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Bayesian Spatial Quantile Regression
Brian J. REICH, Montserrat FUENTES, and David B. DUNSON

Tropospheric ozone is one of the six criteria pollutants regulated by the United States Environmental Protection Agency under the Clean
Air Act and has been linked with several adverse health effects, including mortality. Due to the strong dependence on weather conditions,
ozone may be sensitive to climate change and there is great interest in studying the potential effect of climate change on ozone, and how
this change may affect public health. In this paper we develop a Bayesian spatial model to predict ozone under different meteorological
conditions, and use this model to study spatial and temporal trends and to forecast ozone concentrations under different climate scenarios.
We develop a spatial quantile regression model that does not assume normality and allows the covariates to affect the entire conditional
distribution, rather than just the mean. The conditional distribution is allowed to vary from site-to-site and is smoothed with a spatial prior.
For extremely large datasets our model is computationally infeasible, and we develop an approximate method. We apply the approximate
version of our model to summer ozone from 1997–2005 in the Eastern U.S., and use deterministic climate models to project ozone under
future climate conditions. Our analysis suggests that holding all other factors fixed, an increase in daily average temperature will lead to the
largest increase in ozone in the Industrial Midwest and Northeast.

KEY WORDS: Climate change; Ozone; Semiparametric Bayesian methods; Spatial data.

1. INTRODUCTION

Beginning in 1970, the United States Clean Air Act (CAA)
directed the U.S. Environmental Protection Agency (EPA) to
consider the best available science on exposure to and effects
of several ambient air pollutants, emitted by a wide array of
sources. National Ambient Air Quality Standards (NAAQS)
were set for pollutants to which the public was widely ex-
posed. Since the inception of NAAQS, EPA has determined
that photochemical-oxidant air pollution, formed when spe-
cific chemicals in the air react with light and heat, is of suffi-
cient public-health concern to merit establishment of a primary
NAAQS. EPA has since 1979 identified ozone, a prominent
member of the class of photochemical oxidants, as an indica-
tor for setting the NAAQS and tracking whether areas of the
country are in compliance with the standards. To attain the cur-
rent ozone standard, the three-year average of the fourth-highest
daily maximum eight-hour average ozone concentrations mea-
sured at each monitor within an area over each year must not
exceed 0.075 ppm (standard effective since May 27, 2008).

Most ozone in the troposphere is not directly emitted to the
atmosphere, although there are minor sources of such ozone,
including some indoor air cleaners. Rather, it is formed from
a complex series of photochemical reactions of the primary
precursors: nitrogen oxides (NOx), volatile organic compounds
(VOCs), and to a smaller extent other pollutants, such as carbon
monoxide (CO). Since the reactions that form ozone are driven
by sunlight, ambient ozone concentrations exhibit both diur-
nal variation (they are typically highest during the afternoon)
and marked seasonal variation (they are highest in summer).
Ambient concentrations are highest during hot, sunny summer
episodes characterized by low ventilation (a result of low winds
and low vertical mixing).

Brian J. Reich is Assistant Professor (E-mail: reich@stat.ncsu.edu) and
Montserrat Fuentes is Professor, Department of Statistics, North Carolina State
University, Raleigh, NC 27695-8203. David B. Dunson is Professor, Depart-
ment of Statistical Science, Duke University, Durham, NC 27708-0251. The
authors thank the Editor, Associate Editor, and two reviewers for helpful com-
ments, as well as the National Science Foundation (Fuentes and Reich, DMS-
0706731), the Environmental Protection Agency (Fuentes, R833863), and Na-
tional Institutes of Health (Fuentes, 5R01ES014843-02) for partial support of
this work.

Due to the strong dependence on weather conditions, ozone
levels may be sensitive to climate change (Seinfeld and Pan-
dis 2006). There is great interest in studying the potential effect
of climate change on ozone levels, and how this change may
affect public health (Bernard et al. 2001; Haines and Patz 2004;
Knowlton et al. 2004; Bell et al. 2007). In this article we also
study the potential changes in ozone due to climatic change.
This type of work is needed to address the impact of cli-
mate change on emission control strategies designed to reduce
air pollution. Using future numerical climate model forecasts
of meteorological conditions, we forecast potential future in-
creases or decreases in ozone levels. In particular, based on
current relationships between temperature, cloud cover, wind
speed, and ground-level ozone, we predict the percent change
in ozone given future temperature and cloud cover levels.

The objective of the article is to develop an effective sta-
tistical model for the daily tropospheric ozone distribution as
a function of daily meteorological variables. The daily model
is then used to study trends in ozone levels over space and
time, and to forecast yearly summaries of ozone under dif-
ferent climate scenarios. We build our model using spatial
methods to borrow strength across nearby locations. Several
spatial models have been proposed for ozone (Guttorp, Meir-
ing, and Sampson 1994; Carroll et al. 1997; Meiring, Guttorp,
and Sampson 1998; Huang and Hsu 2004; Huerta, Sanso, and
Stroud 2004; Gilleland and Nychka 2005; Sahu, Gelfand, and
Holland 2007). These models assume normality for either un-
transformed ozone or for the square root of ozone. Exploratory
analysis suggests that ozone data are non-Gaussian even af-
ter a square root transformation. Ozone is often right-skewed
(Lee et al. 2006; Zhang and Fan 2008) in which case Gaussian
models may underestimate the tail probability. Correctly esti-
mating the tail probability is critically important in studying
the health effects of ozone exposure, and has policy implica-
tions because EPA standards are based on the fourth highest
day of the year (approximately the 99th percentile). A further
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challenge is that the relationship between meteorological pre-
dictors and the ozone response can be nonlinear and the mete-
orological effects are not restricted to the mean. The variance
and skewness of the response varies depending on location and
meteorological conditions. Recently several methods have been
developed for non-Gaussian spatial modeling (Gelfand, Kot-
tas, and MacEachern 2005; Griffin and Steel 2006; Reich and
Fuentes 2007; Dunson and Park 2008). These methods treat the
conditional distribution of the response given the spatial loca-
tion and the covariates as an unknown quantity to be estimated
from the data. We follow this general approach to model the
conditional ozone density.

Although these models are quite flexible, one drawback is
the difficulty in interpreting the effects of each covariate. For
example, many of these models are infinite mixtures, where the
spatial location and/or covariates affect the mixture probabili-
ties. In this very general framework, it is difficult to make in-
ference on specific features of the conditional density, for ex-
ample, whether there is an interaction between cloud cover and
temperature, or whether there is a statistically significant time
trend in the distribution’s upper tail probability. As a compro-
mise between fully-general Bayesian density regression and the
usual additive mean regression, we propose a Bayesian spatial
quantile regression model. Quantile regression models the dis-
tribution’s quantiles as additive functions of the predictors. This
additive structure permits inference on the effect of individual
covariates on the response’s quantiles.

There is a vast literature on quantile regression (e.g., Ko-
enker 2005), mostly from the frequentist perspective. The stan-
dard model-free approach is to estimate the effect of the covari-
ates separately for a few quantile levels by minimizing an ob-
jective function. This approach is popular due to computational
convenience and theoretical properties. Sousa et al. (2008)
applied the usual quantile regression method to ozone data
and found it to be superior to multiple linear regression, es-
pecially for predicting extreme events. An active area of re-
search is incorporating clustering into the model-free approach
(Jung 1996; Lipsitz et al. 1997; Koenker 2004; Wang and
He 2007; Wang and Fygenson 2008). Recently, Hallin, Lu,
and Yu (2009) propose a quantile regression model for spa-
tial data on a grid. They allow the regression coefficients to
vary with space using local regression. This approach, and most
other model-free approaches, perform separate analyses for
each quantile level of interest. As a result, the quantile estimates
can cross, that is, for a particular combination of covariates the
estimated quantile levels are nonincreasing, which causes prob-
lems for prediction. Several post-hoc methods have been pro-
posed to address this problem (He 1997; Yu and Jones 1998;
Takeuchi et al. 2006; Dette and Volgushev 2008) for nonspatial
data.

Incorporating spatial correlation may be more natural in
a Bayesian setting, which necessarily specifies a likelihood
for the data. Model-based Bayesian quantile regression meth-
ods for independent (Kottas and Gelfand 2001; Yu and Moy-
eed 2001; Hjort and Walker 2009; Kottas and Krnjajic 2009)
and clustered (Geraci and Bottai 2007) data that focus on a
single quantile level have been proposed. Dunson and Tay-
lor (2005) propose a method to simultaneously analyze a finite

number of quantile levels for independent data. To our knowl-
edge, we propose the first model-based approach for spatial
quantile regression.

Rather than focusing on a single or finite number of quan-
tile levels, our approach is to specify a flexible semiparametric
model for the entire quantile process across all covariates and
quantile levels. We assume the quantile function at each quan-
tile level is a linear combination of the covariates and model the
quantile functions using a finite number of basis functions with
constraints on the basis coefficients to ensure that the quantile
function is noncrossing for all covariate values. An advantage
of this approach is that we can center the prior for the condi-
tional density on a parametric model, for example, multiple lin-
ear regression with skew-normal errors. Our model is equipped
with parameters that control the strength of the parametric prior.
Also, the quantile function, and thus the conditional density, is
allowed to vary spatially. Spatial priors on the basis coefficients
are used to allow the quantile process to vary smoothly across
space.

The article proceeds as follows. Section 2 proposes the spa-
tial quantile regression model. While this model is computa-
tionally efficient for moderately sized datasets, it is not feasible
for very large datasets. Therefore Section 3 describes an ap-
proximate model which is able to handle several years of daily
data for the entire Eastern U.S. Section 4 conducts a brief sim-
ulation to compare our model with other methods and exam-
ine sensitivity to hyperprior choice. In Section 5 we analyze
a large spatiotemporal ozone dataset. We discuss meteorologi-
cally adjusted spatial and temporal trends for different quantile
levels and use the estimated conditional densities to forecast
future ozone levels using deterministic climate model output.
Section 6 concludes.

2. BAYESIAN QUANTILE REGRESSION FOR
SPATIOTEMPORAL DATA

Let yi be the observed eight-hour maximum ozone for
space/time location (s, t)i, and denote the day and spatial loca-
tion of the ith observation as ti and si, respectively. Our interest
lies in estimating the conditional density of yi as a function of
si and covariates Xi = (Xi1, . . . ,Xip)

′, where Xi1 = 1 for the in-
tercept. In particular, we would like to study the conditions that
lead to extreme ozone days. Extreme events are often summa-
rized with return levels. The n-day return level is the value cn so
that P(yi > cn) = 1/n. Given our interest in extreme events and
return levels, we model yi’s conditional density via its quan-
tile (inverse CDF) function q(τ |Xi, si), which is defined so that
P{yi < q(τ |Xi, si)} = τ ∈ [0,1]. We model q(τ |Xi, si) as

q(τ |Xi, si) = X′
iβ(τ, si), (1)

where β(τ, si) = (β1(τ, si), . . . , βp(τ, si))
′ are the spatially

varying coefficients for the τ th quantile level. Directly mod-
eling the quantile function makes explicit the effect of each
covariate on the probability of an extreme value.

Several popular models arise as special cases of Model (1).
For example, setting βj(τ, s) ≡ βj for all τ , s, and j > 1 gives
the usual linear regression model with location shifted by∑p

j=2 Xijβj and residual density determined by β1(τ, s). Also,
setting βj(τ, s) ≡ βj(s) for all τ and j > 1 gives the spatially
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varying coefficients model (Gelfand et al. 2003) where the ef-
fect of Xj on the mean varies across space via the spatial process
βj(s). Allowing βj(τ, s) to vary with s and τ relaxes the as-
sumption that the covariates simply affect the mean response,
and gives a density regression model where the covariates are
allowed to affect the shape of the response distribution. In par-
ticular, the covariates can have different effects on the center
(τ = 0.5) and tails (τ ≈ 0 and τ ≈ 1) of the density.

2.1 Model for the Quantile Process

We begin modeling the quantile function by ignoring spatial
location and assuming the intercept-only model with Xi = 1. In
this case, the quantile function in (1) reduces to q(τ ) = β(τ).
The process β(τ) must be constructed so that q(τ ) is nonde-
creasing in τ . Let

β(τ) =
M∑

m=1

Bm(τ )αm, (2)

where M is the number of basis functions, Bm(τ ) is a known
basis function of τ , αm are unknown coefficients that determine
the shape of the quantile function. We use Bernstein basis poly-
nomials

Bm(τ ) =
(

M

m

)
τm(1 − τ)M−m. (3)

An attractive feature of these basis functions is that if αm ≥
αm−1 for all m > 1, then β(τ), and thus q(τ ), is an increasing
function of τ . This reduces the complicated monotonicity con-
straint to a sequence of simple constraints δm = αm −αm−1 ≥ 0,
for m = 2, . . . ,M. These constraints are sufficient, but not nec-
essary, to ensure an increasing function. As is typical for semi-
parametric models, for finite M this model does not span the en-
tire class of continuous monotonic functions. However, as M in-
creases, the Bernstein polynomials basis with these constraints
induces a prior with dense support on the space of continuous
monotone functions from [0,1] → R (Chang et al. 2007).

Since the constraints on α = (α1, . . . , αM) are expressed in
terms of the difference between adjacent terms, we reparame-
terize to δ1 = α1 and δm = αm − αm−1 for m = 2, . . . ,M. The
original basis function coefficients are then αm = ∑m

l=1 δl. Fol-
lowing Cai and Dunson (2007), we ensure the quantile con-
straint by introducing a latent unconstrained variable δ∗

m and
taking δ1 = δ∗

1 and

δm =
{

δ∗
m, δ∗

m ≥ 0

0, δ∗
m < 0

(4)

for m > 1.
The δ∗

m have independent normal priors δ∗
m ∼ N(δ̄m(�),σ 2),

with unknown hyperparameters �. We pick δ̄m(�) to center the
quantile process on a parametric distribution f0(y|�), for exam-
ple, a N(μ0, σ

2
0 ) random variable with � = (μ0, σ0). Letting

q0(τ |�) be the quantile function of f0(y|�), the δ̄m(�) are then
chosen so that

q0(τ |�) ≈
M∑

m=1

Bm(τ )ᾱm(�), (5)

where ᾱm(�) = ∑m
l=1 δ̄l(�). The δ̄m(�) are chosen to corre-

spond to the following ridge regression estimator:

(δ̄1(�), . . . , δ̄M(�))′

= arg min
d

K∑
k=1

(
q0(τk|�) −

M∑
m=1

Bm(τk)

[
m∑

l=1

dl

])2

+ λ

M∑
m=1

d2
m, (6)

where dm ≥ 0 for m > 1, {τ1, . . . , τK} is a dense grid on (0,1).
We find that simple parametric quantile curves can often be ap-
proximated almost perfectly with fewer than M terms. There-
fore several combinations of d give essentially the same fit,
including some undesirable solutions with negative values for
elements of δ̄. For numerical stability we add the ridge penalty
λ

∑M
m=1 d2

m. Setting the tuning constant λ to zero gives the un-
penalized fit and setting λ to infinity gives δ̄ = 0 for all terms.
We pick λ = 1 because this allows the parametric quantile curve
to be approximated well and gives δ̄ values that vary smoothly
from term to term. As σ → 0, the quantile functions this re-
sembles are increasing shrunk towards the parametric quantile
function q0(τ |�), and the likelihood is similar to f0(y|�).

2.2 Model for the Spatial Quantile Process
With Covariates

Adding covariates, the conditional quantile function becomes

q(τ |Xi) = X′
iβ(τ ) =

p∑
j=1

Xijβj(τ ). (7)

As in Section 2.1, the quantile curves are modeled using Bern-
stein basis polynomials

βj(τ ) =
M∑

m=1

Bm(τ )αjm, (8)

where αjm are unknown coefficients. The processes βj(τ ) must
be constructed so that q(τ |Xi) is nondecreasing in τ for all Xi.
Collecting terms with common basis functions gives

X′
iβ(τ ) =

M∑
m=1

Bm(τ )θm(Xi), (9)

where θm(Xi) = ∑p
j=1 Xijαjm. Therefore, if θm(Xi) ≥ θm−1(Xi)

for all m > 1, then X′
iβ(τ ), and thus q(τ |Xi), is an increasing

function of τ .
To specify our prior for the αjm to ensure monotonicity,

we assume that Xi1 = 1 for the intercept and the remaining
covariates are suitably scaled so that Xij ∈ [0,1] for j > 1.
Since the constraints are written in terms of the difference
between adjacent terms, we reparameterize to δj1 = αj1 and
δjm = αjm − αjm−1 for m = 2, . . . ,M. We ensure the quantile
constraint by introducing latent unconstrained variable δ∗

jm ∼
N(δ̄jm(�),σ 2

j ) and taking

δjm =

⎧⎪⎨
⎪⎩

δ∗
jm, δ∗

1m +
p∑

j=2

I(δ∗
jm < 0)δ∗

jm ≥ 0

0, otherwise

(10)
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for all j = 1, . . . ,p and m = 1, . . . ,M. Recalling Xi1 = 1
and Xij ∈ [0,1] for j = 2, . . . ,p, and thus Xijδjm ≥ XijI(δjm <

0)δjm ≥ I(δjm < 0)δjm for j > 1,

θm(Xi) − θm−1(Xi)

=
p∑

j=1

Xijδjm ≥ δ1m +
p∑

j=2

XijI(δjm < 0)δjm

≥ δ1m +
p∑

j=2

I(δjm < 0)δjm ≥ 0 (11)

for all Xi, giving a valid quantile process. As in Section 2.1
we center the intercept curve on a parametric quantile function
q0(�). The remaining coefficients have δ̄jm(�) = 0 for j > 1.

Although this model is quite flexible, we have assumed that
the quantile process is a linear function of the covariates, sim-
plifying interpretation. In some applications the linear quantile
relationship may be overly restrictive. In this case, transfor-
mations of the original predictors such as interactions or basis
functions can be added to give a more flexible model. How-
ever, (10) may be prohibitive if quadratic or higher-order terms
are added to the model since (10) unnecessarily restricts the
quantile function for combinations of the covariates that can
never occur, for example, the linear term being zero and the
quadratic term being one. Also, the linear relationship between
the predictors and the response is not invariant to transforma-
tions of the response. To alleviate some sensitivity to transfor-
mations, it may be possible to develop a nonlinear model for
q(τ |Xi), so that q(τ |Xi) and T(q(τ |Xi)) span the same class of
functions (and therefore response distributions) for a class of
transformations T .

For spatial data, we allow the quantile process to be different
at each spatial location,

βj(τ, s) =
M∑

m=1

Bm(τ )αjm(s), (12)

where αjm(s) are spatially varying basis-function coefficients.
We enforce the monotonicity constraint at each spatial location
by introducing latent Gaussian parameters δ∗

jm(s). The latent
parameters relate to the basis-function coefficients as αjm(s) =∑m

l=1 δjl(s) and

δjm(s)

=

⎧⎪⎨
⎪⎩

δ∗
jm(s), δ∗

1m(s) +
p∑

j=2

I(δ∗
jm(s) < 0)δ∗

jm(s) ≥ 0

0, otherwise

(13)

for all j = 1, . . . ,p and m = 1, . . . ,M.
To encourage the conditional density functions to vary

smooth across space we model the δ∗
jm(s) as spatial processes.

The δ∗
jm(s) are independent (over j and m) Gaussian spatial

processes with mean E(δ∗
jm(s)) = δ̄jm(�) and exponential spa-

tial covariance Cov(δ∗
jm(s), δ∗

jm(s′)) = σ 2
j exp(−‖s − s′‖/ρj),

where σ 2
j is the variance of δ∗

jm(s) and ρj determines the range
of the spatial correlation function.

3. APPROXIMATE METHOD

Section 2’s spatial quantile regression model can be imple-
mented efficiently for moderately sized datasets. However, it
becomes computationally infeasible for Section 5.3’s analysis
of several years of daily data for the Eastern U.S. To approx-
imate the full Bayesian analysis, we propose a two-stage ap-
proach related to that of Daniels and Kass (1999). We first per-
form separate quantile regression at each site for a grid of quan-
tile levels to obtain estimates of the quantile process and their
asymptotic covariance. In a second stage, we analyze these ini-
tial estimates using the Bayesian spatial model for the quantile
process.

The usual quantile regression estimate (Koenker 2005) for
quantile level τk and spatial location s is

(β̂1(τk, s), . . . , β̂p(τk, s))′

= arg min
β

∑
si=s,yi>X′

iβ

τk|yi − X′
iβ|

+
∑

si=s,yi<X′
iβ

(τk − 1)|yi − X′
iβ|. (14)

This estimate is easily obtained from the quantreg package
in R and is consistent for the true quantile function and has
asymptotic covariance (Koenker 2005)

Cov
[√

ns(β̂1(τk, s), . . . , β̂p(τk, s)),
√

ns(β̂1(τl, s), . . . , β̂p(τl, s))
]

= H(τk)
−1J(τk, τl)H(τl)

−1, (15)

where ns is the number of observations at site s, H(τ ) =
limns→∞ n−1

s
∑ns

i=1 XiX′
i fi(X′

iβ̂(τ )), fi(X′
iβ̂(τ )) is the condi-

tional density of yi evaluated at X′
iβ̂(τ ), and J(τk, τl) = [τk ∧

τl − τkτl]n−1
s

∑
XiX′

i.
Although consistent as the number of observations at a given

site goes to ∞, these estimates are not smooth over space or
quantile level, and do not ensure a noncrossing quantile func-
tion for all X. Therefore we smooth these initial estimates using
the spatial model for the quantile process proposed in Sec-
tion 2. Let β̂(si) = [β̂1(τ1, si), . . . , β̂1(τK, si), β̂2(τ1, si), . . . ,

β̂p(τK, si)]′ and Cov(β̂(si)) = �i [with elements defined by (15)].
We fit the model

β̂(si) ∼ N(β(si),�i), (16)

where the elements of β(si) = [β1(τ1, si), . . . , β1(τK, si),

β2(τ1, si), . . . , βp(τK, si)]′ are functions of Bernstein basis
polynomials as in Section 2.2. This approximation provides a
dramatic reduction in computational time because the dimen-
sion of the response is reduced from the number of observations
at each site to the number of quantile levels in the approxima-
tion, and the posteriors for the parameters that define β are fully
conjugate allowing for Gibbs updates and rapid convergence.

The correlation between initial estimates is often very high.
To avoid numerical instability we pick the number of quantile
levels in the initial estimate, K, so that the estimated correla-
tion is no more than 0.95. For the simulated and real data, we
use K = 10. Also, our experience with this approximation sug-
gests that this approximation has coverage probability below
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the nominal level. Therefore, we inflate the estimated variance
by a factor of c2 and fit the model β̂(si) ∼ N(β(si), c2�i). We
pick c by first fitting the model with c = 1. We then gener-
ate R datasets from the fitted model, analyze each dataset with
c = {0.5,0.75,1,1.25,1.5}, and compute the proportion (aver-
aged over space, quantile level, and covariate) of the 90% in-
tervals that cover the coefficients used to generate the data. We
pick the smallest c with 90% coverage. For large datasets with
many locations and several covariates we find R = 1 is suffi-
cient to give reasonable coverage probabilities.

This simplification may permit extensions to more sophisti-
cated spatial models for the basis coefficients, such as nonsta-
tionary and non-Gaussian spatial models. Details of the MCMC
algorithm for this model and the full model are given in the Ap-
pendix. It may also be possible to develop an EM-type algo-
rithm or a constrained optimization routine, although MCMC
is well suited as described above.

4. SIMULATION STUDY

In this section we analyze simulated data to compare our
method with standard quantile regression approaches, and to
examine the performance of Section 3’s approximate method.
For each of the S = 50 simulated datasets we generate n = 20
spatial locations si uniformly on [0,1]2. The p = 3 covariates

are generated as X1 ≡ 1 and Xi2,Xi3
iid∼ U(0,1), independent

over space and time. The true quantile function is

q(τ |Xi, si) = 2si2 + (τ + 1)�−1(τ ) + (5si1τ
2)Xi3, (17)

which implies that β1(τ, si) = 2si2 +(τ +1)�−1(τ ), β2(τ, si) =
0, and β3(τ, si) = 5si1τ

2, where � is the standard normal dis-
tribution function. Figure 1(a) plots the density corresponding
to this quantile function for various covariates and spatial lo-
cations. The density is generally right-skewed to mimic ozone

(a) true density (b) true β3 by location

(c) usual quantile regression estimate (d) Bayesian spatial quantile regression estimate

Figure 1. True and estimated quantile curves for the simulation study. Panel (a) gives the true density as a function of space and covariates,
panel (b) plots the true quantile function β3(s, τ ), panel (c) plots the usual quantile estimate for one dataset, and panel (d) plots the posterior
mean from spatial quantile regression for one dataset.
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Reich, Fuentes, and Dunson: Bayesian Spatial Quantile Regression 11

data. The second spatial coordinate simply shifts the entire dis-
tribution by increasing the intercept function β1. The first pre-
dictor X2 has no effect on the density because β2(τ, s) = 0.
The second predictor X3 has little effect on the left tail because
β3(τ, s) is near zero for small τ , but increasing X3 adds more
mass to the density’s right tail.

Each dataset contains 100 replicates at each spatial location.
We first consider the situation where the replicates are indepen-
dent over space and time. We also generate data with spatially
and temporally correlated residuals using a Gaussian copula.
To generate spatially correlated residuals, we first generate Ui

as independent (over time) Gaussian processes with mean
zero and exponential spatial covariance exp(−‖s − s′‖/ρZ),
and then transform using the marginal quantile function yi =
qo[�(Ui)] + ∑M

m=1 Bm[�(Ui)]θm(Xi, si). We assume the spa-
tial range of the residuals is ρZ = 0.5. We also generate data
with no spatial correlation, but temporal correlation at each site.
The latent Gaussian process at each site has mean zero and ex-
ponential covariance Cor(Ui,Uj) = exp(−|i − j′|/ρU), where
ρU = −1/ log(0.5) so the correlation between subsequent sites
is 0.5.

For each simulated dataset we fit three Bayesian quantile
methods: the full model described in Section 2, the model in
Section 2 without spatial modeling [i.e., δ∗

jk
iid∼ N(δ̄jk(�),σ 2

j )],
and Section 3’s approximate method. For the Bayesian quan-
tile regression models (full and approximate) we use M = 10
knots and vague yet proper priors for the hyperparameters that
control the prior covariance of the quantile function, σ 2

j ∼
InvGamma(0.1,0.1) and ρj ∼ Gamma(0.06,0.75). The prior
for the ρj is selected so the effective range −ρj log(0.05), that
is, the distance at which the spatial correlation equals 0.05, has
prior mean 0.25 and prior standard deviation 1. The centering
distribution f0 was taken to be skew-normal (Azzalini 1985)
with location μ0 ∼ N(0,102), scale σ 2

0 ∼ InvGamma(0.1,0.1),
and skewness ψ0 ∼ N(0,102). We also compare our methods
with the usual frequentist estimates in (14), computed using
the quantreg package in R. Of course these estimates do not
smooth over quantile level or spatial location, so they may not
be directly comparable in this highly-structured setting.

For each simulated dataset and each method we com-
pute point estimates (posterior means for Bayesian meth-
ods) and 90% intervals for βj(τk, si) for j = 1,2,3, τk ∈
{0.05,0.10, . . . ,0.95}, and all spatial locations si. We compare
methods using mean squared error, coverage probability, and
power (i.e., the proportion of times in repeated samples under
the alternative that the 90% interval excludes zero) averaged
over space, quantile levels, and simulated dataset. Specifically,
mean squared error for the jth quantile function is computed as

MSE = 1

SnK

S∑
sim=1

n∑
i=1

K∑
k=1

(
β̂j(τk, si)

(sim) − βj(τk, si)
)2

, (18)

where β̂j(τk, si)
(sim) is the point estimate for the simulation

number sim. Coverage and power are computed similarly.
Table 1 presents the results. We first discuss the results with-

out residual correlation. By borrowing strength across quantile
level and spatial location all three Bayesian methods provide
smaller mean squared error and higher power than the usual
quantile regression approach. Figure 1(b) shows the true quan-
tile curve for β3 for each spatial location for one representative
dataset with line width proportional to the first spatial coordi-
nate. The usual estimates in Figure 1(c) fluctuate greatly across
quantile levels compared to the smooth curves produced by the
Bayesian spatial quantile regression model in Figure 1(d).

The approximate method which smooths the initial estimates
from usual quantile regression reduces mean squared error.
In fact, in this simulation the approximate method often has
smaller mean squared error than the full model. Therefore, the
approximate model appears to provide a computationally effi-
cient means to estimate the true quantile function to be used for
predicting future observations. However, the full model gives
higher power for the nonnull coefficient β3.

Adding residual correlation does not affect mean square er-
ror. Spatial correlation in the residuals has a small effect on
the coverage probabilities, perhaps because the spatially vary-
ing regression parameters absorb some of the residual correla-
tion. However, adding temporal correlation reduces the cover-
age probability below 0.8. Therefore, strong residual correla-
tion should be accounted for, perhaps using a copula model as
discussed in Section 6.

Table 1. Simulation study results. MSE and coverage probabilities are averaged over spatial location, simulated dataset, and quantile level.
Power is evaluated only for the 95th quantile level for β3 and is averaged over space and simulated data set

Corr. MSE Coverage Power
Method resids β1 β2 β3 β1 β2 β3 β3

Quantreg None 0.51 (0.06) 0.99 (0.11) 1.02 (0.11) 0.89 0.89 0.88 0.35
Bayes—approx. 0.09 (0.01) 0.13 (0.01) 0.23 (0.03) 0.87 0.91 0.88 0.44
Bayes—full nonspatial 0.31 (0.04) 0.21 (0.02) 0.62 (0.08) 0.82 0.93 0.85 0.57
Bayes—full spatial 0.13 (0.02) 0.12 (0.01) 0.27 (0.04) 0.86 0.93 0.88 0.79

Quantreg Space 0.53 (0.06) 1.02 (0.11) 1.03 (0.11) 0.89 0.88 0.88 0.36
Bayes—approx. 0.10 (0.01) 0.11 (0.01) 0.21 (0.03) 0.83 0.92 0.88 0.45
Bayes—full nonspatial 0.32 (0.05) 0.20 (0.01) 0.65 (0.08) 0.82 0.92 0.84 0.58
Bayes—full spatial 0.14 (0.02) 0.10 (0.01) 0.23 (0.03) 0.84 0.93 0.88 0.81

Quantreg Time 0.56 (0.06) 0.94 (0.10) 1.03 (0.11) 0.89 0.88 0.88 0.36
Bayes—approx. 0.13 (0.01) 0.11 (0.01) 0.27 (0.03) 0.85 0.91 0.88 0.49
Bayes—full nonspatial 0.33 (0.04) 0.16 (0.01) 0.63 (0.08) 0.79 0.93 0.84 0.30
Bayes—full spatial 0.15 (0.02) 0.10 (0.01) 0.23 (0.03) 0.72 0.86 0.79 0.59
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In this simulation we assumed M = 10 basis functions, σ 2
j ∼

InvGamma(0.1,0.1), and the prior standard deviation of the ef-
fective range was one. We reran the simulation (with indepen-
dent residuals) with S = 10 datasets using the full model three
times, each varying one of these assumptions. The alternatives
were M = 25 basis functions, σj ∼ InvGamma(0.001,0.001),
and the prior standard deviation of the effective range set to
five. The results of the simulation were fairly robust to these
changes; the mean squared error varied from 0.06 to 0.11 for
X1, from 0.07 to 0.12 for X2, and from 0.18 to 0.26 for X3,
and the average coverage probability was at least 0.86 for all
fully Bayes models and all covariates. The prior for the effec-
tive range was most influential. Altering this prior affected the
posterior of the spatial range, but had only a small effect on the
mean squared errors and coverage probabilities.

5. ANALYSIS OF EASTERN U.S. OZONE DATA

In this section we analyze monitored ozone data from the
Eastern U.S. from the summers of 1997–2005 and climate
model output from 2041–2045. Section 5.1 describes the data.

Sections 5.2 and 5.3 analyze monitored ozone data from 1997–
2005, first using the full model and a subset of the data, and then
using Section 3’s approximate model and the complete data.
Sections 5.4 and 5.5 analyze the computer model output.

5.1 Description of the Data

Meteorological data were obtained from the National Cli-
mate Data Center (NCDC; http://www.ncdc.noaa.gov/oa/ncdc.
html). We obtained daily average temperature and daily maxi-
mum wind speed for 773 monitors in the Eastern U.S. from the
NCDC’s Global Summary of the Day Database. Daily average
cloud cover for 735 locations in the Eastern U.S. was obtained
from the NCDC’s National Solar Radiation Database.

Maximum daily eight-hour average ozone was obtained from
the US EPA’s Air Explorer Database (http://www.epa.gov/
airexplorer/ index.htm). We analyze daily ozone concentrations
measured at 631 locations in the Eastern U.S. during the sum-
mers (June–August) of 1997–2005 (470,239 total observa-
tions), plotted in Figure 2(a). Meteorological and ozone data are
not observed at the same locations. Therefore we imputed me-

(a) median ozone (ppb) (b) histogram of ozone (ppb)

(c) ozone by temperature (C) (d) ozone by cloud cover (%)

Figure 2. Panel (a) maps the sample median ozone concentration; the points are the 631 monitoring locations. Panel (b) plots the
skew-normal(34.5,24.3,1.8) over the histogram of ozone concentrations, pooled over spatial location. Panels (c) and (d) plot ozone by daily
average temperature and cloud cover proportion, respectively; the data are pooled over space and the width of the boxplots are proportional to
the number of observations in the bins. The online version of this figure is in color.
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teorological variables at the ozone locations using spatial Krig-
ing. Spatial imputation was performed using SAS version 9.1
and the MIXED procedure with spatial exponential covariance
function, with covariance parameters allowed to vary by vari-
able and year. We treat these predictors as fixed. Li, Tang,
and Lin (2009) discuss the implications of ignoring uncertainty
in spatial predictors. Temperature and cloud cover are fairly
smooth across space and thus have small interpolation errors,
however there is more uncertainty in the wind speed interpola-
tion. Accounting for uncertainty in the predictors using a spatial
model for the meteorological variables warrants further consid-
eration.

The final source of data is time slice experiments from
the North American Regional Climate Change Assessment
Program (http://www.narccap.ucar.edu/data/ ). These data are
output from the Geophysical Fluid Dynamics Laboratory’s
(GFDL) deterministic atmospheric computer model (AM2.1)
with three hour × 50 km resolution. We use data from two
experiments. The first provides modeled data from 1968 to
2000 using observed sea surface temperature and sea-ice extent.
These data are a reanalysis using boundary conditions deter-
mined by actual historical data. The second provides modeled
data for 2038 to 2070 using deviations in sea surface temper-
ature and sea-ice extent from the GFDL’s CM2.1 A2 scenario.
From these experiments we obtain modeled daily average tem-
perature, maximum wind speed, and average cloud cover frac-
tion. These gridded data do not have the same spatial support
as ozone and meteorology data obtained from point-reference
monitors. Throughout we use the ozone monitoring locations as
the spatial unit, and we match modeled climate data with ozone
data by extracting climate data from the grid cell containing the
ozone monitor.

5.2 Atlanta Substudy

We begin by comparing several models using only data from
the 12 stations in the Atlanta area. The continuous variables
temperature and wind speed are standardized and transformed
to the unit interval (as assumed in the monotonicity constraints
described in Section 2) by the normal CDF

Xj = �([temp − m(temp)]/s(temp)), (19)

where m(temp) and s(temp) are the sample mean and standard
deviation of daily temperature over space and time. Cloud cover
proportion naturally falls on the unit interval. We also include
the year to investigate temporal trends in the quantile process.
The year is transformed as Xj = (year − 1997)/8. We also in-
clude the interaction XjXl between temperature and cloud cover
and quadratic effects 4(Xj − 0.5)2.

We fit the full and approximate model with and without
quadratic terms and compare these models with the fully
Gaussian spatial model with spatially varying coefficients,

y(s, t) =
p∑

j=1

Xj(s, t)βj(s) + μ(s, t) + ε(s, t), (20)

where βj(s) are spatial Gaussian processes with exponential co-
variance, μ(s, t) are independent (over time) spatial Gaussian
processes with exponential covariance, and ε(s, t)

iid∼ N(0, σ 2)

is the nugget effect. For both the full and approximate Bayesian
quantile regression models, the centering distribution f0 is
taken to be skew-normal with location μ0 ∼ N(0,102), scale
σ 2

0 ∼ InvGamma(0.1,0.1), and skewness ψ0 ∼ N(0,102). Fig-
ure 2(b) shows that this distribution is flexible enough to ap-
proximate the ozone distributions. However, the parametric
mean regression model with parametric skew-normal errors
would not allow for the shape of the right tail to depend on co-
variates. We note that the quantile regression models do not ex-
plicitly model spatial or temporal association in the daily ozone
values. Effects of residual correlation are examined briefly in
Section 5.5 and alternative models are discussed in Section 6.
We use M = 10 knots and priors τ 2

jm ∼ InvGamma(0.1,0.1)

and ρj ∼ Gamma(0.5,0.5), which gives prior 95% intervals
(0.00,0.99) and (0.00,0.80) for the correlation between the
closest and farthest pairs of points, respectively.

To compare models we randomly removed all observations
for 10% of the days (N = 910 total observations), with these
test observations labeled y∗

1, . . . , y∗
N . For each deleted observa-

tion we compute the posterior predictive mean ŷ∗
i and the poste-

rior predictive 95% equal-tailed intervals. Table 2 gives the root

mean squared prediction error RMSE =
√∑N

i=1(y
∗
i − ŷ∗

i )
2/N,

mean absolute deviation MAD = ∑N
i=1 |y∗

i − ŷ∗
i |/N, and the

coverage probabilities and average (over i) width of the predic-
tion intervals. Note that the RMSEs reported here are larger than
those reported by other spatial analyses of ozone data, for ex-
ample, Sahu, Gelfand, and Holland (2007), that withhold all ob-
servations for some sites, rather than all observations for some
days. In contrast, we withhold all observations on a subset of
days, and therefore our predictions rely entirely on correctly
modeling the relationship between meteorology and ozone, and
do not use spatial interpolation. Since ozone shows a strong spa-
tial pattern, this results in higher RMSE. We feel this approach
to cross-validation is more relevant for our goal of prediction
for future days without any observed values.

The coverage probabilities of the 95% intervals are near or
above the nominal rate for all models in Table 2. The Gaussian

Table 2. Cross-validation results for the Atlanta substudy

Coverage prob. Average width
Model Covariates 95% interval 95% interval RMSE MAD

Gaussian Linear 0.965 60.4 14.3 9.34
Gaussian Quadratic 0.969 59.8 14.2 9.07
QR—approx. Linear 0.959 50.4 13.1 7.76
QR—approx. Quadratic 0.947 47.3 12.9 7.62
QR—full Linear 0.987 70.1 13.2 7.87
QR—full Quadratic 0.986 69.6 13.0 7.64
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models have the highest RMSE and MAD. To test for a pos-
sible transformation to normality, we also fitted the Gaussian
model using the square root of ozone as the response. RMSE
and MAD are compared by squaring the draws from the pre-
dictive distribution. RMSE (14.4 for linear predictors, 14.2 for
quadratic predictors) and MAD (9.6 for linear predictors, 9.2
for quadratic predictors) were similar to the untransformed re-
sponse, so we use the untransformed response for ease of inter-
pretation. The approximate method with quadratic terms min-
imizes both RMSE and MAD, has good coverage probability,
justifying its use for prediction.

Figure 3 summarizes the posterior for the full Bayesian spa-
tial quantile regression model with quadratic terms. Panels (a)–
(c) plot the quantile curves for one representative location. The
main effects are all highly significant, especially for the upper
quantile levels. As expected ozone concentration increases with
temperature and decreases with cloud cover and wind speed.
Figure 3 reveals a complicated relationship between ozone and

temperature. The linear temperature effect is near zero for low
quantile levels and increases with τ .

Figure 3(c) plots the data and several fitted quantile curves
(τ ranging from 0.05 to 0.95) by year with the transformed me-
teorological variables fixed at 0.5. All quantile levels decrease
from 1997 to 2002; after 2002 the lower quantiles plateau while
the upper quantiles continue to decline. Note that in this plot
more than 5% of the observations fall above the 95% quan-
tile level. This is the result of plotting the quantile functions
without regard to variability in the meterological variables (i.e.,
fixing them at 0.5). To give a sense of the spatial variability in
the quantile curves, Figure 3(d) plots the posterior mean of the
main effect for year for all locations. All sites show a decreas-
ing trend, especially for upper quantile levels. The decreasing
trends are adjusted for meteorology, and may be explained by
other factors, such as emission reductions. There is consider-
able variation from site to site. The posterior 95% interval for

(a) linear terms (b) quadratic terms

(c) data and fit by year (d) year main effect by location

Figure 3. Results for Atlanta substudy. Panels (a)–(c) plot the results for one location. Panels (a) and (b) give posterior 95% intervals for
main effect and second-order quantile curves. Panel (c) plots the data by year, along with the posterior mean quantile curves for several quantile
levels ranging from τ = 0.05 to τ = 0.95 with all covariates fixed at 0.5 expect year. Panel (d) plots the posterior mean of the year main effect
for each location. The online version of this figure is in color.
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Reich, Fuentes, and Dunson: Bayesian Spatial Quantile Regression 15

the difference between the year main effect at τ = 0.8 for the
sites with largest and smallest posterior mean is (10.4, 25.0).

5.3 Analysis of Eastern U.S. Ozone Data

Analyzing data for the entire Eastern U.S. using the full
Bayesian spatial quantile regression model is not computation-
ally feasible, so we use only the approximate model. We se-
lected variance inflation c = 1. We considered other values of
c, but the estimates were nearly identical so we pick c = 1 for
simplicity. Based on Section 5.2’s results, we include quadratic
terms for all predictors. Also, we use the same priors as in
Section 5.2. The posterior median (95% interval) for the skew-
ness parameter ψ0 of the skew-normal base distribution is 3.76
(1.12, 10.54), supporting a non-Gaussian analysis. To justify
that this model fits well, we randomly removed observations
for 2% of the days (N = 12,468 observations) and the out-
of-sample coverage probability of the 95% prediction intervals
was 93.4%.

Figure 4 maps the posterior means of several quantile func-
tions. The two strongest predictors are temperature and cloud
cover. The model includes interaction and quadratic terms, so
to illustrate the effects, we plot linear combinations of all terms
involving these predictors,

X1β1(τ, s) + X2β2(τ, s) + 4(X1 − 0.5)2β3(τ, s)

+ 4(X2 − 0.5)2β4(τ, s) + X1X2β5(τ, s), (21)

where X1 and X2 are temperature and cloud cover values, re-
spectively, and β1–β5 are the corresponding quantile curves.
Figure 4(a)–(d) plot the posterior means of linear combinations
using X1 that correspond to 20◦C and 30◦C and X2 that corre-
spond to 10% and 90% cloud cover.

For both temperature values ozone concentrations are gener-
ally higher when cloud cover is low. For clear days with 10%
cloud cover temperature has a strong effect on ozone in the
north, but only a weak effect in the south. For cloudy days with
90% cloud cover, temperature has less effect overall, but re-
mains significant in the northeast.

The linear time trend for the 95th quantile in Figure 4(e) is
generally decreasing, especially in the south. This agrees with
Chan (2009). To compare the rate of decrease in the upper
and lower tails, Figure 4(f) plots the difference between the
linear time trend for the 95th and 5th quantile [βj(0.95, s) −
βj(0.05, s)]. In the Middle Atlantic (red) the negative trend is
stronger in the lower tail than the upper tail; in contrast in
Florida the trend is stronger in the upper tail.

5.4 Calibrating Computer Model Output

Before applying our statistical model to project ozone levels,
we must calibrate the climate model with the observed data. For
example, calibration is necessary to account for systematic dif-
ferences between grid cell averages and point measurements.
Figure 5 plots the sample quantile function for the observed
and modeled temperature and wind speed for all days in 1997–
1999 in Georgia. The distribution of daily average temperature
agrees quite well below the median, however the modeled tem-
perature has a heavier right tail than the observed temperature.
The standard approach to calibration is to simply shift and scale
the computer model output by matching the sample mean and

standard deviation. However, in light of the differences in the
tail of the distributions and our desire to accurately model ex-
treme events, a more sophisticated approach is warranted.

We use nonlinear monotonic regression on the sample quan-
tile functions to calibrate these distributions. Let q̂o(τk) and
q̂m(τk) be the τkth sample quantiles of the observed and mod-
eled 1997–1999 data, respectively. These distributions are stan-
dardized by the nonlinear model E[q̂o(τ )] = g[q̂m(τ )] us-
ing sample quantiles on the grid τk ∈ {0.01,0.02, . . . ,0.99}.
We model g using M = 20 Bernstein polynomial basis func-
tions with monotonicity constraints (fitted using restricted least
squares) as in Section 2 to ensure that g is an increasing func-
tion. Figure 5 shows the transformed temperature for Georgia.
Model outputs for 2041–2045 with large temperatures are re-
duced to resolve the discrepancy between observed and mod-
eled 1997–1999 data. The meteorological predictors are trans-
formed separately by state to account for spatial variation in the
calibration.

We compare this calibration method to the simple method of
adjusting each site by the state mean and variance using five-
fold cross-validation. We randomly divided the observed tem-
perature data into five groups. For each group we used the ob-
servations from the remaining four groups to calibrate the com-
puter model output for the group. For each site, we computed
the squared difference between the mean observed temperature
and the mean of the calibrated computer output, as well as the
Kolmogorov–Smirnov test statistic for the test that the observed
temperature and calibrated computer model output follow the
same distribution. The quantile calibration method has smaller
squared error (average of 3.26 compared to 3.31, smaller at
56% of sites) and KS-statistic (average of 0.139 compared to
0.149, smaller at 59% of sites) than the mean/variance calibra-
tion method.

5.5 Projecting Ozone Levels Under Different
Climate Scenarios

The additive structure of the quantile regression model gives
the effect of each covariate on the maximum daily eight-hour
average ozone in closed form. In addition, policy makers are
often interested in the effect of covariates on the yearly ozone
distribution. For example, in this section we explore the rela-
tionship between temperature and yearly median and 95th per-
centile of ozone. Here we use Section 5.3’s estimate of the
conditional density of daily ozone to simulate several realiza-
tions of the ozone process to forecast yearly summaries under
different climate scenarios. These simulations vary tempera-
ture, wind speed, and cloud cover and assume all other factors
(emissions, land use, etc.) are fixed. Certainly other factors will
change in the future (e.g., emissions may decline in response
to new standards) so these projections are not meant to be real-
istic predictions. Rather, they are meant to isolate the effect of
climate change on future ozone levels.

Two factors contribute to the effect of climate changes on
ozone levels at a given location: the magnitude of the climate
change and the strength of the association of meteorology and
ozone. To quantify spatial variability in the effect of tempera-
ture increase on yearly summaries, we generate 500 replicates
of the ozone process at the data points under different climate
scenarios. The first scenario is no change in the meteorological
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(a) 20◦C, cloud cover 10%, τ = 0.95 (b) 30◦C, cloud cover 10%, τ = 0.95

(c) 20◦C, cloud cover 90%, τ = 0.95 (d) 30◦C, cloud cover 90%, τ = 0.95

(e) linear year, τ = 0.95 (f) linear year, differnce between τ = 0.95 and τ = 0.05

Figure 4. Summary of the posterior mean of βj(τ, s). Panels (a)–(d) plot linear combinations of βj(τ, s) as discussed in (21). Panels (e) and (f)
plot the posterior mean of βj(0.95, s) and βj(0.95, s) − βj(0.05, s), respectively. The units are parts per billion in all plots. The online version of
this figure is in color.
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Figure 5. Calibration plots for meteorological data in Georgia.

variables. In this case, replicates are generated by simulating the
ozone concentration each day at each spatial location from the
Section 5.3’s conditional daily ozone distribution given the ob-
served meteorological values for that location on that day. For
this and all other simulations we fix the year variable to 2005 for
all observations to represent the most recent ozone distribution.
The rth replicate at location s and day t, y(r)(s, t), is generated
by first drawing ust ∼ U(0,1) independent over space and time
and then transforming to

y(r)(s, t) =
p∑

j=1

Xj(s, t)β̂j(ust, s), (22)

where β̂j(ust, s) is the posterior mean of βj(ust, s). For each

replication we calculate the yearly summaries Q(r)
1 (s, τ ), the

τ th quantile of {y(r)(s,1), . . . , y(r)(s,nt)}, and T(r)
1 (s), the three-

year (2003–2005) average of the fourth-highest daily maximum
eight-hour average ozone concentrations.

The second scenario increases the daily average temperature
by 2◦C every day at every location and keeps all other variables

fixed. Denote Q(r)
2 (s, τ ) and T(r)

2 (s) as the yearly summaries
for replication r from this scenario. Figure 6 plots the mean
(over r) of Q(r)

2 (s, τ ) − Q(r)
1 (s, τ ) for τ = 0.5 and τ = 0.95 to

illustrate the effect of a shift in daily temperature holding all
other variables fixed. The change in median and 95th quantile
of yearly ozone are both the largest in Michigan and Northeast
U.S. The current (as of 2008) EPA ozone standard is that the
three-year average of the fourth-highest daily maximum eight-
hour average ozone concentrations is less than 0.075 ppm.

The third scenario uses the calibrated GFDL projected tem-
perature, wind speed, and cloud cover for 2041–2045. The pro-
jected temperature change from the observed 1997–2005 tem-
peratures and calibrated 2041–2045 temperatures varies spa-
tially, but is generally between 1–4◦C and is largest in the Mid-
west. As an example of the analysis that can be conducted using
the rich output of the Monte Carlo simulation, Figures 7(c) and
7(d) plot the probability of the three-year (2041–2043) average
of the fourth-highest daily maximum eight-hour average ozone
concentrations is greater than 0.075 ppm under the current and
future climate scenarios, respectively. Also, Table 3 shows the

(a) change in the median (b) change in the 95th quantile

Figure 6. Estimates of the change (ppb) in yearly median and 95th quantile due to shifting each daily average temperature by 2◦C (standard
errors are less than 3 ppb for all sites and quantiles). The online version of this figure is in color.

D
ow

nl
oa

de
d 

by
 [

Pe
ki

ng
 U

ni
ve

rs
ity

] 
at

 2
2:

30
 0

6 
Se

pt
em

be
r 

20
12

 



18 Journal of the American Statistical Association, March 2011

(a) change in the median (b) change in the 95th quantile

(c) exceedence probability, 1997–2005 met (d) exceedence probability, 2041–2045 met

Figure 7. Panels (a) and (b) plot estimates of the change in yearly median and 95th quantile under the future and current climate scenarios.
Panels (c) and (d) give the probability that the three-year (2041–2043) average of the fourth-highest daily maximum eight-hour average ozone
concentrations exceeds 75 ppb for current and future climate scenarios, respectively. The online version of this figure is in color.

Table 3. Mean (standard deviation) of the 500 Monte Carlo simulations of the fourth-highest daily maximum eight-hour average ozone (ppb)
using current (1997–2005) and projected (2041–2045) meteorology, and the difference between fourth-highest daily maximum eight-hour

average ozone using projected and current meteorology for the stations with largest projected increase

County, State Longitude Latitude Current Projected Difference

New London, CT –72.06 41.32 79.13 (3.27) 99.21 (4.03) 20.09 (5.41)
New Haven, CT –72.55 41.26 88.62 (3.06) 105.51 (3.93) 16.88 (4.80)
Schoolcraft, MI –85.95 46.29 67.43 (2.36) 82.26 (2.27) 14.83 (3.34)
Fairfield, CT –73.34 41.12 88.18 (3.15) 101.41 (3.52) 13.23 (4.76)
Wake, NC –78.62 35.79 66.49 (2.09) 79.71 (2.54) 13.22 (3.31)
Fairfield, CT –73.44 41.40 88.72 (3.38) 101.64 (3.14) 12.92 (4.74)
New Castle, DE –75.49 39.76 80.13 (1.91) 92.72 (2.57) 12.59 (3.25)
Blair, PA –78.37 40.54 73.25 (2.29) 85.76 (2.30) 12.51 (3.24)
Cambria, PA –78.92 40.31 73.60 (1.99) 86.07 (1.91) 12.47 (2.64)
Lincoln, ME –69.73 43.80 61.25 (2.36) 73.41 (2.45) 12.16 (3.49)
Bristol, MA –70.88 41.63 82.54 (2.89) 94.18 (2.76) 11.64 (3.96)
Jefferson, NY –75.97 44.09 77.57 (2.94) 88.91 (2.50) 11.34 (3.88)
Northampton, NC –77.62 36.48 67.36 (1.84) 78.69 (2.00) 11.33 (2.65)
Rockingham, NH –70.81 42.79 76.21 (3.11) 87.48 (3.12) 11.28 (4.51)
Putnam, TN –85.40 36.21 69.36 (1.53) 80.40 (2.11) 11.04 (2.57)
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mean and standard deviation of the Monte Carlo samples for the
stations with the largest projected difference in fourth-highest
daily maximum eight-hour average ozone. The largest increases
are in the Northeast and Midwest.

To test for sensitivity to modeling assumptions, we also make
projections under the future climate scenario without calibra-
tion of the computer model and with temporal correlation in
the Monte Carlo samples. The results were quite different with-
out calibration. For example, the projected average (over space)
change in median and 95th percentile yearly ozone, respec-
tively, is 3.54 and 5.43 without calibration, compared to 2.29
and 2.26 with calibration. To test for sensitivity to correlation
in the Monte Carlo samples, we generate the latent ust as ust =
�(Ust), where Ust are independent across space, and mean
zero, Gaussian, with temporal covariance Cov(Ust,Ust+h) =
0.4h, where the correlation 0.4 was chosen to match a lag-1
residual autocorrelation of a typical location. The projected av-
erage (over space) change in median and 95th percentile yearly
ozone with correlated draws are 2.29 and 2.21, respectively.
Therefore the projections are not sensitive to residual autocor-
relation.

6. DISCUSSION

In this article we propose a Bayesian spatial quantile method
for tropospheric ozone. Our model does not assume the re-
sponse is Gaussian and allows for complicated relationships
between the covariates and the response. Working with a sub-
set of data from the Atlanta area we found that temperature,
cloud cover, and wind speed were all strongly associated with
ozone, and that the effects are stronger in the right tail than
the center of the distribution. Working with the entire Eastern
U.S. dataset we found a decreasing time trend, especially in the
South. Applying the model fit under different climate scenarios
suggests that the effect of a warmer climate on ozone levels will
be strongest in the Industrial Midwest and Northeast, and that
a warmer climate will increase the probability of exceeding the
EPA ozone standard in these areas.

Our model accounts for spatial variability by modeling the
conditional distribution as a spatial process. However, we do
not directly account for the correlation of two nearby observa-
tions on the same day or two observations at the same location
on consecutive days. A spatial copula (Nelsen 1999) could be
used to account for this source of correlation while preserving
the marginal distribution specified by the quantile function. We
experimented with a spatial Gaussian copula and found it dra-
matically improved prediction of withheld observations when
several observations on the same day were observed. How-
ever, when all observations on a day were withheld, prediction
did not improve substantially. Since our objective is to predict
ozone on days with no direct observations, and MCMC con-
vergence and run times are slower using a copula, we elect to
present results from the independent model. An efficient way to
account for residual correlation is an area of future work.

In addition to projecting ozone levels, the analysis in this ar-
ticle could be combined with health effects estimates to study
changes in ozone health risks. The Monte Carlo simulation in
Section 5.5 produces samples of the joint spatiotemporal distri-
bution of ozone and meteorology. For each sample, we could

generate a realization of the mortality time series, and compare
the distributions of mortality rates across climate scenarios. In
this analysis, it would be important to account for spatially
varying health effects as well as interactions between ozone and
meteorology.

APPENDIX: MCMC DETAILS

MCMC sampling is carried out using the software package R. Dif-
ferent sampling schemes for the full and approximate models are
used to update the regression coefficients δ∗

jm(s); all other parame-
ters are updated identically for both methods. For Section 2.2’s full
model, the δ∗

jm(s) are updated individually using Metropolis sam-
pling. This requires computing the likelihood for each observation.
This likelihood is approximated by computing q(τk|Xi, si) on a grid
of 100 equally spaced τk from 0 to 1, and taking p(yi|Xi, δ(si)) ≈
1/[q(τj+1|Xi, si) − q(τj|Xi, si)], where τj is the quantile level so that
q(τj|Xi, si) ≤ yi < q(τj+1|Xi, si).

Using Section 3’s approximate model, the latent δ∗
jm(s) have conju-

gate full conditionals and are updated using Gibbs sampling. Denote
the quantile process at location si evaluated on the grid of τ in (16)
as β(si) = �δ(si), where � is the appropriate matrix of basis func-
tions, δ(si) the vector of δjm(si), and δ∗(si) the vector of δ∗

jm(si). The

full joint posterior for δ∗(si) is the product of the Gaussian likelihood
β̂(si) ∼ N(�δ(si),�i) and the Gaussian spatial prior for δ∗(si). How-
ever, in this normal/normal model δ∗(si) does not have a Gaussian
full conditional since δ(si), a truncated version of δ∗(si), appears in
the likelihood instead of δ∗(si). However, the individual components
δ∗

jm(si) do have conjugate full conditionals, given below.

Define δ∗
jm(si)|δ∗

jm(sk), k �= i ∼ N(m1, s2
1) as the conditional prior

from the Gaussian spatial model, �jm as the column of � that
corresponds to δjm(si), r1 = β̂(si) − �δ(si) + ∑p

l=1 �lmδlm(si)

as the residuals not accounting for the terms corresponding to
δ1m(si), . . . , δpm(si), and r2 = β̂(si) − �δ(si) + �jmδjm(si) as the
residuals not accounting for the term corresponding to δjm(si). Then
twice the negative log of the full conditional of δ∗

jm(si) is the sum of a
constant that does not depend on δ∗

jm(si) and⎧⎪⎪⎨
⎪⎪⎩

r′
1�−1

i r1 + s−2
1 (δ∗

jm(si) − m1)2, δjm(s) = 0

[r2 − �jmδ∗
jm(si)]′�−1

i [r2 − �jmδ∗
jm(si)]

+ s−2
1 (δ∗

jm(si) − m1)2, δjm(s) > 0,

(A.1)

where δjm(s) = 0 if δ∗
1m(s) + ∑p

l=2 I(δ∗
lm(s) < 0)δ∗

lm(s) ≤ 0. In both
cases of (A.1), the full conditional is proportional to a Gaussian dis-
tribution. Therefore, the full conditional of δ∗

jm(si) is a mixture of two
truncated normal densities

π ∗ N[−∞,c](m1, s2
1) + (1 − π)N[c,∞](m2, s2

2), (A.2)

where NA(m, s2) is the truncated normal density with location m,
scale s, and domain A. The first truncated normal density corresponds
to δjm(s) = 0 and the mth term dropping from the likelihood, and
so the parameters of the truncated normal are the prior mean and
variance. The second term corresponds to δjm(s) = δ∗

jm(s) �= 0, and

has parameters m2 and s2
2, where s−2

2 = 1/s2
1 + �′

jm�−1
i �jm, m2 =

s2
2[m1/s2

1 + �′
jm�−1

i r2].
The probability π and cutpoint c depend on j and m. The first term is

unconstrained, so if m = 1 then π = 0 and c = −∞. Terms with m > 1
are constrained. For these terms if j = 1 then c = −∑p

j=2 I(δ∗
jm(s) <

0)δ∗
jm(s) and

π = �

(
c − m1

s1

)/(
�

(
c − m1

s1

)
+ s2

s1

(
1 − �

(
c − m2

s2

))

× exp
(−[r′2�−1

i r2 + m2
1/s2

1 − m2
2/s2

2 − r′1�−1
i r1]/2

))
. (A.3)
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Finally, we give the full conditional for terms with m > 1 and j > 1.
For these terms, if c∗ = −δ∗

1m(s)−∑
k>1,k �=j I(δ∗

km(s) < 0)δ∗
km(s) ≥ 0

then π = 1 and c = ∞, and if c∗ < 0 then c = c∗ and π is given
by (A.3).

For both full and approximate methods, the spatial variances τ2
j

have conjugate inverse gamma priors and are updated using Gibbs
sampling. The spatial ranges ρj and centering distribution parame-
ters � are updated individually using Metropolis sampling with
Gaussian candidate distributions.

For all analyses we generate 20,000 MCMC samples and discard
the first 10,000 as burn-in. Convergence is monitored using trace plots
of the deviance and several representative parameters.

[Received April 2009. Revised March 2010.]
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