ψ]. In Section 3.3 we marginalize over f = (f1, . . . , fN )
to obtain the probability model, or probabilistic solution,

[u | θ,Ψ, N ] = ∫ ∫ [u, ut, f | θ,Ψ, N ] dut df , (2)

which contracts to the true deterministic solution u as N → ∞. Computational com-
plexity is shown in Section 3.2 to be of the same order as comparably sampled explicit
numerical solvers, and scalability is illustrated in Section 5 for the chaotic Navier–
Stokes system involving the solution of over 16,000 coupled stiff ordinary differential
equations. The probabilistic solution defines a trade-off between discretization uncer-
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Figure 1: Exact solution (green line) of ODE (6); 100 draws (grey lines) from p{u(t) |
Ψ, N} over a dense grid t; first order explicit Euler approximation (red line), obtained
using equally-spaced domain partitions of sizes N = 50, 100, 200 (left to right).

tainty and computational cost. To illustrate this point, Figure 1 compares the exact,
but a priori unknown solution with sample trajectories from the proposed probability
model (2) and a first order numerical scheme obtained over progressively refined dis-
cretization grids. The exact solution lies within a high posterior density region of (2),
and as the grid is refined yielding more information about the model, knowledge of the
solution increases, concentrating to the exact solution. Strong posterior non-stationarity
of the error structure (2) is illustrated in Figure 2 for the three states of a system whose
trajectory is restricted around a chaotic attractor (details are provided in Section 5.1).

In Section 4 we embed discretization uncertainty in the inferential hierarchy,

[θ, u,Ψ,Σ | y, N ] ∝ [y | u, θ,Σ]
︸ ︷︷ ︸

likelihood

[u | θ,Ψ, N ]
︸ ︷︷ ︸

solution uncertainty

[θ,Ψ,Σ]
︸ ︷︷ ︸

prior

, (3)

where Σ includes parameters of the observation process, such as the covariance struc-
ture of the error terms. We adopt a forward simulation approach for the middle layer
within a Markov chain Monte Carlo (MCMC) algorithm to sample from this posterior
distribution. The importance of explicitly modelling discretization uncertainty within
the inverse problem is illustrated in Section 4.1 by the nonlinear posterior dependence
between solver hyperparameters Ψ and differential equation model parameters θ. This
approach provides a useful exploratory tool to diagnose the presence of discretization
effects. The problem of posterior under-coverage resulting from ignoring discretization
induced solution uncertainty in (3) is illustrated in Section 5.4.

Discussion of various extensions and implications for the emerging field of probabilis-
tic numerics is provided in Section 6. Algorithmic and theoretical details are described
in the Supplement (Chkrebtii et al., 2016). MATLAB implementations of all examples
are provided at github.com/ochkrebtii/uqdes.

1.2 Notation

We use of the mathematical framework for defining numerical problems on function
spaces developed through the work of Stuart (2010), Kaipio and Somersalo (2007),
O’Hagan (1992), and Skilling (1991). We denote partial derivatives using subscripts to
indicate the variable with respect to which a partial derivative is taken. For example

http://github.com/ochkrebtii/uqdes
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Figure 2: 1000 draws from (2) for the Lorenz63 model with fixed initial states and model
parameters in the chaotic regime. Red vertical lines in u(1)(t) correspond to four time
points used in the diagrams in the last two rows.

uxx := ∂2

∂x2u refers to the second partial derivative of u with respect to x. Superscripts

in parentheses denote elements of a vector, for example, u(k) is the kth element of the P -
dimensional vector u. The methodology proposed in this paper is based on a sequentially
updated probabilistic solution, consequently we use superscripts without parentheses,
e.g., mk, to refer to k-times updated functions. Superscripts on random variables, e.g.,
uk, represent a sample from its k-times updated distribution. For notational simplicity,
we omit the dependence of the differential equation solution u, and derivative ut on θ,
Ψ, N , and x and/or t when the context makes this dependence clear.
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2 Prior model for a fixed but unknown solution

This section is concerned with probability modelling of initial beliefs about the unknown
function, u∗ : D ×Θ → R

p, satisfying an ODE initial value problem of the form,

ut = f (t, u, θ) , t ∈ [0, L], L > 0, (4)

with fixed initial value u(0) = u∗(0). We describe how to incorporate boundary and
regularity assumptions into a flexible Gaussian process (GP) prior model (Rasmussen
and Williams, 2006; Stuart, 2010) for the unknown solution. Prior beliefs are updated in
Section 3 by conditioning on information about the differential equation model obtained
over a size N partition of the domain D according to a chosen sampling scheme.

2.1 GP prior on the solution of an ODE initial value problem

GPs are a flexible class of stochastic processes that can be defined jointly with their
derivatives in a consistent way through the specification of an appropriate covariance
operator (Solak et al., 2003). We model uncertainty jointly for the time derivative in (4)
and its solution, (ut, u), using a GP prior with covariance structure, (C0

t , C
0), and mean

function, (m0
t ,m

0). The marginal means must satisfy the constraint
∫ t

0
m0

t (z)dz = m0(t).
The covariance structure is defined as a flexible convolution of kernels (see, e.g., Higdon,
1998, 2002). A covariance operator for the derivative ut evaluated between locations tj
and tk is obtained by convolving a square integrable kernel Rλ : R×R → R with itself,

C0
t (tj , tk) = α−1 ∫

R

Rλ(tj , z)Rλ(tk, z)dz,

parameterized by the length-scale λ > 0 and prior precision α > 0, to be discussed in
Section 3.4. An example is the infinitely differentiable kernel, Rλ(tj , tk) =
exp{−(tj − tk)

2/2λ2}, which decreases exponentially with squared distance between
tj and tk weighted by the length-scale λ. Its convolution yields the squared exponen-
tial covariance C0

t (tj , tk) =
√
πα−1λ exp{−(tj − tk)

2/4λ2}. An example of a kernel
with bounded support is Rλ(tj , tk) = 1(tj−λ,tj+λ)(tk), which yields the piecewise linear
uniform covariance C0

t (tj , tk) = {min(tj , tk) − max(tj , tk) + 2λ} 1(0,∞){min(tj , tk) −
max(tj , tk)+2λ}. Details are provided in Supplement D.4. A marginal covariance oper-
ator, C0, on the state is obtained by integrating C0

t with respect to evaluation points tj
and tk or, equivalently, by convolving the integrated kernel Qλ(tj , tk) =

∫ tj

0
Rλ(z, tk)dz

with itself:

C0(tj , tk) = α−1 ∫
R

Qλ(tj , z)Qλ(tk, z)dz.

Defining the covariance over the state by integration ensures that C0(0, 0) = 0, which
enforces the boundary condition, u(0) = m0(0) (see Supplement D.1; an alternative way
to enforce the boundary constraint is to obtain the derivative process ut by differentia-
tion of u and condition the joint prior for (ut, u) on the exact initial state, u∗(0)). This
introduces anisotropy over the state that is consistent with exact knowledge of the solu-
tion at the initial boundary and increasing uncertainty thereafter. The cross-covariance
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terms are defined analogously as
∫ tj

0
C0

t (z, tk)dz = α−1 ∫
R
Qλ(tj , z)Rλ(tk, z)dz and

∫ tk

0
C0

t (tj , z)dz = α−1 ∫
R
Rλ(tj , z)Qλ(tk, z)dz, where each is the adjoint of the other.

The initial joint GP prior probability distribution for the solution at a vector of
evaluation times tk and its time derivative at a possibly different vector of evaluation
times tj, given fixed hyperparameters Ψ = (m0

t ,m
0, α, λ) is,

[
ut(tj)
u(tk)

]

∼ GP
([

m0
t (tj)

m0(tk)

]

,

[

C0
t (tj, tj)

∫ tk

0
C0

t (tj, z)dz∫ tk

0
C0

t (z, tj)dz C0(tk, tk)

])

. (5)

This prior modelling strategy is straightforwardly generalized to explicit initial value
problems of the form (1) by defining the prior jointly on the state and the required
higher order derivatives.

As a simple example, consider the second order initial value ODE problem,
{

utt(t) = sin(2t)− u, t ∈ [0, 10],
ut(0) = 0, u(0) = −1.

(6)

Its exact solution, u∗(t) = {−4 cos(t) + 2 sin(t) − sin(2t) + cos(t)}/(4 − 1), is assumed
unknown a priori. The first column of Figure 3 shows five draws from the marginal
densities of the prior [ut(t), u(t)] defined over a fine grid t ∈ [0, 10]T using a squared
exponential covariance with (λ, α) = (0.8, 5). Section 3 describes a sequential updating
procedure of the prior model to obtain the probabilistic solution for this example.

3 Updating prior beliefs for fixed but unknown ODE

solution

The prior model (5) on the unknown solution and its derivative will be updated condi-
tionally on model information collected over the ordered partition s = (s1, . . . , sN )
of the domain [0, L]. Define a model interrogation at time sn as the output fn ≡
f{sn, un−1(sn), θ} from the right hand side of equation (4) evaluated at a sample
un−1(sn) from the marginal prior [u(sn) | fn−1]. Model interrogations are generated
sequentially based on state samples drawn from progressively refined prior models in
order to accommodate fast changing dynamics. Because the ODE model (4) defines the
solution implicitly, we are unable to measure the exact state or derivative, and therefore
both the model interrogations and their error structure will take into account increasing
uncertainty with time.

This section begins by expanding on these function estimation steps with full de-
tails of the Bayesian updating algorithm. We illustrate the forward solution algorithm
on the simple example (6) with known closed form solutions before considering more
realistic systems. Section 3.2 examines modelling choices for which this procedure can
attain computational complexity of O(N), while Section 3.3 establishes the consistency
and first order convergence properties of this approach. Choice of hyperparameters is
addressed in Section 3.4. Specific extensions to the full generality of (1) are presented
in Sections 4 and 5.
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Figure 3: Five draws (solid lines) from the marginal densities of (2) over the state (first
row) and its derivative (second row) for ODE (6) after n = 0, 12, 24, 36, 48 iterations
(from left to right) of Algorithm 1 with discretization grid of size N = 50; step-ahead
samples un and fn are shown as circles; exact solution is shown as a dotted red line.

3.1 Model updating based on interrogations from sampled states

This section describes a sequential sampling scheme to interrogate the model after each
update. Model interrogations occur at pre-determined discretization grid locations s =
(s1, . . . , sN ), while the resulting sequence of posterior solution models can be computed
at a possibly different vector of time points, t. There are many ways to generalize this
basic one-step-ahead sampling scheme, as discussed in Section 6.

First update

The derivative of the exact solution on the boundary, s1 = 0, can be obtained exactly
by evaluating the right hand side of (4) at the known initial condition u∗(s1) as,

f1 ≡ f {s1, u∗(s1), θ} = u∗
t (s1).

The first update of the prior probability model (5) is performed by conditioning on the
exact derivative f1. This yields the joint conditional predictive probability distribution
at evaluation times tj and tk,

[
ut(tj)
u(tk)

∣
∣
∣
∣
f1

]

∼ GP
([

m1
t (tj)

m1(tk)

]

,

[

C1
t (tj, tj)

∫ tk

0
C1

t (tj, z)dz∫ tk

0
C1

t (z, tj)dz C1(tk, tk)

])

, (7)

where marginal means and covariances at the vectors of time tj and tk are given by:

m1
t (tj) = m0

t (tj) + C0
t (tj, s1)C

0
t (s1, s1)

−1
{
f1 −m0

t (s1)
}
,

m1(tk) = m0(tk) + C0
t (s1, s1)

−1
tk

∫
0
Co

t (z, s1)dz
{
f1 −m0

t (s1)
}
,
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C1
t (tj, tj) = C0

t (tj, tj)− C0
t (tj, s1)C

0
t (s1, s1)

−1C0
t (s1, tj),

C1(tk, tk) = C0(tk, tk)−
{

tk

∫
0
C0

t (z, s1)dz

}

C0
t (s1, s1)

−1

{
tk

∫
0
C0

t (z, s1)dz

}⊤

.

Closed forms for means and covariances are obtained by integration (along with cross-
covariances, Supplement D.1). We refer to this predictive probability measure as the first
update of the algorithm and use it as the prior for the next iteration of the algorithm.

Second update

The derivative of the exact solution is unknown beyond s1 = 0. We therefore introduce
the random variable f2, representing a model interrogation at the subsequent time step,
s2 > 0. A realization of f2 is obtained by drawing a sample u1(s2) at time s2 from the
marginal predictive distribution of (7),

u(s2) | f1 ∼ N
(
m1(s2), C

1(s2, s2)
)
,

and then applying the transformation from the right hand side of equation (4),

f2 ≡ f
{
s2, u

1(s2), θ
}
.

The uncertainty in u(s2) | f1 means that f2 is not guaranteed to equal to the exact
derivative at time s2 (the function f is a differential operator only for the input u = u∗).
Indeed, without the exact solution, the probability distribution of f2 is unavailable. As
with any model for a data generating process, the likelihood (error model) should be
elicited on a case-by-case basis. Here we provide general guidance on constructing this
likelihood in the absence of additional expert information about the error model for
f2, and all subsequent interrogations fn. In general, we expect that (i) the discrepancy
between ut(t) and f{t, u(t), θ}, t ∈ [0, L] is zero when u is the exact solution; and (ii) the
function f is smooth in the second argument, therefore discrepancy decreases smoothly
with decreasing uncertainty in the derivative of the sampled state realization u1(s2).
These facts suggest a spherically symmetric error model for f2 with a single mode at
f2 = ut(s2) and dispersed as an increasing function of distance from s1 = 0. For example,
we may consider the Gaussian error model,

f2 | ut, f1 ∼ N (ut(s2), r1(s2)) , (8)

with mean ut(s2) and variance r1(s2) = C1
t (s2, s2). A degenerate special case of this

error model is discussed at the end of this section. We may now update (7) by condi-
tioning on the model interrogation f2 under the error model (8) to obtain the predictive
probability distribution at the vectors of evaluation times tj and tk,

[
ut(tj)
u(tk)

∣
∣
∣
∣
f2, f1

]

∼ GP
([

m2
t (tj)

m2(tk)

]

,

[

C2
t (tj, tk)

∫ tk

0
C2

t (tj, z)dz∫ tj

0
C2

t (z, tk)dz C2(tk, tk)

])

. (9)

Defining g2 = C1
t (s2, s2)+ r1(s2), the marginal means and covariances at the vectors of

evaluation times tj and tk are given by,

m2
t (tj) = m1

t (tj) + C1
t (tj, s2) g

−1
2

{
f2 −m1

t (s2)
}
,
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m2(tk) = m1(tk) +
tk

∫
0
C1

t (z, sn)dz g
−1
2

{
f2 −m1

t (s2)
}
,

C2
t (tj, tj) = C1

t (tj, tj)− C1
t (tj, s2) g

−1
2 C1

t (s2, tj),

C2(tk, tk) = C1(tk, tk)−
{

tk

∫
0
C1

t (z, s2)dz

}

g−1
2

{
tk

∫
0
C1

t (z, s2)dz

}⊤

,

where state mean, covariance, and derivative cross-covariances can be obtained analyt-
ically via integration (see Supplement D.1).

Subsequent updates

Subsequent updates, 2 < n ≤ N , begin by drawing a sample un−1(sn) at time sn
(illustrated by circles in the top row of Figure 3) from the marginal predictive posterior
[u(sn) | fn−1, . . . , f1], whose mean and covariance are given in Algorithm 1. A realization
of the model interrogation fn is constructed by applying the model transformation (4)
to un−1(sn). The update is performed relative to the prior [ut, u | fn−1, . . . , f1], by
assimilating fn under the Gaussian error model,

fn | ut(sn), fn−1, . . . , f1 ∼ N {ut(sn), rn−1(sn)} , 1 ≤ n ≤ N, (10)

where, e.g., rn−1(sn) = Cn−1
t (sn, sn), to obtain the predictive probability distribution

at the vectors of evaluation times tj and tk,

[
ut(tj)
u(tk)

∣
∣
∣
∣
fn, . . . , f1

]

∼ GP
([

mn
t (tj)

mn(tk)

]

,

[

Cn
t (tj, tj)

∫ tk

0
Cn

t (tj, z)dz∫ tj

0
Cn

t (z, tk)dz Cn(tk, tk)

])

. (11)

Defining gn = Cn−1
t (sn, sn) + rn−1(sn), the resulting joint predictive probability distri-

bution is Gaussian with marginal means and covariances:

mn
t (tj) = mn−1

t (tj) + Cn−1
t (tj, sn) g

−1
n

{
fn −mn−1

t (sn)
}
,

mn(tk) = mn−1(tk) + g−1
n

tk

∫
0
Cn−1

t (z, sn)dz
{
fn −mn−1

t (sn)
}
,

Cn
t (tj, tk) = Cn−1

t (tj, tk)− Cn−1
t (tj, sn) g

−1
n Cn−1

t (sn, tk),

Cn(tj, tk) = Cn−1(tj, tk)− g−1
n

tj

∫
0
Cn−1

t (z, sn)dz

{
tk

∫
0
Cn−1

t (z, sn)dz

}⊤

,

and with state mean, covariances, and derivative cross-covariances again obtained via
integration (see Algorithm 1 and Supplement D.1). Here the state and derivative, u and
ut respectively, may be of arbitrary dimension. Under a bounded support covariance,
Cn(tj, tk) and Cn

t (tj, tk) become sparse, band diagonal matrices.

After N updates have been performed, we obtain a joint posterior probability distri-
bution [ut, u | f ] for the unknown solution and its derivative, conditional on realizations
of one trajectory of the model interrogation vector f. Draws from the marginal model
(2) can be obtained via Monte Carlo, as described in Algorithm 1, yielding realized
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trajectories from the forward model (2) at desired time locations t. Five draws from
the joint distribution of (2) and the interrogations fn at iterations n = 12, 24, 36, 48 are
illustrated in the second through fifth columns of Figure 3 for the second-order ODE
initial value problem (6). For notational simplicity, we will hereafter assume that the
temporal locations of interest, t, form a subset of the discretization grid locations, s.

Point mass likelihood on model interrogations

A special case of this procedure models each interrogation, fn, as the exact unknown
derivative, u∗

t (sj), regardless of grid size, N . Thus, model interrogations are interpolated
in the derivative space by replacing (8) and (10) with the point mass density:

P (ut(sn) = fn) = 1, 1 ≤ n ≤ N.

Because sampled process realizations can still be inconsistent with the solution, com-
putational implementation of this alternative scheme often requires using an arbitrary
covariance nugget increasing with time, or the use of a rougher covariance function than
the smoothness implied by the differential equation model. For these reasons we will
restrict our attention to explicitly modelling the interrogation error, e.g. (8) and (10).

3.2 Computational complexity

A reasonable modelling assumption for the state is that temporal correlation decays to
zero with distance. Indeed, most deterministic numerical methods make the analogous
assumption by defining a lag of M ≥ 1 time steps, beyond which the solution has
no direct effect. This Markovian assumption both adds flexibility for modelling very
fast-changing dynamics and drastically reduces computational cost. Under a compactly
supported covariance structure, Algorithm 1 requires only O(N) operations by allowing
truncation of the weight matrices employed in the mean and covariance updates. In
contrast, when employing a covariance structure with unbounded support, Algorithm 1
attains computational complexity proportional to the cube of the number of time steps,
since the number of operations can be written as a finite sum over 1 ≤ n ≤ N with each
iteration requiring an order O(n2) operations.

A computational comparison of Algorithm 1 with a similarly sampled explicit first
order solver is provided in the Supplement C. Although probability models for the solu-
tion attain the same computational scaling, the probabilistic method is more expensive.
However, the model of solution uncertainty makes up for its added computational cost
in practical applications where discretization grids cannot be refined enough to ensure
negligible discretization effects. Within the inverse problem, the adaptive estimation of
length-scale can substantially increase solver accuracy (see Figure 10 in Supplement C).

3.3 Convergence

We now consider the rate at which the stochastic process with probability distribution
(2) generated via Algorithm 1 concentrates around the exact solution of (4). The rate
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Algorithm 1 For the initial value problem (4), draw one sample from the forward
model (2) over t = (t1, · · · , tT ), given Ψ and discretization grid s = (s1, · · · , sN ).

At time s1 = 0 initialize the derivative f1 = f{s1, u∗(0), θ}, and define m0,m0
t , C

0, C0
t

as above;
for n = 1 : N do

If n = 1, set g1 = C0
t (s1, s1), otherwise set gn = Cn−1

t (sn, sn) + rn−1(sn);
Compute for each modelled system component,

mn(s) = mn−1(s) + g−1
n

s

∫
0
Cn−1

t (z, sn)dz
{
fn −mn−1

t (sn)
}
,

mn
t (s) = mn−1

t (s) + g−1
n Cn−1

t (s, sn)
{
fn −mn−1

t (sn)
}
,

Cn(s, s) = Cn−1(s, s)− g−1
n

s

∫
0
Cn−1

t (z, sn)dz

{
s

∫
0
Cn−1

t (z, sn)dz

}⊤

,

Cn
t (s, s) = Cn−1

t (s, s)− g−1
n Cn−1

t (s, sn)C
n−1
t (sn, s),

s

∫
0
Cn

t (z, s)dz =
s

∫
0
Cn−1

t (z, s)dz− g−1
n

s

∫
0
Cn−1

t (z, sn)dzC
n−1
t (sn, s);

if n < N then

Sample one-step-ahead realization un(sn+1) from the predictive distribution on
the state for each modelled system component,

un(sn+1)∼ p {un(sn+1) | fn, . . . , f1}=N {un(sn+1) | mn(sn+1), C
n(sn+1, sn+1)},

and interrogate the model by computing fn+1 = f{sn+1, u
n(sn+1), θ};

end if

end for

Sample and return u = (uN (t1), · · · , uN (tT )) ∼ GP{mN (t), CN (t, t)}, where t ⊂ s.

of convergence is as fast as the reduction of local truncation error for the analogously
sampled one-step explicit Euler method. Proof is provided in the Supplement D.2.

Theorem 1. Consider a function f(t, u(t)) : [0, L] × R → R that is continuous in the
first argument and Lipschitz continuous in the second argument. The stochastic process
with probability distribution (2) obtained using Algorithm 1 with rn(s) = 0, s ∈ [0, L] and
a covariance kernel satisfying conditions (D.6) and (D.7) in Supplement D.3, converges
in L1 to the unique solution satisfying (4) as the maximum discretization grid step size,
h, the length-scale, λ, and the prior variance, α−1, tend to zero. The rate of convergence
is O(h), proportional to the decrease in the maximum step size, h.

3.4 The choice of hyperparameters

Analogously with choosing a numerical solver, the choice of probabilistic solver hyperpa-
rameters must be based on prior knowledge about the solution, such as its smoothness.
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Moreover, as with many nonparametric function estimation problems, asymptotic re-
sults on convergence may be used to guide our choice of covariance hyperparameters
within the forward problem. For example, for the explicit first order sampling scheme,
the result of Theorem 1 suggests setting the prior variance, 1/α, and the length-scale, λ,
proportionally to the maximum distance, h, between subsequent discretization grid loca-
tions. When experimental data is available, it also becomes possible to obtain marginal
posterior densities for the hyperparameters as part of the calibration problem (see Sec-
tion 4), allowing data driven adaptation over the space of model parameters. In contrast,
deterministic numerical differential equation solvers effectively fix the analogues of these
hyperparameters, such as the quadrature rule or the step number, both within the for-
ward and inverse problems.

4 Exact Bayesian posterior model inference

The discretization uncertainty model in Section 3 may now be incorporated into the
calibration problem. We wish to infer model parameters θ defining states u = (u(t1), . . . ,
u(tT ))

⊤ from measurement data y = (y(t1), . . . , y(tT ))
⊤, via the hierarchical model (3),

[y | u, θ,Σ] ∝ ρ {y −H (u, θ)} ,
[u | θ,Ψ, N ] = p (u | θ,Ψ, N) ,

[θ,Ψ,Σ] = π(θ,Ψ,Σ),

where the transformation H maps the differential equation solution to the observation
space, ρ is a probability density, π is a prior density, Σ defines the observation process,
such as the error structure, and θ may include unknown initial conditions or other
model components. We describe a Markov chain Monte Carlo procedure targeting the
joint posterior of the state and unknown parameters conditional on a vector of noisy
observations from [y | u, θ,Σ]. Section 4.1 describes a case where states are indirectly
observed through a nonlinear transformation H.

Algorithm 2 targets the posterior distribution (3) by generating forward model pro-
posals via conditional simulation from Algorithm 1 (Supplement B provides a parallel
tempering implementation). Within Algorithm 2, proposed sample paths are condition-
ally simulated from p(u | θ,Ψ) =

∫
p(u, f | θ,Ψ)df , removing the dependence of the

acceptance probability on this intractable marginal density. Such partially likelihood-
free Markov chain Monte Carlo methods (Marjoram et al., 2003) are widely used for
inference on stochastic differential equations (e.g., Golightly and Wilkinson, 2011).

As with numerical based approaches, computation of the forward model is the rate
limiting step in Algorithm 2. Computational savings can be obtained by exploiting the
structure of the probabilistic solver, such as by targeting progressively refined posterior
models in a Sequential Monte Carlo framework, or using ensemble Markov chain Monte
Carlo methods (Neal, 2011) when mixture components of (2) can be quickly computed.
We now have the components for accounting for discretization uncertainty in differential
equation models of natural and physical systems. The remainder presents a calibration
problem illustrating posterior sensitivity to discretization uncertainty.
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Algorithm 2 Draw K samples from posterior p(θ,u | y, α, λ,Σ) given observations of
the transformed solution of a differential equation with unknown parameters θ.

Initialize θ, α, λ ∼ π(·) where π is the prior density;
Using a probabilistic solver (e.g., Algorithm 1) simulate a vector of realizations, u
conditional on θ, α, λ, over the size N discretization grid;
for k = 1 : K do

Propose θ′, α′, λ′ ∼ q(· | θ, α, λ) where q is a proposal density;
Using a probabilistic solver (e.g., Algorithm 1) simulate a vector of realizations, u′

conditional on θ′, α′, λ′, over the size N discretization grid;
Compute the rejection ratio,

ρ =
p (y | u′, θ′,Σ )

p (y | u, θ,Σ )

π( θ′ , α′, λ′ )

π( θ, α, λ )

q( θ , α, λ | θ′, α′, λ′ )

q( θ′ , α′, λ′ | θ, α, λ ) ,

where the ratio of marginal densities, p(u | f , θ, α, λ) to p(u′ | f ′, θ′, α′, λ′), is omit-
ted because the realizations u and u′ are simulated directly from these densities;
Sample v ∼ U[0, 1]
if v < min(ρ, 1) then
Update (θ, α, λ) ← (θ′ , α′, λ′);
Update u ← u′;

end if

Return (θ, α, λ,u).
end for

4.1 Inference on a delay initial function model

The JAK-STAT mechanism describes a series of reversible biochemical reactions of

STAT-5 transcription factors initiated by binding of the Erythropoietin (Epo) hormone

to cell surface receptors (Pellegrini and Dusanter-Fourt, 1997). After gene activation

occurs within the nucleus, the transcription factors revert to their initial state, returning

to the cytoplasm to be used in the next activation cycle. This last stage is not well

understood and is replaced by the unknown time delay, τ > 0. One model describes

changes in 4 reaction states of STAT-5 via the nonlinear delay initial function problem,

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u
(1)
t (t) = − k1 u

(1)(t) EpoRA(t) + 2 k4 u
(4)(t− τ), t ∈ [0, 60],

u
(2)
t (t) = k1 u

(1)(t) EpoRA(t)− k2 u
(2)2(t), t ∈ [0, 60],

u
(3)
t (t) = − k3 u

(3)(t) + 1
2 k2 u

(2)2(t), t ∈ [0, 60],

u
(4)
t (t) = k3 u

(3)(t)− k4 u
(4)(t− τ), t ∈ [0, 60],

u(t) = φ(t), t ∈ [−τ, 0].

(12)

The initial function components φ(2)(t) = φ(3)(t) = φ(4)(t) are identically zero, and

the constant initial function φ(1)(t) is unknown. The states for this system cannot be

measured directly, but are observed through a nonlinear transformation, H : R3 ×Θ →
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Model component Prior
τ χ2

6

ki, i = 1, . . . , 6 Exp(1)
λi, i = 1, . . . , 4 χ2

1

αi + 100, i = 1, . . . , 4 Log-N (10, 1)
u(1)(0) N(y(3)(0), 402)

u
(i)
t , i = 1, . . . , 4 GP(0, Ct)

u(i), i = 1, . . . , 4 1{i = 1}u(1)(0) + ∫ t0 u(i)
t (s) ds

Table 1: Priors on the states and parameters, assumed to be a priori independent.

R
4, defined as,

H {u(t), θ} =

⎛

⎜
⎜
⎜
⎜
⎝

k5
{
u(2)(t) + 2u(3)(t)

}

k6
{
u(1)(t) + u(2)(t) + 2u(3)(t)

}

u(1)(t)

u(3)(t)
{
u(2)(t) + u(3)(t)

}−1

⎞

⎟
⎟
⎟
⎟
⎠

, (13)

and parameterized by the unknown scaling factors k5 and k6. The indirect measurements
of the states,

y(j)(tj,i) = H(j) {u(tj,i), θ}+ ε(j)(tj,i), 1 ≤ i ≤ Tj , 1 ≤ j ≤ 4,

are assumed to be contaminated with additive zero mean Gaussian noise,
{ε(j)(tj,i)}1≤i≤Tj , 1≤j≤4, with experimentally determined standard deviations. Analy-
sis is based on experimental data (Swameye et al., 2003; Raue et al., 2009). As per
Raue et al. (2009), the forcing function EpoRA shares the same smoothness as the
solution state (piecewise linear first derivative) as modelled by a GP interpolation.

This data has been used for calibrating the JAK-STAT pathway mechanism by a
number of authors (e.g., Schmidl et al., 2013; Swameye et al., 2003; Raue et al., 2009;
Campbell and Chkrebtii, 2013) under a variety of modelling assumptions and inferen-
tial approaches. The inaccuracy and computational constraints of numerical techniques
required to solve the system equations have led some authors to resort to coarse ODE
approximations, or to employ semiparametric Generalized Smoothing methods. This
motivates analysis of the structure and propagation of discretization error through the
inverse problem. A further issue is that the model (12) and its variants may be misspec-
ified, which must be first uncoupled from discretization effects for further study. Indeed,
the above cited analyses conclude that the model is not flexible enough to fit the avail-
able data, however it is not clear how much of this misfit is due to model discrepancy,
and how much may be attributed to discretization error.

The probabilistic approach for forward simulation of delay initial function problems
is described in Supplement B, extending the updating strategy to accommodate current
and lagged state process realization information. The probabilistic solution is generated
using an equally spaced discretization grid of size N = 500, and a covariance struc-
ture based on the uniform covariance kernel. Prior distributions are listed in Table 1.
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Figure 4: Sample paths (grey lines) of the observation processes (first row) obtained by
transforming a sample from the marginal posterior distribution of the states (second
row) by the observation function (13); experimental data (red points) and error bars
showing two standard deviations of the measurement error.

Markov chain Monte Carlo is used to obtain samples from the posterior distribution (3).
A parallel tempering sampler (Geyer, 1991) described in Supplement B efficiently tra-
verses the parameter space of this multimodal posterior distribution.

A sample from the marginal posterior of state trajectories and the corresponding
observation process are shown in Figure 4. As expected, the posterior trajectories, which
incorporate discretization uncertainty in the forward problem, appear more diffuse than
those obtained in e.g., Schmidl et al. (2013), while more flexibly describing the observed
data, with the exception of a small number of outliers. Correlation plots and kernel den-
sity estimates with priors for the marginal posteriors of rate parameters k1, k2, k3, k4,
observation scaling parameters k5, k6, time lag τ , initial function value u(1)(0), and
hyperparameters for the solution uncertainty Ψ = (α, λ) are shown in Figure 5. All
parameters with the exception of the prior precision α are identified by the data, while
the rate parameter k2 appears to be only weakly identified. We observe strong correla-
tions between parameters, consistent with previous studies on this system. For example,
there is strong correlation among the scaling parameters k5, k6 and the initial first state
u(1)(0). Importantly, there is a relationship between the length-scale λ of the probabilis-
tic solver and the first, third and fourth reaction rates. Furthermore, this relationship
has a nonlinear structure, where the highest parameter density region seems to change
with length scale implying strong sensitivity to the solver specifications. The length-
scale is the probabilistic analogue, under a bounded covariance, of the step number in
a numerical method. However, in analyses based on numerical integration, the choice
of a numerical technique effectively fixes this parameter at an arbitrary value that is
chosen a priori. The result here suggests that for this problem, the inferred parameter
values are highly and nonlinearly dependent on the choice of the numerical method
used. Because we have explicitly quantified discretization uncertainty, the observed lack
of fit may suggest additional model refinement may be required.
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Figure 5: 50,000 posterior samples of the model parameters using a probabilistic solver
with a grid of size 500, generated using parallel tempering Algorithm 7 with ten chains.
Prior probability densities are shown in black. Note the complex posterior correlation
structure between model parameters and solver hyperparameters across the lower rows.

5 Applications

We extend probability modelling of solution uncertainty to a variety of forward prob-
lems: chaotic dynamical systems, an ill-conditioned mixed boundary value problem,
a stiff, high-dimensional initial value problem, and extensions to PDEs.

5.1 Discretization uncertainty under chaotic dynamics

The classical “Lorenz63” initial value problem (Lorenz, 1963) is a three-state ODE
model of convective fluid motion induced by a temperature difference between an upper
and lower surface. States u(1), u(2) and u(3) are proportional to the intensity of the
fluid’s convective motion, the temperature difference between (hot) rising and (cold)
descending currents, and the deviation of the vertical temperature profile from linearity
respectively. The model describing the time-evolution of their dynamics,

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

u
(1)
t = −σ(u(1) + u(2)), t ∈ [0, 20],

u
(2)
t = −ru(1) − u(2) − u(1)u(3), t ∈ [0, 20],

u
(3)
t = u(1)u(2) − bu(3), t ∈ [0, 20],

u = u∗, t = 0,

(14)

depends on dimensionless parameters σ, r and b. The standard choice of θ = (σ, r, b) =
(10, 8/3, 28) with initial state u∗(0) = (−12,−5, 38) falls within the chaotic regime. This
system has a unique solution whose trajectory lies on a bounded region of the phase
space (e.g., Robinson, 2001, pp. 271–272), and is unknown in closed form.
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Figure 6: 100 posterior realizations from (17). Left and centre: states, u and v, evaluated
over a fine grid, t, over the domain, D = [.5, 1]. Right: marginal un-normalized log
posterior density over the unknown initial condition u(t = .5).

A sample of 1000 trajectories generated from the probabilistic solution for this sys-
tem is shown in Figure 2 given hyperparameters N = 5001, α = N,λ = 2h, h = 20/N ,
constant prior mean function and a squared exponential covariance structure. There
is a short time window within which there is negligible uncertainty in the solution,
but the accumulation of discretization uncertainty results in rapidly diverging, yet
highly structured errors. Figure 2 shows posterior samples in the 3 state dimensions
(top row) and density estimates of the samples for u(1)(t) (bottom row) at 4 dis-
tinct evaluation times. The structured uncertainty in the forward model (2) is not
simply defined by widening of the high posterior density region, but instead exhibits
a behaviour that is consistent with the dynamics of the underlying stable attrac-
tor.

5.2 Solution multiplicity in a mixed boundary value problem

Consider a special case the Lane–Emden ODE mixed boundary problem, which is used
to model the density, u, of gaseous spherical objects, such as stars, as a function of
radius, t, (Shampine 2003). The second order system can be rewritten as a system of a
first order equations on the interval [.5, 1] with mixed boundary values,

⎧

⎪⎪⎨

⎪⎪⎩

ut = v,
vt = −2vt−1 − u5,

u(t = 1) =
√
3/2,

v(t = .5) = −288/2197,

(15)

where the notation u(t = 1) and v(t = .5) is used to emphasize that boundary conditions
are different for each state. The two leftmost panels of Figure 6 illustrate multimodality
in the posterior solution, when multiple functions satisfy the mixed boundary value
problem. These high posterior density regions concentrate as the number of grid points
and the prior precision grow, suggesting the potential for defining intermediate target
densities for sequential and particle Markov chain Monte Carlo schemes to sample re-
alizations from the posterior distribution over unknown model parameters within the
calibration problem. This example highlights the need for accurately modelling func-
tional rather than point-wise solution uncertainty.
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Mixed boundary value problems introduce challenges for many numerical solvers,
which employ optimization and the theory of ODE initial value problems to estimate
the unknown initial state, here u(t = .5), subject to the state constraints at either
boundary of the domain of integration, here [.5, 1]. The optimization over u(t = .5)
is performed until the corresponding initial value problem solution satisfies the known
boundary condition, u∗(t = 1), to within a user specified tolerance. Considering the
mixed boundary value problem (15), the probabilistic solution consists of an inference
problem over the unspecified initial value, u(t = .5), given its known final value u∗(t =
1). The likelihood naturally defines the mismatch between the boundary value u(t = 1),
obtained from the realized probabilistic solution given u∗(t = 1), as follows,

u∗(t = 1) | u(t = .5), v∗(t = .5) ∼ N
{

mN(u)(t = 1), CN(u)(t = 1, t = 1)
}

, (16)

where mN(u)(t = 1) and CN(u)(t = 1, t = 1) are the posterior mean and covariance for
state u at time t = 1, obtained via Algorithm 1. The posterior over the states is,

[u, v, u(t = .5) | u∗(t = 1), v∗(t = .5)] (17)

∝ [u, v | u(t = .5), u∗(t = 1), v∗(t = 1)] [u(t = .5) | u∗(t = 1), v∗(t = .5)] [u(t = .5)] .

The possibility of multimodality suggests the use of an appropriate Markov chain Monte
Carlo scheme, such as parallel tempering (Geyer, 1991), implemented in Supplement B,
which can quickly identify and explore disjoint regions of high posterior probability.

5.3 Discretization uncertainty for a model of fluid dynamics

The following example illustrates that the probabilistic framework developed may be
reliably and straightforwardly applied to a high-dimensional dynamical system. The
Navier–Stokes system is a fundamental model of fluid dynamics, incorporating laws of
conservation of mass, energy and linear momentum for an incompressible fluid over
a domain given constraints imposed along the boundaries. It is an important compo-
nent of complex models in oceanography, weather, atmospheric pollution, and glacier
movement. Despite its extensive use, the dynamics of Navier–Stokes models are poorly
understood even at small time scales, where they can exhibit turbulence.

The Navier–Stokes PDE model for the time evolution of 2 components of the velocity,
u : D → R

2, of an incompressible fluid on a torus, D = [0, 2π)× [0, 2π], can be expressed
in spherical coordinates as,

⎧

⎪⎪⎨

⎪⎪⎩

ut − θΔu+ (u · ∇)u = g−∇p, (x, t) ∈ D × [a, b],
∇ · u = 0, (x, t) ∈ D × [a, b],
∫
u(j) dx = 0, (x, t) ∈ D × [a, b], j = 1, 2,

u = u∗, (x, t) ∈ D × {0},
(18)

where Δ := [ ∂2

∂x2

1

+ ∂2

∂x2

2

] is the Laplacian operator such that Δu = (u
(1)
x1x1

+u
(1)
x2x2

, u
(2)
x1x1

+

u
(2)
x2x2

), and ∇ := [ ∂
∂x1

+ ∂
∂x2

] is the gradient operator such that ∇u = (u
(1)
x1

+ u
(1)
x2

,

u
(2)
x1

+ u
(2)
x2

). The model is parametrized by the viscosity of the fluid, θ ∈ R
+, the
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Figure 7: Time evolution of four forward simulated realizations (along rows) of fluid
vorticity, governed by the forced Navier–Stokes model (18), over two spatial dimensions:
the angle of the inner ring (horizontal axis) and outer ring (vertical axis) of a two
dimensional torus. Angles are expressed in radians. Vorticities are evaluated at times
t = (0.2, 0.4, 0.6, 0.8) units (along columns).

pressure function p : D×[a, b] → R, and the external time-homogeneous forcing function
g := 5 × 10−3 cos[(12 ,

1
2 ) · x]. We further assume periodic boundary conditions, and

viscosity θ = 10−4 in the turbulent regime. The exact solution of the Navier–Stokes
boundary value problem (18) is not known in closed form.

We will visualize the probabilistic solution of the Navier–Stokes system by reducing
the two components of velocity to a one dimensional function: the local spinning motion
of the incompressible fluid, called vorticity, which we define as, ̟ = −∇ × u, where
∇× u represents the rotational curl (the cross product of ∇ and u), with positive vor-
ticity corresponding to clockwise rotation. We discretize the Navier–Stokes model (18)
over a grid of size 128 in each spatial dimension. A pseudo spectral projection in Fourier
space yields 16,384 coupled, stiff ODEs with associated constraints (details provided on
the accompanying website). Figure 7 shows four forward simulated vorticity trajecto-
ries (along rows), obtained from two components of velocity at four distinct time points
(along columns). Differences in the state dynamics arise by the final time shown, where
the four trajectories visibly diverge from one another. These differences describe uncer-
tainty resulting from discretizing the exact but unknown infinite dimensional solution.

5.4 Discretization uncertainty for partial differential equations

Similarly to the ODE case, we model the prior belief about the fixed but unknown
solution and partial derivatives of a PDE boundary value problem by defining a proba-
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bility measure over multivariate trajectories, as well as first or higher order derivatives
with respect to spatial inputs. The prior structure will depend on the form of the PDE
model under consideration. We illustrate discretization uncertainty modelling for PDEs
by considering the parabolic heat equation describing heat diffusion over time along a
single spatial dimension implicitly via,

⎧

⎨

⎩

ut(x, t) = κuxx(x, t), t ∈ [0, 0.25], x ∈ [0, 1],
u(x, t) = sin (xπ) , t = 0, x ∈ [0, 1],
u(x, t) = 0, t ∈ (0, 0.25], x ∈ {0, 1},

(19)

with conductivity parameter of κ = 1. Note that this PDE has the explicit form (1)
with A = {u, ut} and B = uxx.

One modelling choice for extending the prior covariance to a spatio-temporal domain
is to assume separability by defining covariances over time and space independently.
Accordingly we choose temporal kernel Rλ as in Section 2.1 and let Rν : R × R →
R be a possibly different spatial kernel function with length-scale ν. We integrate
the spatial kernel once to obtain Qν(xj , xk) =

∫ xj

0
Rν(z, xk)dz and twice to obtain

Sν(xj , xk) =
∫ xj

0
Qν(z, xk)dz. The covariance structures between temporal and spatial

evaluation points [xj , tj ] and [xk, tk] are obtained from the process convolution formu-
lation with temporal and spatial prior precision parameters α and β respectively, as
follows,

C0
xx([xj , tj ], [xk, tk]) = α−1β−1 ∫

R
Rν(xj , z)Rν(xk, z)dz ∫R Qλ(tj , w)Qλ(tk, w)dw,

C0
t ([xj , tj ], [xk, tk]) = α−1β−1 ∫

R
Sν(xj , z)Sν(xk, z)dz ∫R Rλ(tj , w)Rλ(tk, w)dw,

C0([xj , tj ], [xk, tk]) = α−1β−1 ∫
R
Sν(xj , z)Sν(xk, z)dz ∫R Qλ(tj , w)Qλ(tk, w)dw,

with cross-covariances defined analogously. The mean function and covariance specifi-
cation uniquely determine the joint GP prior on the state and its partial derivatives
given hyperparameters Ψ, which include α, β, λ,m0

xx,m
0
t ,m

0, at vectors of temporal
and spatio-temporal locations (xj, tj), (xk, tk), (xl, tl) as:

⎡

⎣

uxx(xj, tj)
ut(xk, tk)
u(xl, tl)

⎤

⎦ ∼ GP

⎛

⎝

⎡

⎣

m0
xx(xj, tj)

m0
t (xk, tk)

m0(xl, tl)

⎤

⎦ ,

⎡

⎣

C1,1 C1,2 C1,3

C2,1 C2,2 C2,3

C3,1 C3,2 C3,3

⎤

⎦

⎞

⎠ , (20)

where,

C1,1 = C0
xx([xj, tj], [xj, tj]), C1,2 = ∫xk

0 ∫z0 ∂
∂tk

C0
xx([xj, tj], [w, tk])dwdz,

C1,3 = ∫xl

0 ∫z0 C0
xx([xj, tj], [w, tl])dwdz, C2,2 = C0

t ([xk, tk], [xk, tk]),

C2,3 = ∫ tl0 C0
t ([xk, tk], [xl,w])dw, C3,3 = C0([xl, tl], [xl, tl]).

When integrated covariances are available in closed form (e.g., Supplement D.4), the
above matrices can be computed analytically.

A generalization of the sequential updating scheme presented in Algorithm 1 is
outlined in Supplement B. The forward in time, continuous in space (FTCS) sampling
scheme takes steps forward in time, while smoothing over spatial model interrogations
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Figure 8: Uncertainty in the solution of the heat equation discretized using two spatio-
temporal grids in blue and red respectively: 15 × 50 and 29 × 100. Spatial posterior
predictions are shown at t = (0.02, 0.12, 0.22). The exact solution is shown in green; error
bars show the empirical mean and 2 standard deviations computed from 50 simulations.

at each step. In Figure 8 the exact solution for the PDE initial value problem (19)
with κ = 1 on the domain [0, 1] × [0, 0.25] is compared with the probability model of
uncertainty given two different grid sizes. The simulations illustrate that as the mesh
size becomes finer, the uncertainty in the solution decreases.

The characterization of spatial uncertainty is critical for more complex models in
cases where there are computational constraints limiting the number of system evalua-
tions that may be performed. We illustrate its effect by performing posterior inference
for the parameter κ from data simulated from an exact solution with κ = 1 and zero
mean Gaussian error with standard deviation of 0.005. Figure 9 shows the posterior
distribution over κ obtained by using both a deterministic “forward in time, centred
in space” (FTCS) finite difference solver and a probabilistic solver under a variety of
discretization grids. For the probabilistic solution, a squared exponential covariance
structure was chosen over the spatial domain, with length-scale 1.5 times the spatial
step size. For computational efficiency a uniform covariance structure was chosen over
the temporal domain, with length-scale 2 times the temporal step size. The prior pre-
cision was set to 10,000. Note the change in the scale as the mesh is refined and the
posterior variance decreases. The use of a deterministic solver illustrates the problem of
posterior under-coverage that may occur if discretization uncertainty is not taken into
account and too coarse a grid is employed relative to the complexity of model dynam-
ics. If the discretization is not fine enough, the approximate posterior assigns negligible
probability mass to the true value of κ, in contrast to the unbiased posterior obtained
when employing the exact solution for inference. In this illustrative setting, the use of
a probabilistic solver propagates discretization uncertainty in the solution through to
the posterior distribution over the parameters. By using a probabilistic solver with the
same coarsely discretized grid in this example, the posterior density is more diffuse but
approximately centred on the true value of κ.
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Figure 9: Posterior densities for the conductivity parameter in the heat equation given
simulated data over an 8× 25 spatio-temporal grid from the exact solution with κ = 1.
Inference is based on the probabilistic differential equation solver using three grid sizes
(blue). The posterior density based on a deterministic FTCS numerical scheme (red)
and the posterior density based on the exact solution (red) are also provided.

6 Discussion

This paper presents a Bayesian formalism for characterizing the structure of discretiza-
tion uncertainty in the solution of differential equations. Discretization uncertainty for
dynamical systems may be naturally described in terms of degrees of belief, an idea
first formulated by Skilling (1991) and O’Hagan (1992). A Bayesian function estimation
approach offers a way of defining and updating our beliefs about probable model tra-
jectories conditional on interrogations of the differential equation model. The resulting
uncertainty over the solution can then be propagated through the inferential procedure
by defining an additional layer in the Bayesian posterior hierarchy. As such, the pro-
posed formulation is a radical departure from the existing practice of constructing an
approximate statistical error model for the data using numerical techniques.

The more general goal of studying other sources of model uncertainty requires first
understanding how much is known about the dynamics of the proposed model and how
that information changes with time, space, and parameter settings. Fundamentally, the
probabilistic approach we advocate defines a trade-off between solution accuracy and
the size of the inverse problem, by choice of discretization grid size. This relationship
has been of deep interest in the uncertainty quantification community (see, e.g., Kaipio
et al., 2004; Arridge et al., 2006) and our approach offers a way of resolving the individual
contributions to overall uncertainty from discretization, model misspecification (in the
sense of Kennedy and O’Hagan, 2001), and Monte Carlo error.

The area of probabilistic numerics is an emerging field at the intersections of Statis-
tics with Applied Mathematics, Numerical Analysis, and Computer Science, and we
hope that this paper will provide a starting point for further work in this area. In
particular, while the proposed approach is computationally competitive with first order
numerical methods, it will be important to implement more efficient sampling algorithms
analogous to those of higher order deterministic solvers developed from over a century
of research into numerical methods. For example a sampling scheme developed based on
multiple model interrogations located between discretization grid points. Because many
traditional higher order numerical solvers (e.g. explicit fourth order Runge–Kutta) use
such a carefully constructed weighted average of model interrogations, our approach also
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provides a way to interpret numerical method in the context of a general probabilistic
framework (e.g., Schober et al., 2014). It is not surprising that a self-consistent Bayesian
modelling approach has similarities to numerical methods whose form has been chosen
for their convergence properties. From the perspective presented in this paper, rather
than emulate numerical solvers, quadrature is automatically provided by the Gaussian
process integration that occurs at each step of Algorithm 1. If the solution smoothness
is correctly specified a priori via the covariance structure, then the Gaussian process
integration step will naturally yield an appropriate quadrature rule.

Modelling uncertainty about an exact but unknown solution may be viewed as pro-
viding both an estimate of the exact solution and its associated functional error analy-
sis. Although proportionally scalable, uncertainty quantification methods are naturally
more expensive than deterministic numerical approximations without associated error
analyses, making efficient sampling strategies for stochastic model calibration an im-
portant goal for future research. As may be expected, low dimensional, stable systems,
without any topological restrictions on the solution may not suffer from significant dis-
cretization effects at a reasonably fine discretization grid. However, it is often difficult to
determine a priori whether this stability will persist across the entire parameter space.
An example is illustrated by the JAK-STAT case study, where the relationships between
model parameters and solver specifications (reflecting changes in the system dynamics)
may introduce bias in the estimation of parameters. If model uncertainty is indeed neg-
ligible and comparable over all parameter settings, sampled trajectories obtained via
the probabilistic method will have little variability around the exact solution. If, how-
ever, the chosen discretization grid is too coarse with respect to the rate of change of
system dynamics over some subset of the input space, the uncertainty associated with
the model error will be accounted and propagated. For this reason, it may be prudent
to adopt a probabilistic approach if one cannot be reasonably certain of negligible and
comparable discretization error across all parameter settings.

Importantly, the probabilistic framework can be used to optimize computation. For
a given discretization grid size, a natural question is how we can arrange the grid on the
domain in such a way that the resulting approximation is as close as possible in terms
of some specified criterion. Most commercially available numerical differential equation
solvers select the step length of the discretization grid sequentially. Controlling the local
error by choice of the distance between neighbouring grid locations is called adaptive
step size selection. For example, in the simplest cases, this is accomplished by evaluating
the local truncation error at each step and halving the step size if this exceeds an error
tolerance that is pre-specified by the user (the process may be repeated several times per
step until an appropriate local truncation error is achieved). In a similar way to local
truncation error, a predictive probability model of discretization uncertainty may be
used to guide sequential mesh refinement for complex dynamical systems. Optimizing
a chosen design criterion would yield the desired discretization grid, as suggested by
Skilling (1991). Some initial work in this direction has been conducted in Chkrebtii
(2013), where it is shown that the natural Kullback–Leibler divergence criterion may be
successfully used to adaptively choose the discretization grid in a probabilistic manner.

Prior specification may be used to rule out physically inconsistent trajectories that
may arise from a numerical approximation. In numerical analysis, specialized techniques
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are developed and shown to satisfy certain properties or constraints for a given class
of differential equations. A probabilistic framework would permit imposing such con-
straints in a more flexible and general way. Smoothness constraints on the solution may
be incorporated through the prior, and anisotropy in the trajectory may be incorporated
at each step through the covariance and the error model. Although in such general cases
it may no longer be possible to obtain closed form representations of the sequential prior
updates, an additional layer of Monte Carlo sampling may be used to marginalize over
the realizations required to interrogate the differential equation model.

These developments lie at the frontier of research in uncertainty quantification,
dealing with massive nonlinear models, complex or even chaotic dynamics, and strong
spatial-geometric effects (e.g. subsurface flow models). Even solving such systems ap-
proximately is a problem that is still at the edge of current research in numerical anal-
ysis.

Inference and prediction for computer experiments (Sacks et al., 1989) is based on
a model of the response surface, or emulator, constructed from numerical solutions
of prohibitively expensive large-scale system models over a small subset of parameter
regimes. Currently, numerical uncertainty is largely ignored when emulating a com-
puter model, although it is informally incorporated through a covariance nugget (see,
e.g., Gramacy and Lee, 2012) whose magnitude is often chosen heuristically. Adopt-
ing a probabilistic approach on a large scale will have practical implications in this
area by permitting relaxation of the error-free assumption adopted when modelling
computer code output, leading to more realistic and flexible emulators. For this rea-
son, Bayesian calibration of stochastic emulators will be an important area of future
research.

Numerical approximations of chaotic systems are inherently deterministic, qualita-
tive dynamics (of models such as Lorenz63) are often studied statistically by introducing
artificial perturbations on the numerical trajectory. The rate of exponential growth (the
Lyapunov exponent) between nearby trajectories can be estimated via Monte Carlo by
introducing small changes to the numerical trajectory over a grid defined along the
domain. Our proposed approach explicitly models discretization uncertainty and there-
fore offer an alternative to such artificial perturbations, thus opening new avenues for
exploring uncertainty in the system’s qualitative features.

Supplementary Material

Supplementary Material for “Bayesian Solution Uncertainty Quantification for Differ-
ential Equations” (DOI: 10.1214/16-BA1017SUPP; .pdf).
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