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Background Perspective

 Be Bayesian about reinforcement learning

 |deal representation of uncertainty
for action selection

Why are Bayesian approaches not prevalent in RL?

 Computational barriers
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Our Recent Work

* Practical algorithms for approximating Bayes
optimal decision making

 Analogy to game-tree search
on-line lookahead computation
+ global value function approximation

e Use game-tree search ideas
but here expecti-max vs. mini-max

o Alternative approach to global value fun. approx.



Exploration vs. Exploitation

e Bayes decision theory

— Value of information measured by ultimate
return in reward

 Choose actions to max expected value

— Exploration/exploitation tradeoff implicitly
handled as side effect
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Overview

« Efficient lookahead search for Bayesian RL
— Sparser sparse sampling
— Controllable computational cost

e Higher quality action selection than current methods

Greedy

Epsilon - greedy

Boltzmann (Luce 1959)

Thompson Sampling (Thompson 1933)

Bayes optimal (Hee 1978)

Interval estimation (Lai 1987, Kaelbling 1994)

Myopic value of perfect info. (Dearden, Friedman, Andre 1999)

Standard sparse sampling  (Kearns, Mansour, Ng 2001)
Péret & Garcia (Péret & Garcia 2004)

 General, can be combined with value fun. approx.
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Goals

e Large (Infinite) state and action spaces

* Exploit Bayesian modelling tools
— E.g. Gaussian processes
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Sequential Decision Making

How to make an optimal decision?  [V(S) Requires model P(r,s’|s,a)

MAX

“Planning”

This is: finite horizon, finite action, finite reward case
General case: Fixed point equations: V(S) = sup Q(s,a) Q(s,a)= Er S''s a[r + N (s")]
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Reinforcement Learning

V(s) Do not have model P(r,s’|s,a)

i UNIVERS
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Reinforcement Learning

Cannot ) Do not have model P(r,s’|s,a)
Compute rslsa
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Reinforcement Learning

Standard approach: Do not have model P(r,s’|s,a)
keep point estimate

e.g. via local Q-value estimates

v How to select action?

5 e

V V V V
a a a a a a a a
rl r’ r1 r! rl r’ r1 r! r! rl r1 r1 r1 rl r’ r1
S” S” S” S” S” S” SH SH SH SH S” S” S” S” S” S”

Problem: greedy does not explore
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Reinforcement Learning

v How to explore?

a

Boltzmann

V V V V
a a a a a a a a
rl r’ r1 r! rl r’ r1 r! r! rl r1 r1 r1 rl r’ r1
S” S” S” S” S” S” SH SH SH SH S” S” S” S” S” S”

Problem: do not account for uncertainty in estimates
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Reinforcement Learning

Interval

Intuition: estimation
.| J How to use ufcertainty?

V V V V
a a a a a a a a
rl r’ r1 r! rl r’ r1 r! r! r’ r1 r1 r1 r! r’ r1
SH SH SH SH SH SH SH SH SH SH SH SH SH SH SH SH

Problem: 6’s computed myopically: doesn’t consider horizon
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Bayesian Reinforcement Learning

Prior P( ) on model P(rs’ |sa, ¢) Belief state b=P( ¢)

Meta-level MDP

meta-level state sb ~ .
i decision
Choose action a
to maximize :
[olie benn ey i outcome Meta-level Model
| r,s’, b’ P(r,s’b’|s b,a)
) decision
actions - a
rewards L outcome Meta-level Model
ri’ SH1 b” P(r1’s11b”|S1 b1’a1)

S” b” .

Have a model for meta-level transitions!
- based on posterior update and expectations over base-level MDPs
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Bayesian RL Decision Making

How to make an optimal decision?

Solve planning problem
in meta-level MDP:

- Optimal Q,V values

V(s' b’

V(s' b’

Bayes optimal
action selection

V(s b’

Problem: meta-level MDP much larger than base-level MDP

Impractical

NIPS 05 Workshop

17



Bayesian RL Decision Making

Current approximation strategies:

sb| Consider current belief state b

o =

Greedy approach: '
y app But doesn’t consider
current b — mean base-level MDP model uncertainty
— point estimate for Q, V

— choose greedy action
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Bayesian RL Decision Making

Current approximation strategies:

sb| Consider current belief state b

o =

© Exploration is based
Thompson approach: on uncertainty

current b — sample a base-level MDP model

— point estimate for Q, V

(Choose action proportional to probability it is max Q)TBU'[ still myoplc
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Our Approach

e Try to better approximate Bayes optimal
action selection by performing lookahead

o Adapt “sparse sampling” (Kearns, Mansour ,Ng)
— Make some practical improvements
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Sparse Sampling

(Kearns, Mansour, Ng 2001)

T AP :
: : Approximate values
: = e | Enumerate action choices
|
: AN @){ * O : Subsample action outcomes
: % @ % m m @ % % I Bound depth
|

Back up approx values

+ Chooses approximately optimal action with high probability
(if depth, sampling large enough)

— Achieving guarantees too expensive

+ But can control depth, sampling
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Bayesian Sparse Sampling
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Bayesian Sparse Sampling

Observation 1

Do not need to enumerate actions in a
Bayesian setting
— Glven random variables Q;,...,Qx
—and a prior P(Qu,...,Qk)
— Can approximate max@u,...,Q«)
— Without observing every variable

(Stop when posterior probability of a significantly better Q-value is small)
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Bayesian Sparse Sampling

Observation 2

] e Action value estimates are
WA not equally important
= = — Need better Q value
i N O estimates for some actions
but not all

— Preferentially expand tree
under actions that might be

N N N optimal
] L 1 Biased tree growth
P Q ] Y | Use Thompson sampling to
select actions to expand
B B B B B N -
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Bayesian Sparse Sampling

Observation 3

Correct leaf value estimates to same depth

t=1

Use mean MDP B
Q-value multiplied
by remaining depth

!

effective horizon N=3
NIPS 05 Workshop
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Bayesian Sparse Sampling

Observation 4

Include greedy action at decision nodes (if not sampled)

=
S

SAp

Add greedy action for
local belief state

4
\y
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Bayesian Sparse Sampling

Tree growing procedure

[ 5 + Descend sparse tree
3. Select the optimal action from root
— Thom n sample actions
[ Syomesevon & ~ ~ Sampl autcome.
=  Until new node added
 Repeat until tree size
limit reached

Control computation by controlling tree size
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Simple experiments

* 5 Bernoulli bandits 4,,...,as

e Beta priors

« Sampled model from prior

 Run action selection strategies
 Repeat 3000 times

* Average accumulated reward per step
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Five Bernoulli Bandits

Horizon

0.75

dais Jad plemay abeiany

i m _
A A | -
HaIAA e RHA A 1
ST | == =
g TR ——
IR | |9 8 8O
Rl K [THH (= E >0
I | . loNKC 2
| /, | | | = O E ==
/ ! I ” N = & O O
/ NI ” QM ==
(MR AR lm kb ae
i il 1 A [
“““““““ Fﬁr
i \: | |
w1 m m
& Iy | |
il [ | |
Ol il | |
(1 AR | |
AR | |
(A En e mt e e |
iR dillll | |
(I m
AT r*b_Ak ““““ T
| (R ATHRG, |
| A 7/ I
| (T LT
| | IR SETTI
m MR D
m (ffAAA (RO
| | AR
| m SHmAMANIOHHS
| | A\ 'Y ! /
| ” AIETHHE \
| m IS
| | RS
" " T N GIING »
N~ 7o) © 7o) To)
o © o 0 o

20

15

10

29

ALBERTA

[57]
_:n

NIPS 05 Workshop



Five Bernoulli Bandits
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Simple experiments

» 5 Gaussian bandits 4d,...,ds

e Gaussian priors

e Sampled model from prior

 Run action selection strategies
 Repeat 3000 times

e Average accumulated reward per step
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Est.

20
32

Five Gaussian Bandits

—m - eps-Greedy
—m- Boltzmann
—e— Interval
—A -Thompson

—e - MVPI
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Five Gaussian Bandits
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Gaussian process bandits

* General action spaces
— Continuous actions, multidimensional actions

o Gaussian process prior over reward models
— Covariance kernel between actions

e Action rewards correlated
o Posterior is a Gaussian process

——————— . ) _ - —
S e e Lo - -
. . ‘:\ ~
posterior S, .
mean ‘< R -
reward ~._ _."" -
a, a, a, action
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Gaussian process experiments

e 1 dimensional continuous action space
 GP priors RBF kernel

« Sampled model from prior

 Run action selection strategies
 Repeat 3000 times

* Average accumulated reward per step
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1-dimensional Continuous Gaussian Process
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1-dimensional Continuous Gaussian Process

-Greedy

—m- Boltzmann

—B - eps
—e - MVPI

| —&—Sparse Samp.
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| —& -Thompson
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Gaussian process experiments

e 2 dimensional continuous action space
 GP priors RBF kernel

« Sampled model from prior

 Run action selection strategies
 Repeat 3000 times

* Average accumulated reward per step
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2—dimensional Continuous Gaussian Process

—m - eps-Greedy
—m- Boltzmann
—A -Thompson

—e - MVPI

Horizon

1.2

dais Jad plemay abeiany

20

10

39

ALBERTA

%«’R
S VVA‘
==

NIPS 05 Workshop



2—dimensional Continuous Gaussian Process

—m— Boltzmann
—& - Thompson
—&— Sparse Samp.
—e—Bayes Samp.
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Gaussian Process Bandits

e Very flexible model

e Actions can be complicated
— e.g. a parameterized policy
— Just need a kernel between policies

« Applications in robotics & game playing
 Reward = total reward accumulated by a
policy in an episode
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Summary

Bayesian sparse sampling

* Flexible and practical technigue for
Improving action selection

 Reasonably straightforward

« Bandit problems
— Planning Is “easy”
(at least approximate planning is “easy”)
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Other Work

AIBO dog walking
Opponent modeling (Kuhn poker)
Vendor-bot (Pioneer)

Improve tree search?
Theoretical guarantees?
Cheaper re-planning?
Incorporate value fun. approx.
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