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Abstract

Dengue disease has serious health and socio-economic consequences. Mapping its 

occurrence at a fine spatiotemporal scale is a crucial element in the preparation of 

an early warning system for the prevention and control of dengue and other viral dis-

eases. This paper presents a Bayesian spatiotemporal random effects (pure) model 

of relative dengue disease risk estimated by integrated nested Laplace approxima-

tion. Continuous isopleth mapping based on inverse distance weighting is applied to 

visualize the disease’s geographical evolution. The model is applied to data for 30 

districts in the city of Bandung, Indonesia, for the period January 2009 to Decem-

ber 2016. We compared the Poisson and the negative binomial distributions for the 

number of dengue cases, both combined with a model which included structured 

and unstructured spatial and temporal random effects and their interactions. Using 

several Bayesian and classical model performance criteria and stepwise backward 

selection, we chose the negative binomial distribution and the temporal model with 

spatiotemporal interaction for forecasting. The estimation results show that the rela-

tive risk decreased generally from 2014. However, it consistently increased in the 

north-western districts because of environmental and socio-economic conditions. 

We also found that every district has a different temporal pattern, indicating that dis-

trict characteristics influence the temporal variation across space.

Keywords Dengue disease · Bayesian spatiotemporal random effects (pure) model · 

Integrated nested Laplace approximation (INLA) · Isopleth mapping · Bandung—

Indonesia
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1 Introduction

Dengue disease is a mosquito-borne viral disease caused by the dengue virus (DENV 

1–4). The disease is transmitted via the female Aedes-spp. mosquito from person 

to person (Acharya et al. 2016). Dengue is endemic in most tropical and subtropi-

cal countries, particularly in urban and semi-urban regions. The disease is spread-

ing rapidly, and about half the world’s population is now at risk (WHO 2018). The 

transmission of pathogens is promoted by factors such as population density, migra-

tion, commuting, trade, poor sanitation and limited access to clean water. Climate 

change and virus evolution have also played an important role in the spread of the 

disease (Murray et al. 2013; Zellweger et al. 2017). Epidemics tend to cause serious 

health problems, death and socio-economic losses such as impacts on medical care, 

hospitalization, a loss of productivity, school absenteeism and the unproductive con-

sumption of time for unpaid caregivers (Jaya et al. 2017; Suaya et al. 2009; Widiyani 

2013). The global cost of the dengue disease in 2013 was approximately USD 8.9 

billion (Shepard et al. 2016).

Although vaccines exist, the usual strategy adopted by most dengue-prone coun-

tries is disease prevention, because vaccines or specific antiviral therapies are very 

expensive (WHO 2016). For example, in Indonesia—with a per capita income 

of USD 296 per month in 2017—the cost of a single injection is around USD 77  

(1 USD = IDR 13,500). Three injections, administered every six months, are needed 

for vaccination to be effective (Detik 2016).

Prevention requires effective vector control to break the lifecycle of the mos-

quito (WHO 2012). Vector controls include environmental, biological or chemical 

operations (WHO 2009). A crucial step in prevention is the identification of regions 

where the a priori risk level is predicted to exceed a critical threshold for the ensuing 

periods. An early warning system is needed to ensure the success of vector control 

(CDC 2016; WHO 2018). Such a system requires statistical methods to generate 

forecasts for the risk by region and time (Ugarte et al. 2012).

Spatiotemporal maps which track the distribution of the disease are basic ele-

ments of an early warning system (Lawson 2006). They depict the spatiotemporal 

evolution of the incidence rate of the disease and thus provide clues for epidemi-

ologists to expand their aetiologic hypotheses on disease outbreaks (Ugarte et  al. 

2012). Choropleth maps, based on patterns of shades or colours according to a pre-

arranged key, are usually used to characterize regions. Each shading or colour type 

represents a range of values. However, choropleth maps show distributions that have 

discontinuities at the borderlines which render them less suitable for disease map-

ping, the purpose of which is to generate forecasts or to identify unknown risk fac-

tors that continuously vary spatially, such as rainfall, temperature or humidity (Emch 

et  al. 2017).1 To overcome these problems, isopleth maps, which typically show 

1 For further shortcomings of choropleth maps, we refer to Lawson (2006).
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continuous change across space, may be used instead. They are applied in the pre-

sent case study.

Modelling and forecasting of relative disease risk is a challenging task, especially 

in developing countries. The challenge comes from incomplete or inaccurate infor-

mation on the main determinants. In particular, limited resources for surveillance 

tend to lead to incomplete data, and even if complete data on the risk factors are 

available, it may not directly relate to the incidence rate due to complex transmis-

sion pathways (Christenfeld et al. 2004; McMichael et al. 2013). As an alternative, 

we propose spatiotemporal random effects models (models without covariates), also 

known as pure or random intercept models, to overcome the information problems 

(Clayton and Kaldor 1987; Coly et al. 2015; Knorr-Held 2000; Waller et al. 1997; 

Waller and Carlin 2010).

A number of risk factors are available for the present case study, notably meteoro-

logical variables such as rainfall, temperature and humidity and socio-economic fac-

tors such as the larvae free index and the healthy house index. However, the objec-

tive of this paper is spatiotemporal mapping, i.e. to obtain out-of-bounds predictions 

(denoted as forecasts in the subsequent study) for each study area (see Schrödle and 

Held 2011; Ugarte et al. 2014; Wakefield 2007). For forecasting purposes, the inclu-

sion of covariates is not needed; it can be based on univariate time series data. In 

addition, the inclusion of covariates may lead to complex models because of the sto-

chastic variation in the relationship between the covariates and the interest variable, 

even if they are causally related. Another major advantage of mapping (based on a 

univariate time series) is that data on the variable of interest are often unique histori-

cal data and that corresponding data on covariates are not readily available (Linden 

et al. 2003; Peter and Silvia 2012). In the case of disease mapping, the information 

on the risk factors can be accounted for by means of structured and unstructured 

spatial and temporal random effects and their interactions (Wakefield 2007). The 

aim of ‘spatial regression’, on the other hand, is the estimation of the association 

between relative risk and potential risk factors.

The pure model is usually estimated by means of Bayesian methods because of 

their convenience for specifying the random components using a hierarchical struc-

ture on the parameters (Blangiardo et al. 2013). When no analytical solution is feasi-

ble, Bayesian spatiotemporal random effect models are usually estimated by means 

of Markov Chain Monte Carlo methods (MCMC) (Blangiardo et  al. 2013). How-

ever, MCMC can be computationally challenging due to the complexity of the mod-

els, particularly the large number of parameters. Consequently, MCMC can lead to 

large Monte Carlo errors and consume a substantial amount of computation time 

(Arab 2015; Blangiardo et al. 2013; Ugarte et al. 2012). An alternative to MCMC 

is integrated nested Laplace approximation (INLA) (Blangiardo et  al. 2013; Jaya 

et al. 2017). INLA reduces computation time and produces reliable parameter esti-

mates which are equivalent to MCMC estimates (Bivand et al. 2015; Blangiardo and 

Cameletti 2015; Rue and Martino 2009; De Smedt et al. 2015).

We note that several recently published studies that forecast the relative risk of 

infectious diseases ignore temporal trends and seasonal patterns (Liu et  al. 2017; 

Ugarte et  al. 2012; Watson et  al. 2017). This is a major omission since they are 

important characteristics from theoretical, methodological and policy perspectives 
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(Bauer et al. 2016; WHO 2009). As shown below, they can be accounted for in a 

straightforward manner using Bayesian methods and INLA.

The structure of the remainder of this paper is as follows. Section 2 presents the 

spatiotemporal dengue fever model and summarizes its estimation by INLA. Sec-

tion 3 applies the method to Bandung, Indonesia. Section 4 presents the conclusions.

2  Methodology

2.1  The general Bayesian spatiotemporal disease model

The classical unbiased estimator of relative risk is the standardized incidence ratio 

(SIR), defined as the ratio of the number of cases in a region and the expected num-

ber. However, the SIR can be subject to a high level of unreliability due to a small 

number of cases in a region or a small population at risk (Lawson 2013; Ugarte et al. 

2014). As a result, the estimate can be distorted. These drawbacks can be overcome 

by shrinkage, i.e. a reduction of the incidence of outliers, by smoothing the esti-

mate using spatiotemporal methods including Bayesian spatiotemporal hierarchical 

models. To reduce the variability of the risk estimates, shrinkage borrows strength 

from neighbours, i.e. spatiotemporal dependency and heterogeneity. The notion of 

borrowing strength from adjacent regions is related to Tobler’s (1970) law of geog-

raphy—that nearby regions are more similar than regions further away from each 

other—and to the basic notion of spatial dependence in spatial econometrics (e.g. 

LeSage and Pace 2009). Borrowing strength from neighbours is also a key issue in 

small area estimation (SEA) (Handayani et al. 2018; Rao and Molina 2015).

During the last 20 years, a wide range of spatiotemporal models has been devel-

oped for disease modelling, most of them of the intrinsic conditional autoregres-

sive (iCAR) type extending the well-known Besag, York and Mollie (BYM) model 

(Besag et al. 1991; Knorr-Held 2000; Waller et al. 1997). The BYM model (dengue 

disease) in this paper assumes that, conditional on the underlying relative risk, �
it
 , 

the number of cases in each region i and at time t , yit , follows a Poisson distribution 

with mean and variance equal to �
it
= E

it
�

it

with E
it
 denoting the expected number of cases and �

it
 the relative risk in region i 

and at time t . In the case of spatiotemporal data, the expected number of cases can 

be based on the following reference rates: (1) the average for each period (Abente 

et al. 2018; Jaya et al. 2017):

and (2) the overall average (over across all periods):

(1)yit|Eit�it ∼ Poisson
(
Eit�it

)
i = 1,… , n and t = 1,… , T ,

(2)Eit = Nit

∑n

i=1
yit

∑n

i=1
Nit

t = 1,… , T ,

(3)Eit = Nit

∑n

i=1

∑T

t=1
yit

∑n

i=1

∑T

t=1
Nit

i = 1,… , n and t = 1,… , T ,
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with N
it
 denoting the population in region i at time t , n the number of observed 

regions and T  the number of observed periods. Following Abente et al. (2018), we 

apply the overall average in the case study.

Disease data frequently show an over-dispersion of zeros. This problem can 

be handled by the inclusion of a second parameter �
it
 in the Poisson distribu-

tion governing the variance with �
it
 following a Gamma distribution. Specifically 

(Mohebbi et al. 2014):

for yit = 0, 1, 2,… and 𝜚 > 0 . The combination of the Poisson–Gamma probability 

of yit can be expressed as:

By integrating out the random effect �
it
 , the marginal probability of yit is 

obtained as the negative binomial (NB) distribution (Mohebbi et al. 2014):

The NB distribution has a mean E
(

yit

)

= Eit�it and variance 

Var
(

yit

)

= Eit�it +
(

Eit�it

)2

∕� with � being the parameter of additional Poisson 

variation. The variance of the NB distribution is always greater than the mean. 

For � → ∞ , the NB distribution converges on the Poisson distribution. The dis-

cussion below is in terms of the Poisson model. Generalization to the NB model 

is straightforward.

We now turn to the mean of the Poisson distribution, which we decompose by 

way of the natural logarithm link function:

The second component in Eq.  (7), log
(

�
it

)

, is the focus of further research. 

We model it as a pure model with the random effects consisting of structured 

and unstructured variance components. The structured variance components take 

account of the variation due to the correlation between spatial and temporal units, 

respectively, while the unstructured variance components represent the variation 

due to heteroscedasticity. Specifically:

where � is the intercept representing the overall relative risk; �
i
, �

i
 , �

t
 and �

t
 are 

the spatially structured, spatially unstructured, temporally structured and temporally 

unstructured random effect components, respectively. �
it
 represents spatiotemporal 

interaction.

(4)yit

|||
Eit�it, �it ∼ Poisson

(
Eit�it�it

)
and �it

|||
� ∼ Gamma(�, �),

(5)

p
(
yit|Eit, �it, �it

)
= Gamma(�, �)Poisson

(
Eit�it�it

)

=

(
��
(
�it

)�−1
exp

(
−��it

)

�
(
�it

)

)(
exp

(
−Eit�it

)(
Eit�it

)yit

yit!

)
.

(6)p
(
yit|Eit�it, �

)
=

�
(
yit + �

)

�
(
yit + 1

)
� (�)

(
Eit�it

Eit�it + �

)yit
(

�

Eit�it + �

)�

.

(7)log
(

�
it

)

= log
(

E
it

)

+ log
(

�
it

)

i = 1,… , n and t = 1,… , T

(8)�
it
= log

(

�
it

)

= � + �
i
+ �

i
+ �

t
+ �

t
+ �

it
i = 1,… , n and t = 1,… , T ,
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The estimation of Eq. (8) can be done by means of frequentist or Bayesian meth-

ods. A frequentist method such as maximum likelihood (ML) is often unsatisfactory, 

especially for small regions, due to Poisson sampling variation (Ugarte et al. 2014). 

ML estimation of the region-specific risk and of the time-trend can be seriously 

affected by random variation, particularly when the data are scarce or incomplete 

(Bernardinelli et al. 1995). This problem can be overcome by Bayesian modelling, 

which allows the coherent incorporation of missing or uncertain data or information 

into the analysis (Lawson and Zhou 2005). Therefore, we use the hierarchical Bayes-

ian approach in this paper, as summarized below.

Consider observed data in the ith region at time t , �i =

(

yi1,… , yiT

)�

 , gen-

erated from a probability distribution p
(
�i|�, �

)
 with unknown parameters 

� =

(

�,��
, v

′
,��

, ��, ��
)�

 . The unknown parameters � are taken as random variables 

with priors p(�|�) , and with unknown hyper-parameters � =

(

�� , ��, �
v
, ��, �� , ��

)�

 

and hyper-priors p(�) . Under the assumption of independence, the likelihood func-

tion of the number of cases is identical to the joint density of �
i
, i = 1,… , n. Accord-

ingly, the joint posterior density of � and �, given �, is provided by Jaya et  al. 

(2017):

where p(�|�, �) is the likelihood function of the number of cases y
it
 , and p(�|�) 

is the marginal likelihood of the data given hyper-parameters �.p(�|�) is typically 

taken as a normalization constant as it does not depend on �. It can therefore be 

ignored in the estimations. Then, the posterior density can be specified as:

where the ‘equal to’ sign (=) is replaced by the ‘proportional to’ sign ( ∝).

For the Poisson distribution, the likelihood function of the number of cases y
it
 

can be expressed as:

The prior distributions are used to model the spatial and temporal effect compo-

nents. The spatially structured random effect of region i 
(

�
i

)

 is modelled using the 

intrinsic conditional autoregressive prior (Besag et al. 1991):

where �
−i

 indicates all the elements in � except the ith element, � =

(

wij

)

 is the 

‘adjacency’ matrix with wij = 1 if i and j are adjacent (i.e. are first-order contiguous) 

and wij = 0 otherwise, and �
�
 is the precision parameter of �

i
 . The joint prior den-

sity function of � =

(

�1,… ,�
n

)�

 over time t is (Rue and Martino 2009):

(9)p(�, �|�) =
p(�|�, �)p(�|�)p(�)

p(�|�)
,

(10)p(�|�) ∝ p(�|�, �)p(�|�)p(�),

(11)p(�|�, �) =

n∏

i=1

T∏

t=1

exp
(
−Eit�it

)(
Eit�it

)yit

yit!
.

(12)�i��−i, ��,� ∼ N

�∑n

j=1
wij�j

∑n

i=1
wij

,
1

�
�

∑n

i=1
wij

�
∀t and i = 1,… , n,
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with the precision matrix �
�
= �

�
�

�
 and �

�
 the n × n spatial structure matrix 

defined as:

where n
i
 is the number of neighbours of region i and i ∼ j denotes that regions i and 

j are neighbours.

The spatially unstructured random effect of region i
(

v
i

)

 follows an exchangeable 

normal distribution (i.e. a sequence of random variables that are independent and 

identically normally distributed (iid))

where �
�
 is the precision parameter of v

i
 . The joint density function of the vector 

v =

(

v1,… , v
n

)�

 over time t is (Rue and Martino 2009):

with �
�
= �

�
�

n
 being the precision matrix and �

n
 the n × n identity matrix.

Incidences of dengue disease normally increase when the breeding conditions 

for the Aedes-spp. mosquito are favourable, usually in the rainy season (Choi et al. 

2016). Consequently, endemic outbreaks can have a regular, seasonal pattern (CDC 

2014). In addition, there is likely to be a trend over long periods. The temporally 

structured component ( �
t
 ) is thus the sum of a temporal trend ( �

t
 ) and a seasonal 

component ( �
t
):

A common temporal trend 
(

�
t

)

 is a random walk of order one (RW1):

(13)

p
(
�|�

�

)
∝ �

n−1

2

�
exp

(
−
�
�

2

∑

i∼j

(
�i − �j

)2

)

∝ �

n−1

2

�
exp

(
−

1

2
���

�
�

)
∀t,

�
�
=

⎧
⎪
⎨
⎪
⎩

ni if i = j

−1 if i ∼ j

0 otherwise

(14)�
i
|�

�
∼ N

(
0,

1

�
�

)
∀t and i = 1,… , n,

(15)

p
(
�|�

�

)
∝ �

n

2

�
exp

(
−
�
�

2

n∑

t=1

�
2
i

)

∝ �

n

2

�
exp

(
−

1

2
�
′�

�
�

)
∀t,

(16)�
t
= �

t
+ �

t
.

(17)�
t+1 − �

t
|�

�
∼ N

(
0,

1

�
�

)
∀i and t = 1,… , T − 1,
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with �
�
 being the precision parameter. The joint density function of 

� =

(

�1,… ,�
T

)�

 for region i is:

with the precision matrix �
(RW1)

�(T×T)
= �

�
�

(RW1)

�(T×T)
 and �

(RW1)

�(T×T)
 being the T × T  temporal 

trend structure matrix for the RW1 prior:

where all empty cells of �
(RW1)

�(T×T)
 are zero.

A random walk of order two (RW2) could apply to �
t
 instead of a RW1. This 

prior is more appropriate if the data has a pronounced linear trend. The temporal 

trend 
(

�
t

)

 of a RW2 is:

with joint density function for region i:

with �
(RW2)
� = �

�
�

(RW2)
�  being the precision matrix and �

(RW2)
�  the T × T  temporal 

trend structure matrix of a RW2 prior:

(18)

p
(
�|�

�

)
∝ �

(T−1)

2

� exp

(
−
�
�

2

T−1∑

t=1

(
�t+1 − �t

)2

)

∝ �

(T−1)

2

� exp
(
−

1

2
���

(RW1)

�(T×T)
�
)
∀i,

(19)�
t
− 2�

t+1 + �
t+2|�� ∼ N

(
0,

1

�
�

)
∀i and t = 1,… , T − 2,

(20)

p
(
�|�

�

)
∝ �

(T−2)

2

� exp

(
−
�
�

2

T−2∑

t=1

(
�t − 2�t+1 + �t+2

)2

)

∝ �

(T−2)

2

� exp
(
−

1

2
���

(RW2)

�(T×T)
�
)
∀i,
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The seasonal component 
(

�
t

)

 with periodicity m (with m being smaller than the 

number of time periods T) is:

where �
�
 is the precision parameter of �

t
 . The joint density function of 

� =

(

�1,… , �
T

)�

 is:

with �
�
= �

�
�

�
 being the precision matrix and �

�
 the T × T  temporal structure 

matrix for the seasonal prior:

For example, for m = 4 we have:

For the temporally unstructured component 
(

�
t

)

 for region i , we assume an 

exchangeable normal distribution:

(21)�
t
+ �

t+1 +⋯ + �
t+m−1|�� ∼ N

(
0,

1

�
�

)
∀i and t = 1,… , T − m + 1,

(22)

p
(
�|�

�

)
∝ �

(T−m+1)

2

�
exp

(
−
�
�

2

T−m+1∑

t=1

(
�

t
+ �

t+1 +…+ �
t+m−1

)2

)

∝ �

(T−m+1)

2

�
exp

(
−

1

2
���

�
�

)
∀i,
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where �
�
 is the precision parameter of �

t
 with joint density function of 

� =

(

�1,… , �
T

)�

 for region i given by:

with �
�
= �

�
�

T
 being the precision matrix and �

T
 the T × T  identity matrix.

The random components �, �,� , � , and � are described as the main effect, while � 

denotes the spatiotemporal interaction of the spatial and temporal main effects. Four types 

of interactions with corresponding priors for � have been proposed Knorr-Held (2000).

Type I Interaction Combines the spatially and temporally unstructured main effects ( �
i
 

and �
t
 ). Then, � is independent and identically Gaussian distributed with a mean of zero and 

precision �
�
 with a structure matrix given by �𝛿(I) = �𝜐 ⊗ �𝛾 = �

n
⊗ �

T
= �

nT
 , where ⊗ 

denotes the Kronecker product. The density of the interaction component � is then:

where � =

(

�11,… ., �
nT

)�

 and the precision matrix �
�(I) = �

�
�

�(I) . The interaction 

can be thought of as unobserved covariates for each observation it that do not have 

any structure in space and time.

Type II interaction Combines the spatially unstructured main effect 
(

�
i

)

 and one of 

the temporally structured main effects 
(

�
t

or �
t

)

 . Due to the complexity of the computa-

tions, the temporal trend 
(

�
t

)

 is usually used. Then, �
i
=

(

�
it
,… , �

iT

)

�
i = 1, 2,… , n 

follows an independent RW1 or RW2 and � is independent and identically normally dis-

tributed with mean zero. The structure matrix of type II interaction is �𝛿 = �𝜐 ⊗ �𝜑 , 

where �
�
= �

n
 and �

�
 is the temporal structure matrix of RW1 or RW2. This interac-

tion assumes that the temporal trends are different from region to region but do not 

have any structure in a region. The structured matrix �
�
 has rank n(T − 1) for RW1 and 

n(T − 2) for RW1, and the prior for � is:

(23)�
t
|�

�
∼ N

(
0,

1

�
�

)
∀i and t = 1,… , T ,

(24)

p
(
�|�

�

)
∝ �

T

2

� exp

(
−

�
�

2

T∑

t=1

�
2
t

)

∝ �

T

2

� exp
(
−

1

2
���

�
�
)
∀i,

(25)

p
(
�|�

�

)
∝ �

nT

2

�
exp

(
−
�
�

2

n∑

i=1

T∑

t=1

�
2
it

)

∝ �

nT

2

�
exp

(
−

1

2
���

�(I)�

)
i = 1,… , n and t = 1,… , T

(26)

RW1 ∶ p
(
�|�

�

)
∝ �

n(T−1)

2

�
exp

(
−
�
�

2

n∑

i=1

T−1∑

t=1

(
�i,t+1 − �i,t

)2

)

∝ �

n(T−1)

2

�
exp

(
−

1

2
���

(RW1)

�(II)
�

)
i = 1,… , n and t = 1,… , T − 1,
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where � =

(

�
�

1
,… ., �

′

n

)�

 , and �
(RW1)

�(II)
= �

�
�

(RW1)

�(II)
 is the precision matrix for RW1 

and �
(RW2)

�(II)
= �

�
�

(RW2)

�(II)
 for RW2, and where �

(RW1)

�(II)
 and �

(RW2)

�(II)
 are the temporal trend 

structure matrices for RW1 and RW2, respectively.

Type III interaction Combines the temporally unstructured main effect 
(

�
t

)

 and the 

spatially structured main effect 
(

�
i

)

. Then, �
t
=

(

�1t
,… , �

nt

)�

t = 1,… , T follows an 

independent iCAR prior with a mean of zero. The structure matrix of type III interac-

tion is �𝛿(III) = �𝛾 ⊗ �𝜔 , where �
�
= �

T
 and �

�
 is the spatial structure matrix defined 

through the iCAR prior specification. This interaction assumes that the spatially struc-

tured components are independent over time. The structured matrix �
�(III) has rank 

T(n − 1) , and the prior for � is provided by:

with � =

(

�
�

1
,… , �

′

T

)�

 and the precision matrix being �
�(III) = �

�
�

�(III).

Type IV interaction Combines the spatially and temporally structured main effects 

( �
i
 and �

t
 ), which imply that � =

(

�11,… , �
nt

)′
i = 1,… , n and t = 1,… , T  is 

dependent over space and time. The temporal dependency structure for each region 

therefore depends on the temporal structure of the neighbouring regions. Then, � is 

independent and identically normally distributed with a mean of zero. The structure 

matrix of type IV interaction is �𝛿(IV) = �𝜔 ⊗ �𝜑 . R
�
 denotes the spatial structure 

matrix defined by the iCAR prior with �
�
 being the temporal trend structure matrix 

defined through RW1 or RW2. The structured matrix �
�
 has rank (T − 1)(n − 1) for 

RW1 and (T − 2)(n − 1) for RW2. The joint density prior for � is provided by:

(27)

RW2 ∶ p
(
�|�

�

)
∝ �

n(T−2)

2

�
exp

(
−
�
�

2

n∑

i=1

T−2∑

t=1

(
�i,t − 2�i,t+1 + �i,t+2

)2

)

∝ �

n(T−2)

2

�
exp

(
−

1

2
���

(RW2)

�(II)
�

)
i = 1,… , n and t = 1,… , T − 2,

(28)

p
(
�|�

�

)
∝ �

T(n−1)

2

�
exp

(
−
�
�

2

T∑

t=1

n∑

i∼j

(
�it − �jt

)2

)

∝ �

T(n−1)

2

�
exp

(
−
�
�

2
���

�(III)�

)
i = 1,… , n and t = 1,… , T

(29)

RW1 ∶ p
(
�|�

�

)
∝ �

n(T−1)

2

�
exp

(
−
�
�

2

T−1∑

t=1

n∑

i∼j

(
�i,t+1 − �j,t+1 − �i,t + �j,t

)2

)

∝ �

n(T−1)

2

�
exp

(
−

1

2
���

(RW1)

�(IV)
�

)
i = 1,… , n and t = 1,… , T − 1

(30)

RW2 ∶ p
(
�|�

�

)
∝ �

n(T−2)

2

�
exp

(
−
�
�

2

T−2∑

t=1

n∑

i∼j

(
�i,t − �j,t − 2�i,t+1 + 2�j,t+1 + �i,t+2 − �j,t+2

)2

)

∝ �

n(T−2)

2

�
exp

(
−

1

2
���

(RW2)

�(IV)
�

)
i = 1,… , n and t = 1,… , T − 2
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with � =

(

�11,… , �
nT

)′
 , and where �

(RW1)

�(IV)
= �

�
�

(RW1)

�(IV)
 is the precision matrix for 

RW1 and �
(RW2)

�(IV)
= �

�
�

(RW2)

�(IV)
 for RW2, where �

(RW1)

�(IV)
 and �

(RW2)

�(IV)
 are the temporal 

trend structure matrices for the RW1 and RW2 priors, respectively.

Up to a proportionality constant, the product of the likelihood (for the Poisson distribu-

tion defined in Eq. 11) and the independent prior distributions for the unknown parameters 

p(�), p(�), p(v), p(�), p(�), p(�) , p(�), p
(

�
v

)

 , p
(

��
)

, p
(

��
)

, p
(

��
)

, p
(

��
)

, p
(

��
)

 

yields the joint posterior distribution of the model parameters.

The marginal posterior distributions are obtained from Eq. (31), and from which 

summary statistics (e.g. mean, median, mode or quantiles for credible intervals) can 

be derived.

2.2  Priors

We then specify the prior distributions of the intercept ( � ) and of the hyper-parame-

ter 
(

�
2

�
= 1∕�

�
, �2

v
= 1∕�

v
, �2

�
= 1∕�

�
, �2

�
= 1∕�

�
, �2

�
= 1∕�

�
, �2

�
= 1∕�

�

)

 . Follow-

ing Blangiardo et  al. (2013), we specify a vague Gaussian prior distribution with 

zero mean and a large variance �2

�
= �

−1

�
 for � , i.e. � ∼ N

(

0, 10−5
)

 . There are several 

kinds of hyper-prior distributions for the hyper-parameters, notably the inverse 

Gamma (IG), penalized complexity (PC), half Cauchy (HC) and the uniform (U) 

distribution (Wang et  al. 2018; Adin et  al. 2018; Gelman 2006). For the inverse 

Gamma hyper-prior, we need to choose the shape and scale parameters a and b, 

respectively. Following Bernardinelli et  al. (1995) and Schrödle and Held (2011), 

we set the shape parameter to equal one. The scale parameter can vary for each of 

the above hyper-parameters. For the temporal trend RW1 or RW2, Schrödle and 

Held (2011) recommended �2
�
∼ IG(1, 0.00005) and IG(1, 0.01) for the precision 

parameters of the structured and unstructured spatial random effects, and for the sea-

sonal and unstructured temporal random effects. Scaling is also required for the PC 

and HC hyper-priors. Wang et  al. (2018) recommended the standard deviation of 

ln(SIR) as a scale for the PC hyper-prior, Gelman (2006) proposed 25 as scale 

parameter for the HC hyper-prior, and Adin et al. (2018) suggested ( 0,∞ ) for the 

uniform hyper-prior. The hyper-priors and hyper-parameters can affect the estima-

tion results substantially and therefore need to be specified carefully so as to obtain 

reliable inferences (Ugarte et al. 2014). We apply sensitivity analysis to select the 

optimal hyper-priors and hyper-parameters in the case study.

(31)

p
(
�,�, v,�,�, �, �, �

v
, ��, ��, �� , �� , ��|�

)
∝ p

(
�|�,�, v,�,�, �, �, �

v
, ��, ��, �� , �� , ��

)

p(�)p(�)p(v)p(�)p(�)p(�)p(�)p
(
�

v

)
p
(
��
)
p
(
��
)
p
(
��
)
p
(
��
)
p
(
��
)
.
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2.3  Integrated nested Laplace approximation (INLA)

As mentioned in the Introduction, we apply INLA2 estimation, which is based on 

numerical integration of the posterior (Rue and Martino 2009). It is a fast inference 

method for latent Gaussian models (LGMs), i.e. a subclass of structured (additive) 

regression models.3

A spatiotemporal disease model such as Eq. (8), defined as an LGM, is a three-

stage hierarchical model. The first stage consists of the likelihood function of the 

observed variable � , p(�|�, �) , where � is the observational n-vector, vector � is 

the Gaussian field which contains all the latent (non-observable) model components 

� =

(

�,��
, v

′
,�

′
,�

′
, ��, ��

)�

 , and � =

(

�
�
, �

�
, �

v
, �

�
, �

�
, �

�
, �

�

)

� is the hyper-param-

eter vector of � . By assuming conditional independence of the Gaussian field (i.e. a 

Gaussian Markov random field (GMRF)4), the distribution of the nT  observations is 

provided by the likelihood function:

where each data point �i =

(

yi1,… , yiT

)�

 is connected to only one element 

�
i
=

(

�
i1,… ,�

iT

)�

 in the latent field � . This implies that the parameters are con-

stant and � and � have the same dimension.

The second stage consists of the conditional distribution of the latent Gaussian 

field � given the hyper-parameter vector � , p(�|�) , which follows a multivariate 

Gaussian distribution with a zero mean and a sparse precision matrix �(�) (due to 

conditional independence assumption of � ), i.e. �|� ∼ N
(
�,�−1(�)

)
. The prior 

density of � is:

where |.| denotes the determinant.

The last stage involves p(�) , where the hyper-prior distribution of �. p(�) need 

not be Gaussian. According to Schrödle and Held (2011), an appropriate distribu-

tion for the precision parameters is the inverse Gamma.

(32)p(�|�, �) =

n∏

i=1

p
(
�i|�i, �

)
=

n∏

i=1

T∏

t=1

p
(
yit|�it, �

)
,

(33)p(�|�) = (2�)nT |�(�)|
1

2 exp
(
−

1

2
���(�)�

)
,

2 The INLA package can be downloaded for free at www.r-inla.org.
3 LGMs are generalized linear models (GLMs) with the linear predictor being replaced by a possibly 

nonlinear structured (additive) predictor. LGMs are suitable for modelling temporal or spatial depend-

ency (Hicketier 2015).
4 For INLA to work properly and to achieve a substantial reduction in computation time, the LGM 

should have the following properties: (1) the latent field � satisfies the conditional independence prop-

erty, i.e. it should be a Gaussian Markov random field (GMRF). A GMRF � is a Gaussian vector where 

�
i
 and �j are conditionally independent, given the remaining elements �

−ij. Notation: �i⊥�j|�−ij . The 

conditional independence property defines the zero pattern of the precision matrix �(�) in that for a pair, 

i  and j , with j ≠ i , the corresponding element of the precision matrix is zero (Blangiardo and Cameletti 

2015): �i⊥�j

|
|
|
�−ij ⇔ Qij(�) = 0. Note that sparse matrices with large numbers of zeros are easier to 

invert. (2) The number of hyper-parameters is small.

http://www.r-inla.org
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For the hierarchical model described above, the joint posterior distribution of 

� and � reads as:

Instead of considering the full posterior distributions of � and � , INLA pro-

ceeds on the basis of approximations to the marginal posterior distributions 

p
(
�i|�

)
 and p

(
�k|�

)
 , where �1 = �

�
, �2 = �

�
, �3 = �

v
, �4 = �

�
, �5 = �

�
, �6 = �

�
 and 

�
7
= �

�
 . The marginal posterior distribution of �

i
 is:

where n is the number of spatial units. The marginal posterior distribution of �
k
 is:

where �
−k

 indicates all the elements in � except the kth element.

To obtain Eqs. (35) and (36), the following tasks must be performed: (1) com-

pute the marginal posterior distributions of the hyper-parameters p
(
�k|�

)
 , and 

(2) compute the conditional posterior distribution p
(
�i|�, �

)
 , which is needed to 

compute the marginal posterior of the parameters of p
(
�i|�

)
.

INLA numerically approximates the posteriors of interest based on Laplace 

transformation (Rue and Martino 2009). It approximates the integrand with a sec-

ond-order Taylor series around the mode. For details, see Appendix ‘1’. Note that 

INLA uses approximations nested within each other (Rue et  al. 2017). For the 

first task, p(�|�) is approximated using Laplace approximation (Rue and Martino 

2009)5:

where p(�|�, �) is the conditional distribution of �, pG(�|�, �) , which is its Gauss-

ian approximation by Laplace transformation, �∗
(�) is the posterior mode (i.e. local 

maximum) of p(�|�, �) for � , and p̃(�|�) is the Laplace approximation of p(�|�) 

(Tierney and Kadane 1986). For details see Appendix ‘2’.

(34)

p(�, �|�) =
p(�)p(�|�)p(�|�, �)

p(�|�)

∝ p(�)|�(�)|
1

2 exp

(
−

1

2
���(�)� +

n∑

i=1

log
(
�i|�i, �

)
)

.

(35)p
(
�i|�

)
= ∫ p

(
�i, �|�

)
d� = ∫ p

(
�i|�, �

)
p(�|�)d�i = 1,… , n,

(36)p
(
�k|�

)
= ∫ p(�|�)d�−k k = 1,… , 7,

(37)

p(�|�) =
p(�, �|�)

p(�|�, �)
=

p(�|�, �)p(�|�)p(�)

p(�|�)

1

p(�|�, �)

∝
p(�|�, �)p(�|�)p(�)

p(�|�, �)
≈

p(�|�, �)p(�|�)p(�)

pG(�|�, �)

|
|
|
|�=�∗

(�)

=∶ p̃(�|�),

5 Using Bayes’ theorem, the joint posterior distribution of the hyper-parameters can be written as 

p(�|�) = p(�, �|�)∕p(�|�, �) and the joint posterior distribution of � and � as p(�, �|�) = p(�|�, �)

p(�|�)p(�)∕p(�, �) ∝ p(�|�, �)p(�|�)p(�).
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Note that the Gaussian approximation is accurate, since p(�|�, �) ∝ exp
(
−

1

2
�

��

(�)� +
∑

i log p(�
i
��

i
, �)

�
 is almost Gaussian, as � is a GMRF (assumed at stage 2). 

The resulting approximation will then be (Opitz 2017):

where the vector c is the second-order term in the Taylor expansion of ∑
i log p

�
�i��i, �

�
 , at modal value �∗

(�).

The second task is the computation of the marginal posterior conditional distri-

bution p
(
�i|�, �

)
 which is needed to compute the marginal posterior p

(
�i|�

)
 . It is 

more complex than ( i ), because � consists of more elements than � . There are three 

different strategies to approximate p
(
�i|�, �

)
 : Gaussian, full Laplace and simpli-

fied Laplace approximation (Rue and Martino 2009). The Gaussian approximation 

pG(�|�, �) in Eq. (38) is used to obtain the marginal posterior pG

(
�i|�, �

)
 directly. 

However, this approximation is generally not good if the true density of p
(
�i|�, �

)
 

is not symmetric (Blangiardo and Cameletti 2015). The full Laplace approxima-

tion is a correction of Gaussian approximation. It rewrites the parameters vector as 

� =

(

�
i
,�

−i

)

 and uses Gaussian approximation to obtain p̃
(
�i|�, �

)
 . In particular, 

using the conditional probability rule, p
((
�i,�−i

)
|�, �

)
 can be expressed as:

and with some simple manipulations, the following is obtained:

where �
−i

 contains all the elements in � except the ith element, pG

(
�

−i|�i, �, �
)
 

is the Gaussian approximation of p
(
�

−i|�i, �, �
)
 , with the whole expression 

being evaluated at �∗

−i

(

�
i
, �
)

 , the mode of p
(
�

−i|�i, �, �
)
 . The full Laplace 

approximation is very accurate because the random variable �
−i
|�

i
, �, � is gener-

ally reasonably Gaussian. However, the computational cost is very high because 

pG

(
�

−i|�i, �, �
)
 must be computed for each value of � and � . To avoid this prob-

lem, the third strategy is usually used, which is based on the Taylor series expan-

sion of the full Laplace approximation p̃
(
�i|�, �

)
 in Eq. (40). This last strategy is 

sufficiently accurate for most applications (Blangiardo and Cameletti 2015). Hav-

ing obtained p̃
(
�i|�, �

)
 and p̃(�|�) , the marginal posterior distribution p

(
�i|�

)
 in 

Eq. (35) is approximated by:

(38)pG(�|�, �) ∝ exp
(
−

1

2

(
� −�∗

(�)
)�

(�(�) + diag(�))
(
� −�∗

(�)
))

,

(39)p
((
�i,�−i

)
|�, �

)
= p

(
�

−i|�i, �, �
)
p
(
�i|�, �

)

(40)

p
(
�i|�, �

)
=

p
((
�i,�−i

)
|�, �

)

p
(
�−i|�i, �, �

) = p(�|�, �)
1

p
(
�−i|�i, �, �

)

=
p(�, �|�)
p(�|�)p(�)

1

p
(
�−i|�i, �, �

) ∝
p(�, �|�)

p(�|�)
1

p
(
�−i|�i, �, �

)

∝
p(�, �|�)

p
(
�−i|�i, �, �

) ≈
p(�, �|�)

pG

(
�−i|�i, �, �

)
|||||�−i=�

∗

−i(�i
,�)

=∶ p̃
(
�i|�, �

)
,

(41)p̃
(
�i|�

)
≈ ∫ p̃

(
�i|�, �

)
p̃(�|�)d�,
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where the integral can be solved numerically through a finite weighted sum:

for a set of integration points 
{

�
(j)
}

 with a corresponding weight 
{

Δj

}

 , with J denot-

ing the number of evaluation points.6

2.4  Forecasting

The main objective of this paper to obtain forecasts of relative risk, h = 1, 2,… steps 

ahead from T  , i.e. ŷi(T+h) , given the observed �. The forecast values ŷi(T+h) are obtained 

by fitting the model for T + h observations with the forecasts defined as unobserved 

responses. The posterior predictive distribution needed for this purpose is obtained 

by integrating the posterior distribution p
(
�, �|ŷi(T+h)

)
∝ p

(
ŷi(T+h)|�, �

)
p(�|�, �) 

over the parameters ( � ) in the latent field (Morrison et al. 2016):

where ŷi(T+h) denotes the forecast value in the ith region at time t . To approximate 

the integral over the hyper-parameter � in Eq. (43), a numerical method similar to 

the one used to approximate Eq. (42) can be used (Morrison et al. 2016).

Forecasting with INLA can be easily implemented by entering ‘Not Available ( NA )’ 

for theh observations we want to forecast, i.e. ‘ yi(T+h) = NA ’ for the ‘observation’ at 

the time T + h which needs to be forecasted (Wang et al. 2018). This is implemented 

in R-INLA by constructing vectors for the response variable and for the random effect 

components. Particularly, ‘ NA ’ is specified in the vector of observations for the h peri-

ods that the response variable is to be forecasted, 
(

(1,… , n)
�
,… , (1,… , n)

�
)�

 in the 

corresponding vectors of the spatial random components, 
(

(T + 1,… , T + 1)
�
,… ,

(T + h,… , T + h)
�
)�

 in the vectors of the temporal random components, and ( (nT + 1,

… , n(T + 1))
�
,… , (n(T + h − 1) + 1,… , n(T + h))

�)� in the vector of the random 

interaction term. For instance, id� (index vector � ) shown in the second vector below 

denotes the vector of the spatially structured component ( �) , and id� denotes the vec-

tor of the temporally structured component. The data structured for the model yielded 

by Eq. (8) with interaction type I are expressed as follows (for further information, see 

Rue and Martino 2009):

(42)
p̃
(
�i|�

)
≈
∑

j

p̃
(
�i|�(j), �

)
p̃
(
�(j)|�

)
Δjj = 1,… , J,

(43)p
(
ŷi(T+h)|�, �

)
= ∫ p

(
ŷi(T+h)|�, �

)
p(�|�, �)d�,

6 Evaluation points for p̃(�|�)are needed for the numerical integration of Eq. (42). Two approaches have 

been proposed: grid search and central composite design (CCD). Grid strategy is the more accurate strat-

egy; however, it is time-consuming. The CCD strategy is less time-consuming, but less accurate than 

the grid strategy (see for details, Rue and Martino 2009). We applied grid search. Finally, the marginal 

posterior mean or median in Eq.  (42) is usually used to obtain estimates for the spatiotemporal model 

parameters.
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2.5  Model selection criteria

General model Eq.  (8) contains several sub-models. Several selection criteria are 

available to select the best model. The most common Bayesian criterion for pre-

dictive performance is the conditional predictive ordinate (CPO). This is defined as 

follows. Given a set of spatiotemporal observations � =

(

y11, ..., ynT

)�

 , the CPO
it
 for 

each observation is (Rodrigues and Assunção 2012):

with ŷit denoting the predicted number of cases in region i for time t , � the all-

parameter vector, �
−it

 the data vector without the itth observation, and p
(
�|�

−it

)
 the 

posterior distribution of � . predicted without yit . CPO
it
 is thus the cross-validated 

predictive probability mass at the observation yit . A small CPO
it
 indicates that the 

itth observation is unlikely under the postulated model.

A related measure is CPO-failure
it
 . It is defined as (Blangiardo and Cameletti 

2015):

where failureit,jp
(
�
(j)|�

)
 indicates the misfit of p

(
�
(j)|�

)
 for observation y

it
 at the jth 

grid, and Δj is the corresponding weight. CPO-failure
it
 is actually the expected fail-

ure of observation yit over the posterior distribution for the hyper-parameter � . It 

takes the value of one for a misfit and zero otherwise (Schrödle and Held 2011). The 

(44)CPOit = p
(
ŷit = yit|�−it

)
= ∫ p

(
ŷit = yit|�

)
p
(
�|�

−it

)
d�,

(45)CPO − failureit =

J∑

j=1

failureit,j

(
�
(j)|�

)
Δj j = 1,… J,
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total value of CPO-failure for all observations ranges from zero to nT  . Based on the 

total value of the CPO-failure criterion, the model with the lowest value is selected.

Another CPO-based measure is the marginal predictive likelihood (MPL), defined 

as (Urtasun 2017):

The larger the MPL, the better the prediction.

The probability integral transform (PIT) is the value of the predicted cumulative 

distribution function at observation yit (Urtasun 2017):

The PIT histogram indicates the model fit across all observations. The closer the 

PIT histogram is to the uniform distribution histogram, the better the fit (Hicketier 

2015).

A measure which considers both fit and complexity is the deviance information 

criterion (DIC) (Spiegelhalter et al. 2002). It measures the performance of the model 

with parameters fixed to the posterior mean 𝛷̂ = E
[
�|�

]
 and is defined as (Gelman 

et al. 2014):

where D
(

𝛷̂
)

 is the model’s deviance, i.e. D
(
𝛷̂
)
= −2 log p

(
�|𝛷̂

)
 , and pDIC is the 

effective number of parameters indicating the model’s complexity:

The expectation Epost

[
log p(�|�)

]
 is an average of � over its posterior distribu-

tion. It can be calculated by simulation as 
1

S

∑S

s=1
log p(���s

)s = 1,… , S with �s 

denoting the sth draw from ppost(�|�) . Equation (49) can be negative. To overcome 

this problem, Gelman et al. (2014) proposed the following alternative definition:

where Varpost

�
log p(y��)

�
=
∑n

i=1

∑T

t=1

�
Epost

��
log p

�
yit��

��2
�
− Epost

�
log p

�
yit��

��2
�

 . 

A lower DIC indicates a better fit.

An alternative to Eq.  (48) is the Watanabe–Akaike information criterion (WAIC) 

(Watanabe 2010). The WAIC reads (Gelman et al. 2014; Utazi et al. 2018):

where D
WAIC

 measures the fit of the model defined as DWAIC =

∑n

i=1

∑T

t=1
log E���[

p
(
yit|�

)]
 and pWAIC denotes the effective number of parameters defined as 

(46)MPL =

n
∑

i=1

T
∑

t=1

log
(

CPO
it

)

.

(47)PITit = Pr
(
ŷit ≤ yit|y−it

)
= � p

(
ŷit ≤ yit|�

)
p
(
�|y

−it

)
d�.

(48)DIC = D
(

𝛷̂
)

+ 2pDIC,

(49)pDIC = 2
(
log p

(
�|𝛷̂

)
− Epost

[
log p(�|�)

])
.

(50)pDIC = 2Varpost

[
log p(y|�)

]
,

(51)WAIC = −2
(

DWAIC − pWAIC

)

,
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pWAIC =

∑n

i=1

∑T

t=1
Varposterior

�
log p

�
yit��

��
 . The lower the WAIC, the better the fit. 

This is preferable to the DIC because it computes the effective number of param-

eters for the variance for each data point separately, and then takes the sum (Gelman 

et al. 2014).

Another model selection criterion is the Bayes factor (BF). It is defined as follows. 

Assume two models, M
1
 and M

2
 . The distribution of the data � and the prior probability 

of model Mq can be written as p(�|Mq) and p
(

Mq

)

 q = 1, 2 . The posterior probabilities 

of Mq(q = 1, 2) are provided by:

The posterior odds in favour of model M
1
 over the alternative M

2
 are:

The ratio of the marginal likelihoods 
(
p
(
�|M

1

)
∕p

(
�|M

2

))
 in Eq. (53) is known as 

the Bayes factor (BF), where p(�|Mq) is the evidence for model Mq . When BF
12

> 1 , 

the data favour M
1
 over M

2
 , and when BF

12
< 1 , the data favour M

2
 (Chipman et al. 

2001).

It can be complicated to implement the BF in the case of complex random effects 

models (i.e. models with more than one random effect). The solution is an approxi-

mation of the BF based on CPO values (Gelfand and Dey 1994), which is called the 

pseudo-Bayes factor (PBF). For models M
1
 and M

2
 , the PBF reads (Gelfand 1996):

A PBF < 1 indicates that the data favour M
2
 over M

1
.

Other measures of predictability are the mean absolute error (MAE), the root-mean-

square error (RMSE) and the adjusted pseudo-coefficient of determination 
(

R̃
2

)

 . They 

are defined as (Mohebbi et al. 2014; Urtasun 2017):

(52)p
(
Mq|�

)
=

p
(
�|Mq

)
p
(
Mq

)

p(�)
.

(53)
p
(
M

1
|�
)

p
(
M

2
|�
) =

(
p
(
�|M

1

)

p
(
�|M

2

)

)(
p
(
M

1

)

p
(
M

2

)

)
.

(54)

PBF =

n∏

i=1

T∏

t=1

{
CPOit

(
M1

)

CPOit

(
M2

)

}
=

n∏

i=1

T∏

t=1

{
p
(
ŷit|�−it, M1

)

p
(
ŷit|�−it, M2

)

}

= exp

(
log

(
n∏

i=1

T∏

t=1

p
(
ŷit|�−it, M1

)

p
(
ŷit|�−it, M2

)

))

= exp

(
n∑

i=1

T∑

t=1

log p
(
ŷit|�−it, M1

)
−

n∑

i=1

T∑

t=1

log p
(
ŷit|�−it, M2

)
)

= exp
(
MPL

(
M1

)
− MPL

(
M2

))

(55)MAE =

1

nT

n∑

i=1

T∑

t=1

|
|ŷit − yit

|
|
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where ŷit denotes the predicted number of cases at region i at time t , and y is the 

mean of the observed values. Ceteris paribus, the lower the MAE and RMSE and 

the higher the R̃2 , the better the fit.

Other tools for model evaluation check whether the observed residuals are white 

noise (residual analysis). One such tool is the autocorrelation function (ACF) plot, 

defined as:

where r
i
 is the sample mean of the residual for region i over T  periods and 

rit =

(

yit − ŷit

)

 . The ACF can be calculated under the (strong) null hypothesis that 

the time series is white noise ( iid ) (H0: iid ), or under the (weaker) hypothesis that 

it is generalized autoregressive conditional heteroscedasticity (GARCH) (H0: 

GARCH ). Different tests are needed for these two assumptions. For the hypothesis 

that the time series is iid , a portmanteau test such as the Ljung and Box test with test 

statistics (Francq and Zakoian 2010) can be applied:

The strong white noise hypothesis is rejected if QLB

l
 is greater than the (1 − �) quan-

tile of �2

l
 . For the GARCH assumption, the corrected Ljung and Box portmanteau test 

is applied. The test statistic is (Francq and Zakoian 2010):

which has an asymptotic �2

l
 distribution, where �̂

�̂(j) is the asymptotic covariance 

matrix of �̂(j) , which can be obtained using nonparametric estimation. The hypoth-

esis that the data are generated by a GARCH process is rejected if Ql is greater than 

the (1 − �) quantile of �2

l
.

The spatiotemporal autocorrelation of the residuals can be evaluated using an 

extension of Moran’s I , called Moran’s spatiotemporal autocorrelation statistic 

( MoranST ). It is defined as (Anderson and Ryan 2017):

(56)RMSE =

√

√

√

√
1

nT

n
∑

i=1

T
∑

t=1

(

ŷit − yit

)2

(57)�R2
= 1 −

�

nT − 1

nT − pD

�

�

1 − R
2
�

with R2
=

∑n

i=1

∑T

t=1

�

ŷit − ȳ
�2

∑n

i=1

∑T

t=1

�

yit − ȳ
�2

(58)

�
i
(l) =

1

T−l

∑T

t=l+1

�

r
it
− r

i

��

r
it−l

− r
i

�

�

1

T

∑T

t=1

�

r
it
− r

i

�

�

1

T−l

�

r
it−l

− r
i

�

i = 1,… , n, t = 1,… , T , and l = 0, 1, 2,…

(59)QLB

l
= T(T + 2)

l
∑

j=1

𝜌̂(j)∕(T − j).

(60)Ql = T�̂(j)�𝛴̂−1

��(j)
�̂(j),

(61)MoranST =
nT

∑n

i=1

∑T

t=1

∑n

j=1

∑T

s=1
w̃(it,js)

�

rit − r
��

rjs − r
�

∑n

i=1

∑T

t=1

∑n

j=1

∑T

s=1
w̃(it,js)

∑n

i=1

∑T

t

�

rit − r
�2
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where r is the mean of the observed residuals r
it
 over T  periods and n spatial units, 

and w̃(it,js) is the weight accounting for the spatiotemporal autocorrelation between r
it
 

and rjs , defined as:

where wij is one if regions i and j are neighbours, and zero otherwise. A MoranST 

which is close to one indicates a strong positive spatiotemporal autocorrelation of 

the spatiotemporal residuals. A value close to zero indicates white noise.

2.6  Mapping

As discussed in the introduction, we use continuous or isopleth maps for the vis-

ual representation of the spatial dengue distribution. For this purpose, successive 

interpolation is applied using predicted relative risk values, which are obtained 

from the underlying Bayesian spatiotemporal model. Note that the predicted values 

are denoted as observed in the mapping process (Tiwari 2013). An observed rela-

tive risk value is typically placed at the centroid of a spatial unit with coordinates 

(x, y) , denoting grid point (x, y) . Observed relative risk values at selected grid points 

are then used to generate new values at selected grid points via interpolation. The 

observed values along with the interpolated values are then converted into a smooth, 

continuous surface. There are two common interpolation methods, i.e. inverse dis-

tance weighting ( IDW ) and Kriging. We use IDW in this paper, which is relatively 

easy to apply and efficient, and provides good results in practice (Setianto and Trian-

dini 2013; Tiwari 2013).

The basic assumption of IDW is that the observed value (known value) closest to 

the interpolation grid point has more influence on the interpolated value (unknown 

value) than those farther away. Following Revesz (2003), the general formulation of 

IDW interpolation for the value at grid point (x, y) , at time t, is:

where �̃(x, y) is the interpolated value for grid point (x, y) , �l
 is the weight assigned 

to the observed value �̂
l
 at grid 

(

xl, yl

)

 , L is the number of grid points used for inter-

polation of the value at (x, y) , where L may be smaller than or equal to the total num-

ber of observed grid points (n), d
l
 is the distance between the observed grid 

(

xl, yl

)

 

and the interpolation grid (x, y) , and p = 0, 1, 2,… is the power of the weighting of �̂
l
 

with respect to �̃(x, y) . To obtain smooth isopleth maps, they are usually divided into 

10, 000 × 10, 000 grid cells. The optimal power p is determined by minimizing the 

root-mean-square prediction error (RMSPE):

w̃(it,js) =

⎧
⎪
⎨
⎪
⎩

wij if t = s

1 if i = j and �t − s� = 1

0 otherwise

(62)�𝜃(x, y) =

L
�

l=1

𝜛l𝜃̂l;𝜛l =
d
−p

l
∑L

k=1
d
−p

k

for l = 1,… , L, and for all t,
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The most common power is p = 2 which yields the inverse distance squared 

weighted interpolation (Lloyd 2010).

3  Application: dengue disease in the city of Bandung

The application is based on 30 districts in the city of Bandung, the provincial capital 

of West Java, Indonesia, over the period 2009–2016. The city is seriously affected 

by dengue disease every year. According to Bandung (2010–2017), 35,496 dengue 

cases were registered for the period 2009–2016.

3.1  Model selection

As a first step in the selection procedure, we compared the appropriateness of the 

Poisson and the negative binomial (NB) as distributions for the number of dengue 

cases in Bandung. We estimated the pure random effects model Eq. (8) based on the 

Poisson distribution and tested for over-dispersion. Due to the lack of strong prior 

knowledge, we used Gaussian distribution as a hyper-prior for the overall relative 

risk, i.e. � ∼ N
(

0, 105
)

 . Following Schrödle and Held (2011), we used IG(1, 0.01) as 

the hyper-prior for the precision parameters of the structured and unstructured spa-

tial random effects, and for the seasonal and unstructured temporal random effects. 

We used IG(1, 0.00005) as the precision parameter of the RW1 and RW2 tempo-

ral trends. The hyper-prior for the precision parameter of the interaction effects fol-

lowed from the above specifications, as described in Sect.  2. The over-dispersion 

parameter estimate was 0.0238 with a standard error estimate of 0.0038 and 95% 

credible interval (0.0177; 0.0327).7 The interval did not contain zero. We therefore 

chose the NB model for further analysis.8

We then estimated model Eq. (8) based on the NB distribution for yit with four 

different types of interactions, and used the model selection criteria in Sect.  2.5 

to choose between RW1 and RW2. The outcomes for RW1 were generally better 

than for RW2. We continued the analysis to identify the best type of interaction. 

The results are shown in Table 1. They show that interaction type IV (the tempo-

ral dependency structure for each region depends on the temporal structure of 

(63)RMSPE =

√

√

√

√
1

L

L
∑

l=1

(

�̂l − �̃(x, y)

)p

.

7 The models were estimated using the R-INLA package (http://www.r-inla.org/).
8 We also considered penalized complexity, half Cauchy and uniform distribution as hyper-priors for the 

various precision parameters in the decision over the Poisson and NB distributions and to choose the 

interaction type. Moreover, we performed a sensitivity analysis of the hyper-parameter values of the IG 

hyper-prior. The results consistently supported the choice of the IG as hyper-prior and the selected values 

of its hyper-parameters. The calculations are not presented here. They are available from the first author 

on request.

http://www.r-inla.org/
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neighbouring regions) has minimum DIC and WAIC values and the largest MPL. It 

also outperforms models II and III in terms of PBF. We therefore continued the anal-

ysis using model Eq. (8) and interaction type IV, and evaluated the structured and 

unstructured components using their critical ratios. The results are shown in Table 2. 

The spatially unstructured and the iCAR component have low critical ratios, indicat-

ing that their effects do not significantly differ between districts. Put differently, the 

relative risk is almost constant across space.

We re-estimated the model without the spatially structured and unstructured com-

ponents but with type IV interaction (denoted as the temporal model in the subse-

quent study).9 Support for the temporal model is presented in Fig. 1a which shows 

Table 1  Selection of interaction type

The headers of the columns denote: CPO conditional predictive ordinate, DIC deviance information cri-

terion, MPL marginal predictive likelihood, PBF pseudo-Bayes factor, MA mean absolute error, RMSE 

root-mean-square error, pseudo-determination coefficient ( ̃R2)

Hyper-

prior

Type 

interac-

tion

CPO 

Failure

DIC WAIC MPL PBF MAE RMSE R̃
2

Inverse 

gamma
I 0 17,490.21 17,500.95 − 8753.33 0 4.37 6.27 0.57

II 0 16,552.63 16,498.89 − 8264.53 1.5 × 10
−123 3.15 4.44 0.69

III 0 16,247.67 16,217.70 − 8299.80 7 × 10
−129 2.19 2.93 0.66

IV 0 15,866.68 15,910.80 − 8004.75 – 2.58 3.53 0.77

Table 2  Summary statistics of the posterior mean of the standard deviations (SD) of the random effects 

and their critical ratios

Critical ratios = estimated mean/estimated standard error, intrinsic conditional autoregressive (iCAR), 

random walk of order one (RW1)

Component Estimated mean Estimated 

standard 

error

Q (0.025) Q (0.975) Critical ratios

SD of spatially unstructured ( �2

�
) 0.147 0.094 0.054 0.401 1.563

SD of iCAR ( �2

�
) 0.148 0.090 0.054 0.392 1.640

SD of temporally unstructured 

( �2

�
)

0.097 0.030 0.050 0.165 3.288

SD of RW1 ( �2

�
) 0.560 0.086 0.419 0.754 6.540

SD of seasonal ( �2

�
) 0.059 0.013 0.036 0.089 4.379

SD of interaction ( �2

�
) 0.174 0.009 0.157 0.191 20.075

9 We re-estimated the reduced model in question, using the inverse Gamma, penalized complexity, half 

Cauchy and uniform distribution as hyper-priors for the various precision parameters. We found the half 

Cauchy to be the best hyper-prior for the reduced model, while the second best hyper-prior is inverse 

Gamma, given the model selection criterion. However, the precision parameter of the seasonal compo-

nent was too high. Finally, we estimated the model in question by combining hyper-priors between the 
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that the probability integral transform (PIT) histogram does not substantially differ 

from the uniform distribution histogram. Figure 1b shows that the observed � and 

predicted �̂ are strongly correlated, as indicated by the clustering of points along the 

diagonal.

We next estimated the autocorrelation functions (ACF) of the residuals for each 

district (using the sarima R-package). Figure  2a depicts the ACF for six selected 

districts in the city of Bandung.10 Figure 2b displays the p values from the test that 

the residuals are white noise for each district. The ACF plots in Fig. 2a show that the 

model has adequately captured the patterns in the data, although in a few districts 

(e.g. Bandung Kulon) there is a slight autocorrelation in the residuals (as indicated 

by the significant spike in the ACF plot). Some improvements are therefore pos-

sible, even though they are unlikely to make a significant difference to the resulting 

forecasts. Figure 2b presents the p values for white noise tests using the corrected 

Ljung–Box test. This p value is larger than 0.01 for the majority of the districts. A 

similar result was obtained for the spatiotemporal Moran index. The value of the 

spatiotemporal Moran’s index is relatively small, − 0.111, indicating that there is 

virtually no spatiotemporal autocorrelation present in the residuals.

3.2  Final estimation results

Based on the temporal model identified in Sect.  3.1, we present estimated poste-

rior summary statistics for 2009–2016 in Table  3. The table shows that the pos-

terior mean fixed effect, i.e. the posterior mean log-relative risk, is − 0.219, with 

posterior standard deviation equal to 0.029 and 95% credible interval (− 0.276; 

− 0.163). This means that the posterior mean relative risk of dengue disease is 

Fig. 1  a The probability integral transform and b observed versus predicted relative risk

10 The results for the other districts are available from the first author on request.

half Cauchy prior and inverse Gamma. Here, for the seasonal component we used inverse Gamma and 

for the other random components, the half Cauchy hyper-prior was applied. The details are not presented 

here. They are available from the first author on request.

Footnote 9 (continued)
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exp(−0.219) = 0.803 for all districts and times. Put differently, if there were no spa-

tial, temporal or spatiotemporal interaction effects, the relative risk in all 30 districts 

and periods would be equal to 0.803. However, the relative risk does have spati-

otemporal characteristics, as shown in Table 4. The table shows the summary statis-

tics for the posterior standard deviation for each random effect including the mean, 

its standard deviation, quantiles, critical ratio and the fraction of the overall variance 

(FV): FV
h
= �

2

h
∕
∑H

h=1
�

2

h
 . All the random effect components have a critical ratio 

(a) Autocorrelation function 

(b) white noise test p-values 
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Fig. 2  a Autocorrelation function for six selected districts and b p values for the hypothesis of white 

noise for all 30 Bandung city districts
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greater than two, which indicates that all the components are relevant to explaining 

the variation in relative risk of dengue. The FV ranks the components and indicates 

that the temporal trend (RW1) (83%) is the most important component. The interac-

tion effect is next. It indicates that the trend for each district depends on the temporal 

structure of neighbouring districts. The relatively low FVs for the other effects imply 

that they are less important. Specifically, the low FV of the seasonal effect indicates 

that only a small part of the variability of relative risk of dengue is explained by the 

seasonal component.

The above conclusions are illustrated in Fig.  3, which illustrates the estimated 

marginal posterior density of the standard deviation of each random effect. It shows 

that the estimated posterior distribution of the standard deviation of the interaction 

component ( �
�
 ) is highly concentrated. This is because of we have 3240 observa-

tions which provide information about this hyper-parameter, in contrast to only 108 

observations for �
�
 , �

�
 and �

�
 . The large standard deviation for temporal trend indi-

cates that there is substantial variation in the relative risk over the months.

Figure  4a–c presents the estimated posterior mean temporal effects and their 

95% credible intervals. The estimated posterior mean of the temporally unstruc-

tured effect is virtually zero (see Fig. 4c). Moreover, its credible interval is narrow 

over the observation period. RW1 exhibits a strong nonlinear pattern which is dif-

ferent from zero (see Fig. 4a) This is in line with Table 4, indicating the temporal 

trend as being highly important in explaining the variability of the relative risk over 

time. The relative risk increased between 2010 and 2013 and then started to decline. 

The decline is probably related to increasing public awareness and increased pre-

ventive action (Tribunjabar 2016). Figure  4b shows that although on average the 

seasonal effect is close to zero, there is a strong seasonal pattern. This is further 

illustrated in Fig. 5 for 2016, which shows that the high-risk season is between Janu-

ary and May, after the peak of the rainy season, which is usually in February. The 

Table 3  Summary statistics of 

the posterior mean of the fixed 

effect ( �)

Parameter Mean SD 0.025 quant 0.50 quant 0.975 quant

Intercept − 0.219 0.029 − 0.276 − 0.219 − 0.163

Table 4  Summary statistics of the posterior mean of standard deviation (SD) of the random effects

Component Mean SD 0.025 quant 0.50 quant 0.975 quant Critical ratio Fraction of the 

variance (%)

SD of RW1 

( �
�
)

0.6400 0.0947 0.4892 0.6270 0.8584 6.7594 85.7013

SD of seasonal 

( �
�
)

0.0574 0.0134 0.0373 0.0552 0.0894 4.2898 0.6813

SD of tempo-

rally unstruc-

tured ( �
�
)

0.0894 0.0317 0.0359 0.0872 0.1566 2.8243 1.6332

SD of interac-

tion ( �
�
)

0.1709 0.0118 0.1459 0.1720 0.1910 14.5478 5.8730
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Fig. 3  Estimated marginal posterior density of the standard deviation of the temporal trend, seasonal 

effect � , temporally unstructured effect � and the interaction effect �

Fig. 4  Estimated posterior mean temporal effects: a trend RW1 � , b seasonal effect � and c unstructured 

effect �



132 I. G. N. M. Jaya, H. Folmer 

1 3

Aedes-spp. mosquitoes breed in the rainy season: their larvae become adults after 

three to four weeks and are then ready to transmit dengue disease (Kompas 2016). 

The low-risk season is between September and December. The seasonal pattern is 

very similar for the other years.11

Figure 6 depicts the spatiotemporal pattern for six selected districts in the city of 

Bandung12: Cidadap in the north, Bandung Kulon in the west, Buahbatu in the south, 

Cibiru in the east and Sumur Bandung and Cibeunying Kaler in central Bandung. 

The graphs show that there are substantial differences among the districts. Bandung 

Kulon displays a relatively constant trend over the years with no substantial rela-

tive changes from 2009 to 2016. Moreover, the temporal effect in Bandung Kulon is 

below zero most of the time, indicating that its risk is smaller than those in the other 

districts, notably in Sumur Bandung and Buah Batu. In the latter district, there is a 

strong increase in 2010. Moreover, the temporal effect stays above zero. In Cidadap 

and Cibiru, it strongly fluctuates around zero, which indicates that the relative risk 

Fig. 5  Estimated posterior mean seasonal effect � (2016)

Fig. 6  Spatiotemporal interaction effects � for six selected districts

11 The graphs can be obtained from the first author on request.
12 The results for the other districts are available from the first author on request.
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in both districts varies greatly over the years. The trend for Sumur Bandung is down-

ward. However, it is generally greater than zero, indicating that the risk in this dis-

trict is relatively high. The temporal trend for Cibeunying Kaler is strongly nonlin-

ear. It strongly decreased from 2009 and strongly increased from around May 2013 

onward. The above results are in line with Table 4, where the spatiotemporal inter-

action component was found to have the second largest variance and thus to have a 

substantial impact on spatiotemporal variability. Figure 7 summarizes the estimates 

of the relative risk for 2009 and 2016.13 It shows that in 2009 the high-risk districts 

were mainly in the north, while in 2016 they had moved southwards.

3.3  Forecasts

Figure 8 displays plots of observed versus estimated relative risk for January 2009 to 

December 2016, and the forecast for 2017, for six selected districts. For the period 

January to December 2017, we found that Cidadap, Bandung Kulon, Sumur Band-

ung and Cibeunying Kaler displayed an upward trend, while Buahbatu and Cibiru a 

downward one.

Figure 9a presents the monthly forecasts for 2017. It shows that the predicted rel-

ative risk in the eastern and western districts of Bandung was relatively low all year 

round, and relatively high in the northern, central and southern districts. Further-

more, from January to August, the relative risk in the southern districts was fore-

casted to be twice as high as average (α = 0.803). However, between September and 

December, a decrease was foreseen in these districts and an increase in the northern 

Fig. 7  Estimated relative risk for January to December 2009 and 2016

13 For the other years, the results are available from the first author upon request.
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districts. For the north, a higher than average relative risk for each month was fore-

casted. Figure 9b illustrates the posterior probability forecast of relative risk greater 

than 1.25 for each district from January to December 2017. The spatial variation 

in monthly forecasts is due to geographical, weather and socio-economic condi-

tions. High precipitation, moderate temperatures and high atmospheric humidity are 

favourable ecological conditions for breeding, birth, growth, mortality and activity 

of the vector (Rueda et al. 1990).

Several districts located in north Bandung displayed relatively high dengue 

risk almost every month. This is because northern Bandung is a mountainous area 

Fig. 8  Observed versus estimated relative risk, January 2009 to December 2016 and forecast for 2017, 

for six selected districts

Fig. 9  Monthly forecasts of relative risk for January to December 2017. a Posterior mean 𝜃̂
it
 and b poste-

rior Pr
(
𝜃̂

it
> 1.25|�

)
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approximately 800 m above sea level, which is densely covered in forests. It also 

has high precipitation, moderate temperatures and high atmospheric humidity all 

year round (Metro-Trend, 2019). The central districts also have high precipitation 

but lack dense vegetation, meaning that during the dry season—September to Janu-

ary—the weather conditions are less favourable for dengue because of the relatively 

low humidity. Socio-economic conditions also contribute to the high relative risk 

of central Bandung. It is the centre of business and government, has a high popula-

tion density and high mobility, all of which facilitate the transmission of dengue 

by increasing the contact potential between infected mosquitoes and human hosts 

(Araujo et  al. 2015). Another reason for the relatively high risk in central Band-

ung is related to the number of incidents reported. The population of central Band-

ung has a high level of education, high employment rate and high economic status. 

These conditions raise people’s awareness of health risks and help them to find their 

way to healthcare. The registration rate in the area is higher than in districts with a 

less well-educated population (Wijayanti et al. 2016).

In districts adjacent to central Bandung, environmental factors contribute to the 

high relative risk. Taman Sari, for instance, is a slum area with poor access to safe 

water, high incidence of dengue and high population density (Sari 2018). Southern 

Bandung was forecasted to have a relatively high risk from January to September 

because of its high-density housing and poor water quality. These areas also bor-

der slum areas. The eastern and western districts are forecasted to have relative low 

risks. These districts have low population density and do not have much business or 

tourism activities. In addition, the eastern districts have relatively high temperatures 

and low precipitation.

4  Conclusions

Monitoring, modelling, prediction and isopleth mapping of the incidence rate of an 

epidemic provide the information for an early warning system needed to allocate 

resources effectively to the appropriate region and at the appropriate time. Spatial 

and temporal characteristics can be used to develop spatiotemporal models and 

maps of the disease distribution, which are instrumental to analysing and forecasting 

its diffusion.

Precise targeting requires information at fine spatial units and for short time inter-

vals. However, there is usually a lack of information on covariates at this scale. This 

problem can be handled by applying pure models with spatial and temporal random 

effects and their interactions to account for the variation in the unobserved risk factors 

across space and time. Because of the large number of parameters that pure models 

support, we propose Bayesian Integrated Nested Laplace Analysis (INLA) to obtain the 

marginal predictive posterior distributions for estimation and forecasting. We further-

more propose isopleth mapping, which typically shows continuous change across space 

and thus smooths the disease’s incidence rate and provides clues for epidemiologists to 

expand their aetiologic hypotheses on disease outbreaks.

The method was applied to monthly data for 30 districts at census tract level in the 

city of Bandung, Indonesia, for the period 2009–2016. The model was used to generate 
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monthly forecasts for 2017. The estimation and forecasting results and the isopleth 

maps showed a clear spatiotemporal picture. Although the dengue risk has generally 

decreased since 2014, some districts, especially in north-western Bandung, were esti-

mated and forecasted to have relatively high risk. Geographical and weather conditions 

contributed to this. The north-western districts of Bandung are characterized by an ele-

vation level of 800 m above sea level, dense vegetation, high precipitation and humid-

ity and are an ideal breeding ground and habitat for the Aedes-spp. mosquito (Ebi and 

Nealon 2016). The relatively high risk level in central Bandung from January to August 

is related to high precipitation and socio-economic conditions, notably population den-

sity and high mobility. Moreover, the relatively high registration rate in the area is due 

to a relatively high level of education. The relatively low risk during the dry season 

is related to low humidity, which is due to the low vegetation density. Poverty, a lack 

of safe water and population density are related to the relatively high risk in the slum 

areas, whereas the opposite is true for the relatively low risk in the more prosperous 

districts in the east and west of the city. Enabling further research on the association 

between relative risk and potential risk factors is the main theme of spatial regression.

Specific actions can be considered for districts with forecasted high dengue risk lev-

els, particularly control of the dengue vector (i.e. Aedes-spp. mosquito) and protecting 

people from mosquito bites. Such actions include the cleaning-up of abandoned proper-

ties and daily garbage collection to control the dengue vector. In addition, fumigating 

inside homes and using mosquito bed nets are needed to protect people from mosquito 

bites in the dengue-prone districts during the dengue season, between January and 

August.
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Appendix 1: Laplace approximation (Rue and Martino 2009)

The Laplace approximation to the integral of a scalar function p(�) , with � a n

-dimensional vector, has the following form:

where g(�) = log p(�) . Since for unimodal functions the integral value is mainly 

determined by the behaviour around the mode of g(�) , a second-order Taylor 

(64)

∞

∫
−∞

p(�)d� =

∞

∫
−∞

exp (log p(�))d� =

∞

∫
−∞

exp (g(�))d�.
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approximation of g(�) can be substituted for g(�) to calculate an approximate value 

of the integral.

Let �∗ be the global maximum of (�) which is defined as:

and then g(�) is approximated as:

where �(g)
(

�
∗
)

 is the Hessian of g
(

�
∗
)

 , and Eq. (64) can be written:

where the integral can be associated with the density of a multivariate Gaussian dis-

tribution. In fact, by setting −�(g)
(

�∗
)

= �
(

�∗
)

 where �
(

�∗
)

 denotes the preci-

sion matrix for the random vector �∗ , we obtain:

(65)�
∗
= argmax
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Appendix 2: Gaussian approximation

The conditional posterior distribution of p(�|�, �) is defined from the joint posterior 

distribution in Eq. (34):

By ignoring elements without � , it can be written as:

where the term gi

(
�

i

)
= log p

(
�

i
|�

i
, �
)
.

The Gaussian approximation of Eq. (69), pG(�|�, y) , is reached by matching the 

mode and the curvature at the mode of p(�|�, �) . The mode is computed iteratively 

by using a Newton–Raphson method. Let �(0) be the initial value of the mode and 

expand gi

(

�
i

)

 around �
(0)

i
=

(

�
(0)

i1
,… ,�

(0)

iT

)�

 to the second-order Taylor expansion,

where �
i
 and �

i
 depend on �(0) . Inserting Eqs. (70) into (69) gives:

A Gaussian approximation of pG(�|�, y) is obtained, with the precision matrix 

(� + diag(�)) and mode �(1), which is the solution of(� + diag(�))�(1) = � . The 

process can then be iterated, with �(1) as the new starting value, until it converges 

to a Gaussian distribution with, say, mean �(j)
→ �(∗) = �∗ and precision matrix 

𝐐(j)
→ 𝐐(∗) = 𝐐 + diag(𝐜∗), j = 1, 2,… , where an appropriate convergence criterion 

must be used (e.g. �(j+1) − �
(j+1) = 10

−6).

The Gaussian approximation of the conditional posterior distribution p(�|�, �) 

is computationally very fast, but the approximation is generally not very good if the 

conditional posterior distribution is not to close to Gaussian (Hicketier 2015).
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