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Bayesian Statistical Inference in Psychology:
Comment on Trafimow (2003)

Michael D. Lee Eric-Jan Wagenmakers
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D. Trafimow (2003) presented an analysis of null hypothesis significance testing (NHST) using Bayes's
theorem. Among other points, he concluded that NHST is logically invalid, but that logically valid
Bayesian analyses are often not possible. The latter conclusion reflects a fundamental misunderstanding
of the nature of Bayesian inference. This view needs correction, because Bayesian methods have an
important role to play in many psychological problems where standard techniques are inadequate. This
comment, with the help of a simple example, explains the usefulness of Bayesian inference for
psychology.
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Like all empirical sciences, psychology deals with uncertainty.cannot, and make it more general and efficient than the canned
Samples are limited, measurements are imprecise, and confounckcipes that dominate current practice in psychology. Most impor-
ing variables are difficult to control. Indeed, each of these sourcesantly, and contrary to Trafimow’s (2003) assertion, the basic
of uncertainty can be particularly severe under the experimentatature of Bayesian inference guarantees that it is always possible
and ethical constraints involved in studying psychological phe-to undertake analyses.
nomena. This means psychology relies heavily on statistical infer- Trafimow’s (2003) mistaken claims need correction, because
ence, and its success as a discipline depends crucially on thgsychology now has much to benefit from the adoption of Bayes-
quality of the methods it uses. ian methods. With the advent of modern computing technology,

In this context, Trafimow (2003) considered the relationship Bayesian inference has become possible in practice as well as in
between standard statistical practice and Bayesian approaches.piinciple and has been adopted with great success in most scien-
central part of Trafimow’s conclusion is that null hypothesis tific fields. The literature now contains literally thousands of
significance testing (NHST) is logically invalid but that logically worked examples—ranging from astrophysics (e.g., Gregory,
valid Bayesian analyses are often not possible. In particular, h@999) to particle physics (e.g., Sivia, Carlile, & Howells, 1992) to
argued, “My best guess is that some of the necessary informatiofmage processing (e.g., Gull & Daniell, 1980) to economics (e.g.,
particularly p(Hy) and p(F\—Hg) or numbers from which these Zellner, 1984)—where Bayesian techniques have successfully
probabilities can be estimated, are often lacking, and consequentlyeen used to tackle problems that were previously difficult or
a Bayesian approach cannot be used” (p. 534), and thus “it ifmpossible using standard methods. In psychology, Bayesian
understandable that NHSTP [NHST procedure] rather than Bayesnethods have recently been successfully applied to the fundamen-
ian analysis is the order of the day—after all, researchers catal problem of choosing between competing hypotheses or models
perform the analyses” (p. 527). of psychological data (e.g., Myung, Forster, & Browne, 2000;

It is difficult to imagine how two sentences could more funda- Myung & Pitt, 1997; Pitt, Myung, & Zhang, 2002).
mentally misrepresent Bayesian statistical inference. Bayesian In this comment, we describe, with a simple example, those
analysis is not simply a way of shuffling the probabilities used insituations in psychological research where Bayesian methods are
standard statistics, together with some new probability statemenigiore useful and applicable than standard methods. We emphasize
representing things like priors, in accordance with Bayes’s theothat Bayesian analyses are always possible in principle, and that
rem. In fact, Bayesian statistical inference is philosophically andcurrent computational methods make most Bayesian analyses fea-
fundamentally different from the standard approach. Its differencesible for the sorts of problems psychology addresses.
allow Bayesian inference to address problems standard approaches
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Jaynes (2003, p. 550) argued that standard methods are usalgebability distributions. For variables that take discrete values,
and useful when dealing with the problems for which they werethese distributions assign a probability value to each possibility.
originally developed. These are basically problems where all thé=or variables that can assume a continuous range of values, the
relevant information comes (or can accurately be conceived of adistributions assign a probability density value to each possibility.
coming) from independent runs of simple random experimentsProbability densities behave much like probabilities: Ratios of
This means that standard methods work well when three condidensities quantify how much more likely one outcome is than
tions are met: another, and sums of densities over a range of outcomes give the

probability that the variable lies in that range. In both the discrete
1. The variables of interest vary according to simple distri- and continuous cases, probability distributions naturally and intu-
butions, like the normal and binomial, in which a small jtjvely represent the current knowledge and remaining uncertainty
number of parameters adequately describe their distriburesearchers have about psychological variables of interest.
tional form. Bayesian analysis has principled methods for updating proba-
bility distributions. These methods are based on three different, but
potentially equally important, sources of information. We demon-
strate these three stages using the following concrete problem:
3. The number of data is reasonably large. Twelve participan_ts complete a problem-solving task, with _onIy
their success or failure measured. In the order that participants
When these conditions are met, standard methods are often quicf(?mp'eted the problems, the dafd) (take the form
easy, and useful. Outside of these conditions, they behave like _
most heuristics when applied to unintended problems. At best, they D = (FFFSFFRFFSEES,
are inefficient. At worst, they are inapplicable or produce patho-whereF denotes failure an& denotes success.
logical behavior that makes them useless or misleading. The lit-
erature now contains many concrete examples of inefficiencies anUJndertaking the Analysis
pathologies for both estimators and significance tests for realistic ) ) )
problems of scientific inference (e.g., Jaynes, 2003; Lindley, 1972; W€ now present a nontechnical account of the Bayesian analysis
Lindley & Phillips, 1976; Press, 1989). of this prot_)lem. Techn!cal details are in the appeqdlx.
The key point, of course, is that psychology has many important Informatlpn inherent in the problem.Ju.st.a.s zero is the ngtural
problems that do not meet one or more of these three condition$tarting point for counting, the natural initial representation for
Bayesian inference is one corresponding to complete ignorance.
1. It seems very unlikely that every interesting psycholog-Recently, principled methods have been developed for defining
ical variable has a simple distributional form. There is prior distributions corresponding to complete ignorance (see
considerable debate in the literature, for example, aboutlaynes, 2003, chap. 12). These methods rely on establishing trans-
the distributional form of response times (e.g., Van formational invariances inherent in problems that constrain the
Zandt, 2000). choice of prior distribution. Intuitively, the idea is to consider ways
in which a problem could be restated, so that it remains funda-
2. Because psychology is inherently interdisciplinary, rele-mentally the same problem but is expressed in a different formal
vant prior information often comes from other fields. For way. Prior distributions must necessarily be invariant under these
example, basic chemical knowledge must be relevant fottransformations, because otherwise different ways of stating the
many drug-related studies in psychology. Sometimes thissame problem would lead to different inferences being drawn. In
information takes the form of a lawful relationship, rather general, the requirement of invariance from information inherent
than data coming from an experiment. Unlike standardin a problem provides strong constraints on the choice of prior
methods, Bayesian statistics deals naturally with bothdistribution and often determines the prior distribution uniquely.
types of information. As a concrete example, consider using a Weibull distribution to
o ] ) o ) make inferences about response time data. The conclusions drawn
In clinical and other applied settings, it is sometimes by sych an analysis obviously should not be affected by the scale
difficult, expensive, or just impossible to obtain data in of measurement (i.e., expressing the time data in milliseconds
any great number. rather than seconds should not matter), and so the parameters for

. L .. the Weibull must have priors that are invariant to changes in scale.
Unlike standard methods, Bayesian inference has a prlnC|pIe{'S it turns out, this lone constraint is sufficient to determine
basis in probability theory, as formalized by Cox’s (1961) theo-uniquely the re(;]uired prior distributions.
rems. This means it can be applied to any statistical distribution, For our problem-solving example, complete ignorance about the
naturally incorporates relevant prior information, and is valid for rate of success is expressed by t'he prior distribution known as
any number of data. Bayesian methods, therefore, have the pOtepl_aldane’s prior, which is shown in Figure 1A. A rigorous deriva-
tial to enhe}nce and further psychological understanding, aIIowinqion of this prio,r using transformational invariance is given by
new and different problems to be tackled. Jaynes (2003, pp. 382-385); an alternative information geometric
derivation is provided by Takeuchi (1997); a more intuitive justi-
fication is provided by Zhu and Lu (2004). The form of this prior
Bayesian inference explicitly represents what is known andarises because, consistent with the assumption of complete igno-
unknown about variables of interest, at all stages of analysis, usingance, it is not known whether the problem-solving task is so

2. No important prior information is available about the
variables of interest.

The Process of Bayesian Inference
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Figure 1. Probability distributions for the rate of success, starting with the completely ignorant prior distri-
bution (Panel A), progressing as 1 (Panel B), 6 (Panel C), and all 12 (Panel D) data are observed.

difficult that it cannot be solved, or so easy that it is always solved scenario, where it is known both are possible, the observation of a
This leads to the extreme possibilities, with success rates of zero dailure makes very low rates of success more likely, but still allows
one, being more probable, while still allowing for the possibility some significant likelihood to a range of other possible rates. After
that the true rate is somewhere between zero and one. We describedata have been observed and a success has been seen, the
Figures 1B-1D below. different states of initial knowledge still influence the distributions,
Relevant prior information. If other relevant prior information  but the influence is less marked. By the time all 12 data have been
is available, Bayesian analysis incorporates it into the prior distri-observed, with a mix of 9 failures and 3 successes, the distributions
butions. This is done by updating the prior distributions so thatare very similar.
they capture the known constraints provided by additional infor-
mation but _otherwise remai_n maximally 'ur?certain. For our giatistical Inferences
problem-solving example, a different scenario is that we do know
both success and failure are possible. This additional piece of Standard statistical practice provides essentially two ways of
information leads to the uniform prior distribution, which is shown making inferences. One involves parameter estimation, where
in Figure 2A. Once again, see Jaynes (2003, p. 385) for aome quantitative statement is made about the values of unknown
derivation. parameters of interest. The other involves hypothesis testing,
Information provided by data. As relevant data from experi- where the probability of a chance-based null account of the data is
mental or other observations become available, Bayesian analys&ssessed, to be retained or rejected in favor of an alternative
uses them to update the probability distribution according toaccount.
Bayes'’s theorem. This updating can be done for a complete data Estimation. The Bayesian equivalent of estimation is to draw
set or sequentially as data arrive. Figure 1B—1D and Figure 2B—2[@onclusions from the posterior distributions of the variables of
show the updating for 1, 6, and then all 12 data for the problemdinterest. These conclusions can take any useful form, because the
solving example, starting with the complete ignorance and uniforndistribution completely describes what is known about the vari-
priors, respectively. Recall that the first datum is a failure, the firstable. For example, when all 12 data have been observed using the
6 data contain 1 success and 5 failures, and all 12 data have @niform prior, the distribution in Figure 2D allows, among a
failures and 3 successes. plethora of others, the following inferences to be made:
Comparing the two situations shows the impact the priors, < The most likely rate of success (i.e., the mode of the distri-
representing different initial states of knowledge, have on outbution) is .25. This is the single value that is more likely than any
understanding. Under complete ignorance, where it is not knowmther, and so constitutes a best estimate if the interest is in
that both successes and failures are possible, the first datum, beirchoosing exactly one rate.
a failure, reinforces the possibility that the rate of success might be < The expected rate of success (i.e., the mean of the distribu-
zero, but eliminates the possibility that the rate is one. In the othetion) is about .29. This is the value that has the smallest expected
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Figure 2. Probability distributions for the rate of success, starting with the uniform prior distribution (Panel A),
progressing as 1 (Panel B), 6 (Panel C), and all 12 (Panel D) data are observed.

squared difference from the success rate, and so (in a senstjat chance corresponds to a rate of .50, but our method of analysis
constitutes a best estimate if the interest is in being as close applies for any other rate.
possible to the correct value. The Bayes factor is a ratio of two quantities: the probability of
» The success rate being .20 is about 2.7 times more likely thathe observed data under a certain null hypothesis and the proba-
the success rate being .10. This is the relative height of théility of the observed data under the alternative hypothesis. Hence,
distribution at .20 compared with .10. the Bayes factor quantifies the extent to which the data support the
» The probability that the success rate is less than .30 is aboutull over the alternative. In our example, it is straightforward to
59%. This is the area under the distribution that is over the relevantalculate the probability of the observed data (i.e., nine failures and
range from 0 to .30. three successes) under a certain null hypothesis specifying a
» The probability that the success rate is between .10 and .55 ishance success rate of .50. In contrast, it may not be obvious at
about 95%. This is the area under the distribution that is over thdirst sight how to calculate the probability of the data under an
relevant range from .10 to .55. alternative hypothesis that assumes the success rate differs from
Of course, different answers will be obtained under the differentchance, because this composite hypothesis is not associated with
prior assumptions of complete ignorance in Figure 1. This shouldany one success rate in particular. Under the Bayesian approach,
be expected and is desirable. Indeed, it would be worrisome if ahis probability is calculated as the weighted average of the prob-
method for statistical inference, when given different information ability of the data for each individual success rate that differs from
about a problem, did not reach different conclusions. Usuallychance. The weight given to each possibility in averaging corre-
however, the effects of different prior information are overcome bysponds to its a priori plausibility, as quantified by the prior distri-
sufficient data, and so the Bayesian answers to the sorts of quebution for the success rate.
tions posed in this list will converge. As detailed in the appendix, for the uniform prior case shown in
Hypothesis testing. The Bayesian equivalent of hypothesis Figure 2, the Bayes factor is 1.0 for the prior distribution, and
testing is model comparison, where competing accounts (possiblyemains at 1.0 after 1 datum has been observed. This means that,
but not necessarily, including a null account) are compared usingt these stages of analysis, the available information does not favor
Bayes factors (e.g., Kass & Raftery, 1995; Myung & Pitt, 1997). one hypothesis over the other. Once 6 data have been observed, the
Bayes factors can be thought of as an extension of likelihoodBayes factor shows that the alternative hypothesis is about 1.14
ratios, measuring how much more likely one model is than anothetimes more likely than the null. Once all 12 data are taken into
on the basis of the evidence provided by the data. Applying Bayesccount, the alternative hypothesis has become 1.43 times more
factors to our example requires comparing a null hypothesis thalikely.
assumes a chance success rate with an alternative hypothesis thaOf course, experimental psychologists are often interested in
assumes a success rate different from chance. We assume, fosmparing two groups, rather than comparing one group against a
concreteness, that the nature of the problem-solving task meamsll hypothesis. Suppose, for example, a second smaller group of
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advanced problem solvers is observed to solve 5 of 6 problemsyork but ones based on NHST or confidence intervals can be ineffi-
and an inference is required about whether 5 out of 6 correspondsent or pathological. Indeed, it is well documented (e.g., Carlin &
to the same success rate as the original sample performance ofL®uis, 2000; Lindley & Phillips, 1976) that NHST and confidence
out of 12. Bayesian inference also handles this problem by usingnterval methods behave incoherently for our example, because they
Bayes factors. For this example, it is about 6.9 times more likelyviolate what is known as the likelihood principle. Our goal is to
that the advanced group will have a greater success rate than tleeplain Bayesian methods rather than criticize standard ones, so we
original control group. As with estimation, both this Bayes factor encourage the interested reader to consult Berger and Wolpert (1984)
and the one comparing the original group to the null hypothesisand W. Edwards, Lindman, and Savage (1963) for details.
will differ under the prior assumption of complete ignorance, but Of course, our example is one where Bayesian methods are
will generally converge as the evidence provided by data domicomputationally as well as conceptually straightforward. However,
nates prior information. modern computing capabilities, and the numerical algorithms that
use them (e.g., Gelman, Carlin, Stern, & Rubin, 1995; Gilks,
Richardson, & Spiegelhalter, 1996), have rendered less elegant
inference problems equally tractable. These algorithms are pro-
The two quantities highlighted by Trafimow (2003) as being prob-gressively being incorporated into standard statistical software
lematic for Bayesian analysis—the prior probability of the null hy- package$.Bayesian inference maintains its conceptual simplicity
pothesis, and the probability of the data when the null hypothesis ithroughout, but more computational work is required to generate
false—are, in fact, both readily calculated using priors correspondingosterior distributions and Bayes factors.
to complete ignoranck.To be fair, the definition ofcomplete- We would argue that, despite the temptation of retaining current
ignorance priorsin terms of transformational invariance is a recent methods, making the additional computational effort to use Bayes-
development in Bayesian statistics and addresses what had previousin methods will often be rewarded. Psychology has many impor-
been a serious deficiency. Previously, the definition of priors hadant and interesting problems with characteristics that do not suit
relied on applying the so-callgatinciple of indifferenceor principle current methods, but can be dealt with in a principled and unified
of insufficient reasonpften associated with Laplace (e.g., Laplace, way by the Bayesian approach. This is why Bayesian inference
1951), to the events whose relative probabilities were being quantifiedeserves serious study and widespread adoption in psychology.
by the prior distribution. This principle simply assumes, in the ab-
sence of other evidence, that all possibilities are equally likely. As has
repeatedly been pointed out (e.g., A. Edwards, 1972; Fisher, 1936, ———
1932, 1956), including by those advocating the Bayesian approach 1The averagir_lg procedurg used to calculate the probability'c'Jf the data
(e.g., Kass & Wasserman, 1996), this principle is highly problematid‘mder a composm? hypoth§5|§ foIIovv_s from elementary probablI!t_y theory.
when applied to events, because different (but equally reasonabl%ﬂerefore’ the claim that it is |mp055|ble_t tq calculate the probability of the
o . . . served data when the null hypothesis is false reduces to the argument
ways of partitioning a variable into a set of events lead to dlf'ferentth

inf being draw f understanding t ¢ i | at it is not possible to determine prior distributions.
inferences being dra ne way ot understanding transformationa 2We note that unbiased estimators, efficient estimators, shortest confi

invariance is that it applies the principle of 'nd_'ﬁerence at the_'ev‘?' Ofdence intervals, and other key quantities in standard statistics continue to
problems rather than events, where there is no such arbitrarinesg;trer from the lack of reparameterization invariance that is at the heart of
because it relies only on the explicit statement of the proBlem. this problem (Jaynes, 2003, p. 377). If objections to the principle of
With the advent of an objective method for determining priors, indifference are Trafimow’s (2003) justification for rejecting Bayesian
our rate example shows the feasibility of Bayesian inference foinference, then standard statistics certainly must also be rejected.
psychology in a concrete way. Whether one possible rate is more *A concrete example of this key difference is Jaynes's (2003, pp.
likely than another can be assessed, and how much more likely 886—-394) solution of the Bertrand paradox—a problem that had previously
is can be quantified. The probability that the rate is greater tharprovided one of the best examples of the difficulties with the principle of
some value or is between two values can be measured. Observiéylifference—using transformational invariance to determine the required
data can be compared with chance or with data from anothep'ior distributions. _ _
experimental group. Whatever the question, the important point is ~ FOr example, Systat (Version 11; 2002) has general Markov chain
that Bayesian inferences are always possible in principle. Even jfylonte Carlo sampling procedures.
the most extreme case, where the problem has been defined, but
absolutely nothing else is known, Figure 1A shows the distribution References
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Appendix

Technical Details

This appendix provides a formal treatment of the worked example n\/1\"
of Bayesian analysis. The complete ignorance prior is found by p(D|Ho) <k>(§>
Jaynes (2003, pp. 382-385) as the probability distribution that is p(D[H,) Y N
invariant under the transformatian = ag(1 —s + as), where the rate f (k) (1 — 9" ¥ Betay, »(s)ds
of successs € [0, 1] anda > 0. The unique solution is known as o
Haldane’s prior, and is given bpy(s) « 1/[s(1 — s)]. Jaynes then
showed that updating this prior to include the knowledge that both <}>"
successes and failures are possible leads to the uniform prior, given by _ 2 W
pu(s) = 1. Blb+k b+n—-k -

Both of'the.se prlor states of knowledge can conveniently be representeﬂote that the denominator in Equation 1 is the probability of the data given
as beta distributions that the null is false (i.e., given that the interval alternative hypothesis is

. o1 true). This is one of the quantities that Trafimow (2003) incorrectly argued
$71-9 is not available for Bayesian analysis.

Betda n(s) = B(a, b) ' Using Equation 1, the Bayes factors reported for our example were
found simply by substituting the appropriate numbers of observations and
whereB(a, b) = (a— 1)!(b— 1)!/(a + b— 1)! is the beta function, with = successes, using the appropriate prior. For example, Figure 2A corresponds
b = 0 for p, anda = b = 1 for py,. tok = 0 andn = 0 with the prior havind = 1. Substituting these numbers

into Equation 1 gives the reported Bayes factor of 1.0. As a second
example, Figure 2D correspondske= 3,n = 12, andb = 1. Substituting
these numbers gives a Bayes factor of approximately .70 in favor of the
null hypothesis. This corresponds to a Bayes factor of #7043 in favor

of the alternative hypothesis, as reported in the text.

The reported comparison between the control and advanced groups was
Every distribution shown in Figures 1 and 2 corresponds to the approgone by applying the Bayes factor that compares a same-rate rbdel
pl’iate beta distribution (i.e., the relevant prior, Updated by the aVailaleigainst a different-rates modmd. For two groups respective|y ha\/iﬂq
data). andk, successes out af; andn, trials, the same-rate model assumes the

Hypothesis testing with the null and alternative models, same success rate) @pplies for both groups. The different-rates model
and H,, is based on the Bayes factor. For our example, the Bayesassumes different success ratgsands,) for the two groups. The Bayes
factor is factor comparing these models is given by

For any available dat® showingk successes out of trials, Bayes’s
theorem gives the posterior distribution

P(s|D) = Betay 4 kb +n - (3.
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j p(D|s)p(s)ds
PDIMy) _ 0
p(D|Mo)

1 1
f f p(Dls;, 5) p(sy, Spdsids,
0 0

f l< r|2>§1(1 - s)”‘“( E§>Sk2<1 — 9™ Betay y(9ds

0
= 1 1
f f ( Ei) Si(1—s)™ “Betay, b>(sl)< Ez) $(1 — )™ Betay, »(s)dsds
0 0

Btk kbt -k k) ,
“Bb+k, bt —k)Bb Tk b+m,— k)" @

For our example, the counts of the numbers of successes and total trials f@ayes factor of approximately .145 in favor of the same-rate model. This
each group aré; = 3,n;, = 12,k, = 5, andn, = 6. Substituting these  corresponds to the Bayes factor of 1/.145.9 in favor of the different-
values, together with = 1 for the uniform prior, into Equation 2 gives a rates model reported in the text.
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Postscript: Bayesian Statistical Inference in Psychology: mation. The Fisher example shows that Bayesian inference cannot

Comment on Trafimow (2003) divine true information with which it was never provided. The
amazing theory of memory example and the dating example show
Michael D. Lee that Bayesian inference cannot resolve the indecision of research-
University of Adelaide ers about what hypothesis they are testing and what information

they have available. And, while we are not sure we understand the
point of the Suppes example, we agree that Bayesian inference
cannot account for the quirks of human language production under
uncertainty. In the end, these consternations seem to leave Trafi-

Trafimow (2005) is right in pointing out that our comment (Lee & : .
Wagenmakers, 2005) focused on using Bayesian methods to malaow troubled by all methods for analyzing psychological models
’ and data. Perhaps he is right, and Bayesians should “down tools,”

statistical inferences about psychological models and data, at the . . ;
: L . .~ Waiting for a method of inference that is not only coherent and

neglect of philosophical issues. And there are certainly some philo-_. : .

o . . ra%tlonal, but can also work miracles. But, even if we had fortunes,
sophical issues that are worth discussing. It seems, for example, tha \ .

- - . we wouldn’t bet them on it.

our comment should have made it clear that the objective Bayesian
approach we advocate views probabilities neither as relative frequen-
cies nor as belief states, but as degrees of plausibility assigned to
propositions in a rational way, entirely (and uniquely) determined bytee, M. D., & Wagenmakers, E.-J. (2005). Bayesian statistical inference in
the available information. Harder philosophical problems that we PSychology: Comment on Trafimow (2008)sychological Review, 112,
think are important, but did not mention, are whether it is possible to 6?2_6685 2003). Hybothesis tesii d th luat ¢ th
give a complete statistical characterization for any data—generatin&ra'mow’ - )- Hypothesis testing and theory evaluation at the

. . boundaries: Surprising insights from Bayes’s theor&sychological
process and how incompleteness results (such a@elGdheorem) Review 1105268535.9 9 Y ety g

might apply to the Bayesian framework. Trafimow, D. (2005). The ubiquitous Laplacian assumption: Reply to Lee
Unfortunately, these substantial issues are not addressed. In-and Wagenmakers (2009)sychological Review, 11B69—674.

stead, Trafimow (2005) provides a series of consternations making

it clear that Bayesian methods cannot work miracles for psycho- Received June 28, 2004

logical researchers and that researchers must be resigned to using Revision received October 6, 2004

them to provide coherent and rational analyses of available infor- Accepted October 7, 2008
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