
Bayesian Statistical Model Checking for
Multi-agent Systems using HyperPCTL*

Spandan Das
Department of Computer Science

Kansas State University
Manhattan, Kansas
spandan@ksu.edu

Pavithra Prabhakar
Department of Computer Science

Kansas State University
Manhattan, USA

pprabhakar@ksu.edu

Abstract—In this paper, we present a Bayesian method for
statistical model checking (SMC) of probabilistic hyperproperties
specified in the logic HyperPCTL* on discrete-time Markov
chains (DTMCs). While SMC of HyperPCTL* using sequential
probability ratio test (SPRT) has been explored before, we
develop an alternative SMC algorithm based on Bayesian hypoth-
esis testing. In comparison to PCTL*, verifying HyperPCTL*
formulae is complex owing to their simultaneous interpretation
on multiple paths of the DTMC. In addition, extending the
bottom-up model-checking algorithm of the non-probabilistic
setting is not straight forward due to the fact that SMC
does not return exact answers to the satisfiability problems
of subformulae, instead, it only returns correct answers with
high-confidence. We propose a recursive algorithm for SMC of
HyperPCTL* based on a modified Bayes’ test that factors in
the uncertainty in the recursive satisfiability results. We have
implemented our algorithm in a Python toolbox, HyProVer,
and compared our approach with the SPRT based SMC. Our
experimental evaluation demonstrates that our Bayesian SMC
algorithm performs better both in terms of the verification time
and the number of samples required to deduce satisfiability of a
given HyperPCTL* formula.

Index Terms—Statistical Model Checking, Bayesian Hypothesis
Testing, Probabilistic Hyperproperties

I. INTRODUCTION

Formal verification of software systems that interact with
physical environments as in cyber-physical systems, has
gained significant importance in recent years owing to the
safety-criticality of these systems. Probabilistic and stochastic
models have been proven to be useful tools in modeling the
uncertainty inherent in the interactions with the environment.
In particular, discrete-time Markov chains are a simple, yet
widely applicable, class of probabilistic systems that capture
uncertainties using transition probabilities. Correctness speci-
fications of these systems need to incorporate the probabilistic
aspects and are often captured using probabilistic logics. For
example, uncertain behaviour of a car driver has been modeled
as a discrete-time Markov chain (DTMC) [1], and several
behavioral properties of the driver are encoded using the
Probabilistic Computation Tree Logic (PCTL). Further, a robot
performing random walk on a grid has been modeled using
DTMC [2], and properties like probabilistic goal reaching have
been encoded using Continuous Stochastic Logic (CSL).

Traditional logics focus on properties about single execution
traces of a system. While several interesting properties can be

captured using single-trace logics, they fall short in capturing
interactive behaviors between multiple agents. Hyperproperties
are a new class of properties [3], [4] that capture multi-trace
behaviors. For example, consider two robots walking on an
n ˆ n grid. The property that the two robots never collide,
can only be expressed by a formula that refers to the paths
of both the robots simultaneously [5]. In addition, several
security properties can be easily captured using hyper-logics
such as information flow [6], [7], non-interference [4], [8] and
observational determinism [8], [9].

In this paper, we focus on the problem of verifying discrete-
time Markov chains with respect to probabilistic hyperproper-
ties that allow us to specify constraints on joint probability of
satisfaction of real-time behaviors by independent executions
of a multi-agent system. We focus on discrete-time systems
and properties, however, the ideas in the paper will be foun-
dational toward verification of these systems and properties
in continuous time. We consider robot navigation problems as
our case studies. For example, consider a two robot navigation
scenario on a grid, wherein we desire to ensure an upper
bound on the collision probability. Such properties can be
easily specified using probabilistic hyperproperty logics such
as HyperPCTL*, which is an expressive hyperproperty logic
that allows nesting of both temporal and probabilistic operators
(see [10]). Thus, it has found its use in formal specification
of probabilistic hyperproperties of cyber-physical and robotic
systems [10]. Several quantitative extensions of information
security properties have been captured using HyperPCTL*
such as qualitative information flow [11], probabilistic non-
interference [12] and differential privacy [13].

Probabilistic model-checkers such as PRISM [14] and
STORM [15] verify probabilistic systems with respect to
probabilistic properties. While probabilistic model-checking
performs reasonably well for single trace properties, even in
the non-probabilistic setting, model-checking hyperproperties
is a challenging task [16]. Hence, light-weight verification
methods based on sampling, such as statistical model-checking
[10], [17] have been explored.

Statistical Model-Checking (SMC) [18]–[28] is an alter-
native sampling based method to verify satisfiability of the
specification. More precisely, SMC algorithms collect a sam-
ple of execution paths from the system and determine the

ar
X

iv
:2

20
9.

02
67

2v
1

 [
cs

.M
A

]
 6

 S
ep

 2
02

2

satisfiability of the property based on a statistic computed
using the satisfiability of these sample execution paths. SMC
scales extremely well for complex systems, however, it does
not provide exact inference, rather, incurs Type-I and Type-
II errors which correspond to the probability that, the test
concludes that the system violates the property when indeed
it is satisfied, and the probability that, the test concludes that
the system satisfies the property when actually it is violated,
respectively. SMC for probabilistic hyperproperties has been
discussed in [10], [17], where sequential probability ratio
test (SPRT) has been used. These algorithms fall into the
frequentist regime where the parameter is assumed to be fixed
but unknown. In this paper, we explore an alternative approach
based on Bayesian hypothesis testing which incorporates prior
information about the parameters in the form of their dis-
tributions. We present a Bayesian SMC algorithm based on
Bayes’ test that takes as input Type-I and Type-II error bounds
and provides corresponding guarantees on the inference of the
satisfiability.

SMC of probabilistic hyperproperties specified in
HyperPCTL* is challenging due to two reasons: HyperPCTL*
in interpreted over multiple traces and the probabilistic
operators are nested. To address the multi-trace setting, we
present a multi-dimensional hypothesis testing and incorporate
that within a recursive algorithm to tackle the nesting in
probabilistic operators. Our broad approach to verifying a
HyperPCTL* formula ϕ is a bottom up algorithm similar
to classical CTL model-checking [29], [30], wherein we
verify the bottom level probabilistic operators and work our
way upwards using the results from the verification of the
subformulae. Since, SMC only returns the correct answers
with certain confidence, this error needs to be factored into
the SMC procedures for top level formulae. We tackle this by
designing a modified Bayes’ test that uses a statistic computed
from these approximately correct answers. While such a
framework has been developed in the single trace setting [2],
the main contribution of the paper is the careful incorporation
of multi-dimensional Bayesian hypothesis testing into the
recursive framework by establishing appropriate bounds on
the confidence of lower level multi-dimensional SMC calls.

We have implemented our algorithm in a Python toolbox
HyProVer and tested it on a series of robot navigation sce-
narios in the grid world setting (see Section V). Though
the algorithm is written in a bottom-up fashion, we have
implemented an efficient top-down approach, wherein lower
level SMC calls are made only on a need-by basis, thereby
avoiding an exhaustive computation of lower level SMC calls.
We also implemented the SPRT approach for comparison. We
observed that, for the same level of confidence, our approach
takes fewer number of samples and less time to verify both
non-nested and nested HyperPCTL* formulae compared to
SPRT [10] (none of the case studies discussed in [10] involved
a nested probabilistic formula). Also, our approach does not
need the assumption that the true probability lies outside
the indifference region (for non-nested formula) and thus,
is more general than SPRT. Thus, our approach is more

practical for verification of general HyperPCTL* formulae.
Bayesian approaches are often criticized for their need for
prior information. We considered different choices for prior
by considering various parameters for the Beta distribution
and observed that priors effect the verification time in a minor
manner. However, since SPRT does not use prior information,
we used uniform prior while comparing Bayesian approach to
SPRT, so that any parameter value is equally probable.

To summarize, the main contributions of this paper are:
‚ A first Bayesian statistical model-checking algorithm for

HyperPCTL* that combines multi-dimensional Bayesian
hypothesis testing and a recursive framework for error
propagation of nested probabilistic operators.

‚ A novel top-down implementation that makes lower level
SMC calls on-need and consists of additional bookkeep-
ing to avoid redundant and unnecessary computation.

‚ Experimental evaluations and comparisons with existing
approaches that demonstrate the scalability and benefits
of our approach.

Organization: The rest of the paper is organized as follows.
We discuss related work in Section II. Some basic definitions
and notations are covered in Section III. We define the
model checking problem formally in Section IV. The robot
navigation system grid world and two properties of it are
described in Section V. In Section VI, we discuss general
and multi-dimensional hypotheses testing, as well as, Bayes’
test, approximate Bayes’ test and sequential probability ratio
test (SPRT). Section VII explains the recursive Bayesian SMC
algorithm and compares its approach with that of SPRT based
SMC [10]. In Section VIII, we evaluate our algorithm on the
case study discussed in Section V. Finally, we conclude in
Section IX.

II. RELATED WORKS

Broadly, two classes of techniques have been explored for
verification of probabilistic properties on probabilistic system
models. Probabilistic model checking (PMC) techniques based
on numerical methods that compute exact probability of sat-
isfaction of a specification given in logics such as LTL [31],
PCTL [32], [33], CSL [34], Bounded Temporal Logic (BTL)
[35] and ω-regular languages [36] on stochastic models such as
discrete-time Markov chain (DTMC) [31]–[33], [36], contin-
uous time Markov chain (CTMC) [34], [35], Markov decision
process (MDP) [33], [37] and ω-automaton [31] have been
explored. However, these methods are generally model specific
and involve solving a system of linear equations [33], [35] or
complex properties of algebraic and transcendental number
theory [34], which makes them computationally intensive.

On the other hand, statistical model checking (SMC) algo-
rithms are based on random sampling of the probabilistic mod-
els and use statistical tests to provide (with certain confidence)
inference on whether probability of a property lies within a
certain range. Although SMC can only provide answers with
certain amount of errors, it is much less computation intensive
and thus used in a large number of real life applications
[26], [38]. SMC has been used for verification of properties

specified in LTL [18], [19], Bounded LTL [27], Probabilistic
Bounded LTL [28], PCTL [25] and CSL [2], [23], [24] where
DTMC [2], [23], [25], CTMC [23], MDP [27], [39], semi-
Markov process (SMP) [23], [24], generalised semi-Markov
process (GSMP) [24] and various Stochastic Hybrid Systems
(SHS) [18]–[20], [22], [28], [40] have been considered for
the underlying probabilistic models. A brief discussion on
state of the art SMC techniques (e.g., sampling and testing
methods) can be found from several survey papers [41], [42].
For example, sampling techniques like Monte-Carlo [19] and
perfect simulation [21] have been used to sample various
probabilistic models, and statistical tests like Bayesian [2],
[28], importance sampling [43], acceptance sampling [24]
have been used to gather inference about their probabilistic
properties. Detailed study on various statistical tests and their
applications has been performed [44], [45]. Tools like Apmc
[46], PRISM [14], STORM [15] have been developed that can
automatically verify probabilistic properties on probabilistic
models.

Encoding multi-trace properties (known as hyperproperties)
using logics like LTL, PCTL, CSL is not straightforward
as they mainly capture properties about individual traces of
the underlying model. Logics like Bounded HyperLTL [4],
HyperLTL [3], HyperCTL* [3] were defined for specifica-
tion of hyperproperties. More recently, HyperPSTL [17] and
HyperPCTL* [10] have been defined to encode probabilis-
tic hyperproperties. Model checking of probabilistic hyper-
properties is a relatively new area of research; one recent
work explores a statistical model-checking algorithm based on
Clopper-Pearson interval method [17] and sequential probabil-
ity ratio test (SPRT) [10]. In this paper, we explore a Bayesian
approach for verification of probabilistic hyperproperties. To
the best of our knowledge, this is the first statistical model-
checking algorithm for probabilistic hyperproperties based on
a Bayesian approach.

III. PRELIMINARIES

Let us define some basic terms and notations that are used
in the paper. Given a sequence σ “ s1, s2, . . . , σris denotes
ith element of the sequence σ, that is, si, and |σ| denotes
length of the sequence σ. For an n-tuple X̄ “ pX1, . . . , Xnq,
X̄ris denotes the ith element of X̄, that is, Xi. For an n-
tuple X̄, infinite norm is denoted by ||X̄||8 where, ||X̄||8 “

maxni“1 X̄ris. For any natural number n, rns denotes the set
of natural numbers t1, . . . , nu.

Recall that, given a continuous random variable X , the
function F : R Ñ r0, 1s defined as F pxq “ P pX ď xq is
called the cumulative distribution (cdf) of X and the function
f : RÑ R defined as fpxq “ d

dxF pxq is called the probability
density (pdf) of X .

For any x P Rn, the ε-ball around x with respect to the
infinite norm is defined as Bεpxq :“ ty P Rn : ||x´y||8 ď εu.
For a set A Ď Rn, the boundary of A (denoted BpAq) is defined
as the set of all x P Rn such that Bεpxq X A ‰ H and
Bεpxq XA

c ‰ H, for all ε ą 0.

IV. HYPERPCTL* VERIFICATION PROBLEM

In this section, we formalize the model checking problem of
a system given as a Discrete-time Markov Chain with respect
to correctness criterion specified in the logic HyperPCTL* [10]
which specifies hyperproperties.

A. Discrete-time Markov Chain

A discrete-time Markov chain is a structure that consists of
a set of states along with transitions that specify the probability
of the next state of the system given the current state.

Definition 1 (Discrete-time Markov Chain): A discrete-time
Markov Chain (DTMC) is a tuple M “ pS,R,AP, Lq where,
‚ S is the finite set of states;
‚ R : S ˆ S Ñ r0, 1s is the transition probability function

such that for any s P S,
ř

s1PS Rps, s
1q “ 1;

‚ AP is the set of atomic propositions; and
‚ L : S Ñ 2AP is the labeling function that associates a set

of atomic proposition to each state.
A path (trace) of a DTMC M is a sequence of states σ “
s1, s2, . . . such that for all i ă |σ|, Rpsi, si`1q ą 0. PathspMq
denotes the set of all infinite paths and PathsfinpMq denotes
the set of all finite paths of a DTMC M.

B. HyperPCTL* Logic

Next, we define the syntax and semantics of HyperPCTL*
which is a logic for specifying probabilistic hyperproperties
and is interpreted on multiple traces from a DTMC.

1) Syntax of HyperPCTL*: Let us fix a set of atomic
propositions AP and a (possibly infinite) set of path variables
Π. HyperPCTL* formulae over AP and Π are defined by the
following grammar:

φ :“ aπ | φ | φ^ φ |©φ | φUďkφ
| PDpPrπ̄pφq, . . . , P rπ̄pφqq, (1)

where a P AP is an atomic proposition and π P Π is a
path variable. © and Uďk are the ‘next’ and ‘until’ operators
respectively, where k P N Y t8u is the time bound. For this
work, we will assume k P N, i.e., we will only consider
‘until’ operators with finite time bound. Prπ̄ is the probability
operator for a tuple of path variables π̄ “ pπ1, . . . , πnq, where
n P N and πi P Π for all i P rns. PDpx1, . . . , xnq is an n-ary
predicate function which is satisfied iff px1, . . . , xnq P D Ď

Rn.
Additional logic operators are derived as usual: J ” aπ ^

 aπ , φ ^ φ1 ” p φ _ φ1q, φ ñ φ1 ” φ _ φ1, 3ďkφ ”
JUďkφ, and lďkφ ” 3ďk φ. We represent a 1-tuple by
its element, i.e., Prpπq is written as Prπ .

Remark 2: In general, HyperPCTL* formulae are defined
by the grammar:

φ :“ aπ | φπ | φ | φ^ φ |©φ | φUďkφ | ρ ’ ρ

ρ :“ fpρ, . . . , ρq | Prπ̄pφq | Prπ̄pρq,

where ’P tą,ă,ě,ď,“u. Note that, a formula of the form
ρ1 ’ ρ2 can be equivalently depicted as PDpρ1, ρ2q, where
D “ tpx1, x2q | x1 ´ x2 ’ 0u. Similarly, other ρ formulae

can also be expressed by the grammar in Equation 1 defined
above, i.e., the grammar in Equation 1 is as expressive as the
general HyperPCTL* grammar.

2) Semantics of HyperPCTL*: A HyperPCTL* formula
over AP and Π is interpreted on the pair pM, V q, where M
is a DTMC with propositions AP, and V :Π Ñ PathspMq is a
mapping from Π to PathspMq. We say V is a path assignment.
JφKV denotes instantiation of the mapping V on the formula
φ, i.e., each π P Π that appears in φ is replaced by the
path V pπq P PathspMq. Let π̄ and σ̄ be sequences of path
variables and paths of M respectively such that |π̄| “ |σ̄|.
V rπ̄ Ñ σ̄s denotes revision of the mapping V where π̄ris is
remapped to σ̄ris for all i P r|π̄|s. V piq denotes the i-shift
of V , i.e., V piqpπq is the path pV pπqris, V pπqri ` 1s, . . . q.
PathspV, πq denotes the set of all paths σ P PathspMq such
that σr0s “ V pπqr0s and PathspV, π̄q denotes the set of all path
sequences σ̄ P pPathspMqq˚ such that pσ̄risqr0s “ V pπ̄risqr0s
for all i. The semantics of HyperPCTL* is described as
follows,

pM, V q |ù aπ iff a P LpV pπqp0qq

pM, V q |ù φ iff pM, V q * φ

pM, V q |ù φ1 ^ φ2 iff pM, V q |ù φ1 and pM, V q |ù φ2

pM, V q |ù©φ iff pM, V p1qq |ù φ

pM, V q |ù φ1U
ďkφ2 iff Di ď k such that

ppM, V piqq |ù φ2q ^ p@j ă i, pM, V pjqq |ù φ1q

pM, V q |ù PDpPrπ̄1pφ1q, . . . , P r
π̄npφnqq iff

pJPrπ̄1pφ1qKV , . . . , JPr
π̄npφnqKV q P D

JPrπ̄pφqKV “ P tσ̄ P PathspV, π̄q | pM, V rπ̄ Ñ σ̄sq |ù φu

The expression P tσ̄ P PathspV, π̄q | pM, V rπ̄ Ñ σ̄sq |ù φu
denotes the probability of satisfaction of φ on the set of path
sequences tσ̄ : |σ̄| “ |π̄| and pσ̄risqr0s “ V pπ̄risqr0s @iu.

C. The Model Checking Problem

Let M be a DTMC and φ be a HyperPCTL* formula. Let
Πφ denote the finite set of path variables used to define φ
and V : Π Ñ PathspMq be a path assignment. The model
checking problem is to decide whether M, V |ù φ given
a DTMC M and path assignment V . Note that, since we
encounter path variables that appear in φ only and all linear
time operators are bounded, it is enough to provide a path
assignment V : Πφ Ñ PathsfinpMq, as satisfaction of a
formula depends only on finite prefixes of assignments.

V. CASE STUDY: GRID WORLD

In this section, we describe a robot navigation scenario on
a grid world and discuss two desirable properties. Consider
an nˆ n grid where N robots are performing 2 dimensional
random walks. In other words, each robot can move to a cell
to its left, right, above or below only (if possible) with non
zero probability. In Figure 1, a 4 ˆ 4 grid with two robots
has been shown. Each robot has a particular goal which is
one of the cells of the grid. In Figure 1, the goal for the first
robot (red) has been marked by g1 and goal for the second

1

2

g1

g2

Fig. 1: Robot Motion in Grid World

robot (green) has been marked by g2. The first property we
would like to verify is that the robots do not collide with each
other within a finite number of steps with high probability.
The second property we would like to verify is that the robots
reach their respective goals within a finite number of steps
with high probability while avoiding collision with each other
(with high probability).

A. DTMC Modeling

The robot navigation system can be aptly modeled using
a discrete-time Markov chain (DTMC), where, a state can
uniquely represent the position and identity of a robot and
the atomic propositions represent individual cells properties. In
other words, a state is of the form qijk where, pi, jq denotes the
position and k denotes the identity of the robot. Thus, we have
the set of states S “ tqijk | i, j P rns and k P rN su. Each state
qijk is marked with the atomic proposition aij , which denotes
the position corresponding to that state, i.e., aij P Lpqijkq for
all k. Also, qijk is marked with the proposition gk if pi, jq
is the goal of robot k, i.e., gk P Lpqijkq iff pi, jq is the goal
of robot k. This gives us the set of all atomic propositions
as AP “ taij | i, j P rnsu Y tgi | i P rN su and the labeling
function L. The transition function R ensures that a robot
can move from cell pi, jq to cell pi1, j1q only if they share a
common boundary, i.e., Rpqijk, qi1j1k1q ą 0 iff cells pi, jq and
pi1, j1q share a common boundary and k “ k1. This probability
might vary for different robots. Incorporating k as an index
of the states ensures that the probability Rpqijk, qi1j1kq can be
uniquely defined for each robot k P rN s.

B. Collision Avoidance

A collision between two robots happens if they reach the
same cell at the same point of time. Avoiding collision is a
desirable property. In other words, assuming π1 is the path
followed by the first robot and π2 is the path followed by the
second robot on the DTMC, we would like that aij not in both
π1rks and π2rks for all k P N. Since we are only considering

bounded formulae, we assume k ď K for some K P N. Thus
an interesting property of the grid world will be to check if the
probability that aij in both π1rks and π2rks for some i, j P rns
and for any k ď K is smaller than a certain threshold θ. This
can be represented by the HyperPCTL* formula ψca:

Pr0,θs

¨

˝Prpπ1,π2q

»

–3ďK

¨

˝

ł

i,jPrns

paπ1
ij ^ a

π2
ij q

˛

‚

fi

fl

˛

‚. (2)

C. Collision Free Goal Reaching

Another desirable property of the grid world is that a robot
reaches its goal within some finite number of steps with high
probability while avoiding collision with other robots with
high probability. For an n ˆ n grid with two robots, this
property can be aptly represented for the first robot using the
nested HyperPCTL* formula ψgoal:

Prθ1,1s
`

Prπ1
“

pψnocolqU
ďKpgπ1

1 q
‰˘

where, (3)

ψnocol “ Prθ2,1s

¨

˝Prπ2

»

–

¨

˝

ł

i,jPrns

paπ1
ij ^ a

π2
ij q

˛

‚

fi

fl

˛

‚.

Observe that, this formula represents the property that the first
robot (following the path π1) reaches its goal within K steps
with probability at least θ1 while avoiding collision with the
second robot (following the path π2) with probability at least
θ2. We can state this property for the second robot as well in
a similar manner by simply interchanging the positions of π1

and π2 and replacing g1 by g2.

VI. HYPOTHESIS TESTING

The objective of a hypothesis test is to make some inference
on the parameter(s) of a probability distribution using some
statistical tests. More precisely, consider a random variable Y
with pdf f that depends on some parameter Θ. The goal of
hypothesis testing is to determine whether Θ lies above or
below a certain value θ0 known as the threshold. Thus we
obtain two hypotheses:

H0 : Θ ě θ0 vs H1 : Θ ă θ0.

To determine whether H0 or H1, referred to as the null and
alternate hypothesis, respectively, is true, a hypothesis test
consists of sampling the random variable Y to obtain data y,
which is a sequence of values of Y observed while sampling,
computing a statistic T pyq, where T is a function that maps
y to some real number T pyq, and accepting or rejecting H0

(with probability greater than a desired threshold) based on the
value of T pyq. The statistic T should be chosen such that the
corresponding test provides the correct inference with high
probability. There are two types of errors associated with a
hypothesis test: the probability of rejecting H0 when H0 is
true, referred to as the Type-I error, and the probability of
accepting H0 when H0 is false, referred to as the Type-II error.
It is desirable that Type-I and Type-II errors are bounded above
by some small positive quantities α, β P p0, 1q (respectively).

A. Multidimensional Hypothesis Testing

Our verification problem translates to a hypothesis testing
problem on a vector of random variables (random vector) each
with its own parameter. Here, we set up the multi-dimensional
hypothesis testing problem that involves a multi-dimensional
parameter corresponding to a multi-dimensional random vec-
tor. Let Ȳ “ pY1, . . . , Ynq be an n-dimensional random vector
formed by independent random variables Y1, ¨ ¨ ¨ , Yn with
parameter vector Θ̄ “ pΘ1, . . . ,Θnq, that is, Yi has parameter
Θi. The goal of n-dimensional hypothesis testing is to decide
whether Θ̄ is in D Ď Rn or not. Hence, our hypothesis testing
problem is to decide between the following two hypotheses:

H0 : Θ̄ P D vs H1 : Θ̄ P Dc. (4)

We obtain a sequence of N samples ȳ “ py1, . . . ,yNq from
the n-dimensional random vector Ȳ “ pY1, . . . , Ynq, that is,
each yi is a tuple of values pyi1, . . . , yinq where yij is sampled
from the random variable Yj . We compute a statistic T of ȳ,
and compare it with a value that depends on D to determine
whether H0 should be accepted or rejected.

B. Bayesian Hypothesis Testing

Bayesian hypothesis testing is a hypothesis testing frame-
work wherein we assume some knowledge about the parame-
ters in the form of prior distributions. Bayesian methods often
perform better in terms of the inference since they factor in
additional information about the parameters. Hence, we are
given a random vector Ȳ of i.i.d. random variables along with
the parameter vector Θ̄ and a joint pdf fΘ̄ that is known.
We compute a statistic known as the Bayes’ factor, denoted
BȲpȳ, Dq, given by the ratio of the probability that the data
ȳ is observed given H0 is true (denoted P pȳ | H0q) to
the probability that ȳ is observed given H1 is true (denoted
P pȳ | H1q). In other words,

BȲpȳ, Dq “
P pȳ | H0q

P pȳ | H1q

“

ş

θPD
PȲ|Θpȳ | θqfΘ̄pθqdθ

ş

θPDc PȲ|Θpȳ | θqfΘ̄pθqdθ
¨
P1

P0
(5)

where P0 “
ş

θPD
fΘ̄pθqdθ and P1 “

ş

θPDc fΘ̄pθqdθ.
The following theorem [2], [28] provides us a way to

perform hypothesis testing using Bayes’ factor.
Theorem 3: [Bayes’ test] Let Ȳ be a discrete random vector

with parameter Θ̄ and corresponding joint pdf fΘ̄. Let,

H0 : Θ̄ P D vs H1 : Θ̄ P Dc,

be the null and alternative hypotheses respectively. Consider
the test that
‚ accepts H0 when BȲpȳ, Dq ě

1
β and

‚ rejects H0 when BȲpȳ, Dq ď α.
Then α and β are the upper bounds of Type-I and Type-II
errors, respectively.

In the sequel, the Yi in our hypothesis test will be a
Bernoulli random variable with parameter Θi P p0, 1q, de-
noted Yi „ BpΘiq. We consider Beta distributions, denoted

Betapa, bq with parameters a, b, for the prior, since they
are defined on the interval p0, 1q and can represent several
important distributions for suitable choices of a and b. For
example, the uniform distribution on r0, 1s, that is, Ur0, 1s,
can be represented by Betap1, 1q.

C. Approximate Bayesian Hypothesis Testing

We will encounter a situation while designing the Bayesian
SMC where we cannot obtain samples from Yi itself, but can
obtain samples from a distribution close to Yi. Hence, we
present a Bayesian hypothesis test for the parameters of Ȳ
using samples from these approximate distributions. Consider
the case when sampling directly from the n-dimensional
random vector Ȳ “ pY1, . . . , Ynq with parameter Θ̄ is
not possible. Suppose instead, we can sample from the n-
dimensional random vector Z̄ “ pZ1, . . . , Znq with parameter
vector Θ̄1 “ pΘ11, ¨ ¨ ¨ ,Θ

1
nq with the following property:

P pZi “ 0 | Yi “ 1q ď α1i and
P pZi “ 1 | Yi “ 0q ď β1i. (6)

for all i P rns, where α1i, β
1
i P p0, 1q are small positive

quantities. In other words, the distributions of Ȳ and Z̄ are
“close”.

Given this relation between random variables Yi and Zi
for each i, the following proposition (a direct corollary of
Proposition 1 in [2]) bounds the distance (associated with the
infinite norm) between Θ̄ and Θ̄1.

Proposition 4: Let Ȳ and Z̄ be n-dimensional random vec-
tors consisting of Bernoulli random variables, with parameters
Θ̄ and Θ̄1 respectively. In other words, Ȳris „ BpΘ̄risq and
Z̄ris „ BpΘ̄1risq for all i P rns. Suppose Equation 6 holds for
each i P rns, i.e.,

P pZ̄ris “ 0 | Ȳris “ 1q ď α1i and
P pZ̄ris “ 1 | Ȳris “ 0q ď β1i, @i P rns.

Then, ||Θ̄´ Θ̄1||8 ď δ where, δ “ maxni“1tmaxtα1i, β
1
iuu.

Proof. From Proposition 1 in [2] we have,

p1´ α1iqΘ̄ris ď Θ̄1ris

ñpΘ̄ris ´ Θ̄1risq ď α1i ¨ Θ̄ris ď α1i,

since Θi ď 1. Similarly, we also have,

Θ̄1ris ď Θ̄ris ` β1ip1´ Θ̄risq

ñpΘ̄1ris ´ Θ̄risq ď β1ip1´ Θ̄risq ď β1i,

since p1´ Θ̄risq ď 1. Hence,

|Θ̄ris ´ Θ̄1ris| ď maxtpΘ̄1ris ´ Θ̄risq, pΘ̄ris ´ Θ̄1risqu

ď maxtα1i, β
1
iu

for all i P rns. Thus, ||Θ̄ ´ Θ̄1||8 ď δ where δ “

maxni“1tmaxtα1i, β
1
iuu. l

Our next goal is to device a test to deduce whether H0 :
Θ̄ P D or H1 : Θ̄ P Dc is satisfied using samples from
Z̄ “ pZ1, . . . , Znq. To this end, let us first define ε-expansion
and ε-reduction of a set A as, A`ε “ tx P Ω | BεpxqXA ‰ Hu

and A´ε “ ΩzpAcq
`

ε respectively, where Ω is the sample space
for Θ̄. In other words, A`ε is the set of all x P Ω such that,
the ε-ball around x has non-null intersection with the set A.
Similarly, A´ε is the complement set of all x P Ω such that,
the ε-ball around x has non-null intersection with complement
of A. Provided P pDq P p0, 1q, we have the following theorem
which provides us a test for Θ̄, parameter of Ȳ, using samples
from Z̄.

Theorem 5: [Approximate Bayes’ test] Let Ȳ and Z̄ be
discrete random vectors (Ȳris, Z̄ris are Bernoulli random
variables for all i) of same dimension with parameters Θ̄ and
Θ̄1 respectively. Also, let ||Θ̄´ Θ̄1||8 ď δ. Let,

H0 : Θ̄ P D vs H1 : Θ̄ P Dc

be the null and alternate hypotheses respectively. Consider the
test that
‚ accepts H0 when BZ̄pz̄, D

´
δ q ě

1
β¨r2

and
‚ rejects H0 when BZ̄pz̄, D

`
δ q ď α ¨ r1,

where r1 and r2 are constants defined as,

r1 “
P pΘ̄ P Dq

P pΘ̄ P D`2δq
and r2 “

P pΘ̄ P Dcq

P pΘ̄ P pDcq
`

2δq

Then, α and β are the upper bounds of Type-I and Type-II
errors respectively.
Proof. Let us show that α is the Type-I error bound for the
hypothesis test, that is, we show that P ptreject H0u | H0q ď

α.
Note that, from Proposition 4, Θ̄pωq P D implies Θ̄1pωq P

D`δ and, Θ̄1pωq P D`δ implies Θ̄pωq P D`2δ , as ||Θ̄´ Θ̄1||8 ď
δ. Hence, tω | Θ̄pωq P Du Ď tω | Θ̄1pωq P D`δ u Ď tω |
Θ̄pωq P D`2δu.

P ptreject H0u | H0q “ P
`

BZ̄

`

z̄, D`δ
˘

ď α ¨ r1 | Θ̄ P D
˘

“
P
`

BZ̄

`

z̄, D`δ
˘

ď α ¨ r1, Θ̄ P D
˘

P pΘ̄ P Dq

ď
P
`

BZ̄

`

z̄, D`δ
˘

ď α ¨ r1, Θ̄
1 P D`δ

˘

P pΘ̄ P Dq

“
P
`

BZ̄

`

z̄, D`δ
˘

ď α ¨ r1, Θ̄
1 P D`δ

˘

P
`

Θ̄1 P D`δ
˘ ¨

P pΘ̄1 P D`δ q

P
`

Θ̄ P D
˘

ď P
`

BZ̄

`

z̄, D`δ
˘

ď α ¨ r1 | Θ̄
1 P D`δ

˘ P pΘ̄ P D`2δq

P
`

Θ̄ P D
˘

“
P
`

BZ̄

`

z̄, D`δ
˘

ď α ¨ r1 | Θ̄
1 P D`δ

˘

r1

ď
α ¨ r1

r1
¨ P

`

z̄ | Θ̄1 P pD`δ q
c˘

[since BZ̄pz̄, D
`
δ q ď r1α iff P

`

z̄ | Θ̄1 P D`δ
˘

ď r1α ¨ P
`

z̄ | Θ̄1 P pD`δ q
c˘]

ď α rsince P
`

z̄ | Θ̄1 P pD`δ q
c˘
ď 1s

Similarly, we can show that β is the Type-II error bound for
the hypothesis test, i.e., P ptaccept H0u | H1q ď β.

l

Remark 6: Note that, Theorem 5 (approximate Bayes’ test)
essentially tests

H0 : Θ̄1 P D´δ vs H1 : Θ̄1 P pD`δ q
c.

Now since P pDq P p0, 1q and D Ď D`2δ , r1 is well defined
and lies within p0, 1s. Similarly, since P pDcq “ 1 ´ P pDq P
p0, 1q and Dc Ď pDcq

`

2δ , r2 is well defined and also lies
within p0, 1s. This implies αr1 ď α and βr2 ď β. Thus,
the acceptance/rejection conditions BZ̄pz̄, D

´
δ q ě

1
β¨r2

and
BZ̄pz̄, D

`
δ q ď α ¨ r1, using samples from Z̄, are stricter than

those using Ȳ. For acceptance, the region D is shrunk and
Bayes’ statistic is expected to be larger than a larger threshold
(1{βr2 ě 1{β) and for rejection, the region D is expanded
and Bayes’ statistic is expected to be smaller than a smaller
threshold (αr1 ď α).

Further, the region D`δ zD
´
δ is an indifference region in the

sense that, if Θ̄1 P D`δ zD
´
δ , then Theorem 5 can neither accept

nor reject H0. This is why, some nested formulae cannot be
verified by the approximate Bayes’ test. Hence, we should only
use the approximate Bayes’ test if Θ̄1 is not too close to the
boundary of the region D. Otherwise, approximate Bayes’ test
will not pass the acceptance/rejection criterion. This problem
arises when we verify nested HyperPCTL* formulae using
approximate Bayes’ test, but not when we verify non-nested
formulae using the classical Bayes’ test.

D. Hypothesis Testing by SPRT

Since we are comparing our approach to SPRT based SMC,
we provide a short description of SPRT based hypothesis test-
ing [10]. In SPRT, parameter Θ̄ is assumed to be fixed and we
decide between two most indistinguishable hypotheses instead
of the original hypotheses (Equation 4). More precisely, we
test

H 10 : Θ̄ P D´ε vs H 11 : Θ̄ P pD`ε q
c
,

for some small ε ą 0. A simpler statistic based on the log-
likelihood function and Kullback-Leibler divergence is devised
and H 10 or H 11 is accepted based on the position of the
maximum likelihood estimate of Θ̄ and the value of this
statistic. Note that, D`ε zD

´
ε is an indifference region in the

sense that, if Θ̄ P D`ε zD
´
ε , then we cannot test H0 vs H1

(Equation 4) using SPRT.

VII. STATISTICAL MODEL CHECKING

We will now discuss model checking of probabilistic hy-
perproperties using Bayes’ test and approximate Bayes’ test.
Suppose a formula ψ, a DTMC M and a path assignment V
is given. We refer to a HyperPCTL* formula as probabilistic
if the top-level operator is PD. Let us note that, only two
cases might arise for a probabilistic HyperPCTL* formula.
On one hand, the formula can be non-nested, i.e., of the
form PDpPrπ̄1pφ1q, . . . , P r

π̄npφnqq where no φi contains a
probabilistic subformula. On the other hand, a formula can be
nested, i.e., of the form PDpPrπ̄1pφ1q, . . . , P r

π̄npφnqq where
some φi contains one or more probabilistic subformulae.

A. Verifying Non-nested Probabilistic Formula

As the base case, we will first discuss the verifi-
cation of non-nested probabilistic formula on a DTMC.
Let us assume, we have a formula ψ of the form
PDpPrπ̄1pφ1q, . . . , P r

π̄npφnqq where each φi is non-
probabilistic (without P operator). We also assume each φi
is closed by π̄i, i.e., Πφi

Ď π̄i. Now let us define Bernoulli
random variables Yi“1,...,n : PathspV, π̄iq Ñ t0, 1u as,

Yipσ̄iq “

#

1 if pM, V rπ̄i Ñ σ̄isq |ù φi

0 otherwise.

Then JPrπ̄ipφiqKV “ P pYi “ 1q “ Θi, where Θi is the
Bernoulli parameter of Yi. Now our verification problem can
be restated as a hypotheses testing problem,

H0 : Θ̄ P D vs H1 : Θ̄ P Dc,

where Θ̄ “ pΘ1, . . . ,Θnq is the parameter for the n dimen-
sional random vector Ȳ “ pY1, . . . , Ynq. We say f is the prior
for Θi if Θi is distributed with pdf f . In Bayesian framework,
f assumed to be known. Assuming all Θi has the same prior
f , we can easily compute the prior for Θ̄, say fΘ̄, where
fΘ̄pθ1, . . . , θnq “

śn
i“1 fpθiq. We can now apply Bayes’ test

repeatedly on larger and larger samples to deduce whether H0

or H1 holds with certain Type-I and Type-II error bounds. This
procedure is described in the following algorithm.

Algorithm 1 BaseBayes: SMC of non-nested HyperPCTL*
formula
Input: M: DTMC, ψ “ PDpPrπ̄1pφ1q, . . . , P r

π̄npφnqq: non-
nested HyperPCTL* formula, V : path assignment, a, b:
parameters for Beta prior, α, β: bounds on Type-I and
Type-II errors

Output: Answer if M, V |ù ψ with confidence α, β
1: N Ð 1
2: while True do
3: /*Generate data ȳ “ py1, . . . ,yNq for Ȳ*/
4: for k “ 1 to N do
5: for i “ 1 to n do
6: Randomly sample σ̄i from PathspV, π̄iq
7: if pM, V rπ̄i Ñ σ̄isq |ù φi then
8: ykris Ð 1
9: else

10: ykris Ð 0
11: end if
12: end for
13: end for
14: Calculate BȲpȳ, Dq using Equation 5
15: if BȲpȳ, Dq ě 1{β then
16: Return True
17: else if BȲpȳ, Dq ď α then
18: Return False
19: else
20: N Ð 2 ¨N
21: end if
22: end while

ψgoal = ℙ[θ1,1] (Prπ1)

ϕ = U≤L

ψnocol = ℙ[θ2,1] (Prπ2) gπ11

Error: (α, β)

Error: (αϕ, βϕ)

Error: (αψnocol
, βψnocol)

Fig. 2: A nested probabilistic formula

The correctness of Algorithm 1 follows directly from The-
orem 3 (Bayes’ test).

Theorem 7: [Correctness of BaseBayes] LetM, ψ, V , a, b,
α and β, be as in Algorithm 1. If pM, V q |ù ψ, then Algorithm
1 outputs True with probability at least p1´αq. If pM, V q *
ψ, then Algorithm 1 outputs False with probability at least
p1´ βq.

B. Verifying Nested Probabilistic Formula

We now describe our general SMC algorithm
BayesSMCpM, ψ, V, a, b, α, βq which can verify nested
probabilistic formula on a DTMC. Here M is a DTMC, ψ
is a (possibly) nested HyperPCTL* formula, V is a path
assignment, a, b are parameters for the Beta prior and α, β
are allowed upper bounds for Type-I and Type-II errors. Let
us start with an overview of the algorithm.

1) Overview: Consider a nested probabilistic formula ψ
of the form PDpPrπ̄1pφ1q, . . . , P r

π̄npφnqq, where φi has
probabilistic subformulae ψij for some i P rns. Given a DTMC
M and a path assignment V , we want to verify if pM, V q |ù φ
with Type-I and Type-II error bounds α, β respectively. We do
this in a bottom up recursive approach where we first verify
satisfaction of ψij using BayesSMC with Type-I and Type-
II error bounds αij , βij respectively. Then, we propagate the
errors αij , βij using error propagation rules (Property 8) in
order to calculate αi, βi, the Type-I and Type-II errors incurred
by φi. Next, we calculate δ “ maxni“1tmaxtαi, βiuu from
the errors incurred by the φi formulae. Finally, we apply
the approximate Bayes’ test (Theorem 5) using α, β and the
derived δ to verify the satisfaction of ψ on pM, V q.

Let us explain this using the nested formula ψgoal (Equation
3). The formula tree for ψgoal depicting its subformulae are
shown in Figure 2. Suppose, we want to verify ψgoal on a
DTMC M and a path assignment V with error bounds α, β.
We first verify the non-nested formula ψnocol with error bounds
αψnocol , βψnocol on pM, V q using Bayes’ test (Theorem 3). Then,
we calculate αφ, βφ, Type-I and Type-II error bounds for the

subformula φ “ pψnocolqU
ďKpgπ1

1 q, using error propagation
rules (Property 8). Clearly, δ “ maxtαφ, βφu as ψgoal has
only one subformula φ. Finally, we verify ψgoal on pM, V q
using approximate Bayes’ test (Theorem 5), with parameters
α, β and δ.

2) Error Propagation: Let us define the recursive rules for
error propagation now. Error is propagated in a bottom up
manner, that is, from a subformula to its parent formula. For
a formula ψ, let E1pψq denotes the Type-I error associated to
ψ and E2pψq denotes the Type-II error associated to ψ. We
now describe error propagation for a general (possibly nested)
HyperPCTL* formula.

Let ψ “ PDpPrπ̄1pφ1q, . . . , P r
π̄npφnqq be a (possibly

nested) HyperPCTL* formula, where each φi can have zero
or more probabilistic subformula. Let us assume, by inductive
hypothesis, E1pφiq and E2pφiq are Type-I and Type-II errors
associated to φi. Let δ “ maxni“1tmaxtE1pφiq, E2pφiquu.
Any E1pφiq and E2pφiq in p0, 1q are allowed as long as
D´δ ‰ H (this is a necessary condition because to apply
approximate Bayes’ test, one needs to compute BZ̄pz̄, D

´
δ q for

some random vector Z̄, and BZ̄pz̄, D
´
δ q is undefined in case

D´δ “ H). Thus, we have a complete recursive definition of
error propagation for a general HyperPCTL* formula given
by the following property,

Property 8:
1) E1pa

πq “ E2pa
πq “ 0 for all a P AP and π P Π;

2) E1p ψq “ E2pψq, E2p ψq “ E1pψq;
3) E1p©ψq “ E1pψq, E2p©ψq “ E2pψq;
4) E1pψ1 ^ ψ2q “ E1pψ1q ` E1pψ2q, E2pψ1 ^ ψ2q “

maxtE2pψ1q, E2pψ2qu;
5) E1pψ1U

ďkψ2q “ k¨E1pψ1q`E1pψ2q, E2pψ1U
ďkψ2q “

pk ` 1qmaxtE2pψ1q, E2pψ2qu.
6) When ψ is nested, E1pψq, E2pψq can be any value in
p0, 1q, whereas, δ is the maximum of all αi, βi, where
αi, βi are error bounds for the subformulae φi.

Note that, rules 1-5 describe recursive error propagation for
temporal formulae [2], whereas, rule 6 describes error propa-
gation for (possibly nested) probabilistic formulae.

3) The Recursive Algorithm BayesSMC: Let ψ “

PDpPrπ̄1pφ1q, . . . , P r
π̄npφnqq be a nested formula where,

each φi can consist of zero or more probabilistic subformulae.
We define Bernoulli random variables Yi as before. However,
we cannot sample Yi directly as we use SMC to check whether
pM, V rπ̄i Ñ σ̄isq |ù φi which introduces uncertainty (since
φi itself contains zero or more probabilistic subformulae).
Thus, we sample from Bernoulli random variables Zi“1,...,n :
PathspV, π̄iq Ñ t0, 1u where,

Zipσ̄q “

#

1 if BayesSMCpM, φi, V
1, a, b, α1i, β

1
iq “ True

0 otherwise,

and V 1 “ V rπ̄i Ñ σ̄is. However, in this process we incur some
errors with non-zero probability. More precisely, the Type-I
error is given by P pZi “ 0 | pM, V 1q * φiq and Type-II error
is given by P pZi “ 1 | pM, V 1q |ù φiq.

Algorithm 2 BayesSMC: SMC of (possibly) nested
HyperPCTL* formula
Input: M: DTMC, ψ “ PDpPrπ̄1pφ1q, . . . , P r

π̄npφnqq:
(possibly) nested HyperPCTL* formula, V : path assign-
ment, a, b: parameters for Beta prior, α, β: bounds on
Type-I and Type-II errors

Output: Answer if M, V |ù ψ with confidence α, β
1: if ψ is non-probabilistic then
2: Compute α, β from subformulae (Property 8)
3: if pM, V q |ù ψ then
4: Return True
5: else
6: Return False
7: end if
8: end if
9: if ψ is non-nested then

10: Return BaseBayespM, ψ, V, a, b, α, βq
11: end if
12: N Ð 1
13: while True do
14: /*Generate data z̄ “ pz1, . . . , zNq for Z̄*/
15: for i “ 1 to n do
16: /*Recursively compute error bounds for φi

by Property 8*/
17: α1i Ð Type-I error bound of φi
18: β1i Ð Type-II error bound of φi
19: for k “ 1 to N do
20: Randomly sample σ̄i from PathspV, π̄iq
21: V 1 Ð V rπ̄i Ñ σ̄is
22: if BayesSMCpM, φi, V

1, a, b, α1i, β
1
iq then

23: zkris Ð 1
24: else
25: zkris Ð 0
26: end if
27: end for
28: end for
29: δ Ð maxni“1tmaxtα1i, β

1
iuu

30: Calculate constants r1, r2 from Theorem 5
31: Calculate Bz̄pz̄, D

`
δ q and Bz̄pz̄, D

´
δ q (by Equation 5)

32: if Bz̄pz̄, D
´
δ q ě 1{pβ ¨ r2q then

33: Return True
34: else if Bz̄pz̄, D

`
δ q ď α ¨ r1 then

35: Return False
36: else if Bz̄pz̄, D

`
δ q ě 1{pβ ¨ r2q then

37: if Bz̄pz̄, D
´
δ q ď α ¨ r1 then

38: Return Undecided
39: end if
40: else
41: N Ð 2 ¨N
42: end if
43: end while

Observe that, Type-I error is exactly equal to P pZi “ 0 |
Yi “ 1q and Type-II error is exactly equal to P pZi “ 1 | Yi “
0q. Since by inductive hypothesis, Type-I and Type-II errors
of BayesSMCpM, φi, V

1, a, b, α1i, β
1
iq are bounded by α1i and

β1i respectively, we have,

P pZi “ 0 | Yi “ 1q ď α1i and
P pZi “ 1 | Yi “ 0q ď β1i.

Thus we can say, the distributions of Ȳ “ pY1, . . . , Ynq
and Z̄ “ pZ1, . . . , Znq are “close” by Equation 6. We can
now apply Theorem 5 (approximate Bayes’ test) to devise
the recursive algorithm BayesSMC for verifying a (possibly)
nested formula ψ on a DTMC M.

The correctness of Algorithm 2 follows directly from The-
orem 5 (approximate Bayes’ test).

Theorem 9: [Correctness of BayesSMC] LetM, ψ, V , a, b,
α and β, be as in Algorithm 2. If pM, V q |ù ψ, then Algorithm
2 outputs True with probability at least p1´αq. If pM, V q *
ψ, then Algorithm 2 outputs False with probability at least
p1´ βq.

Comparison with SPRT based SMC: Let us compare our
approach with SPRT based SMC [10]. In SPRT based SMC,
for non-nested probabilistic formula, the verification problem
is mapped to an equivalent n-dimensional hypothesis testing
problem and solved by SPRT based hypothesis testing (Section
VI-D); which is similar to our approach. On the other hand, for
nested formula, SPRT based SMC uses verification results of
subformulae directly while verifying the main formula. Thus,
the total error incurred depends on the number of samples
required to verify the main formula, which is not true for
Bayesian SMC. Note that, both approaches provide Type-I and
Type-II confidences for verification of probabilistic formulae.

VIII. EXPERIMENTAL EVALUATION

We evaluated our approach on the grid world robot nav-
igation system discussed in section V. We consider n ˆ n
grids with two robots, for varying grid sizes n. The robots
start from diagonally opposite cells, and their respective goals
are to reach the horizontally opposite cells starting from their
initial positions. We consider the collision avoidance property
specified by the non-nested Formula ψca (Equation 2) and
the collision free goal reaching property for the first robot
specified by the nested Formula ψgoal (Equation 3).

We have implemented our algorithm in the Python tool
box HyProVer. The recursive algorithm proceeds in a bottom-
up fashion, where we need to check satisfiability of the
subformulae and work our way up. However, we do not a priori
know all the assignments on which the subformulae need to be
evaluated, hence, a bottom-up approach would be expensive
if we were to compute the satisfiability of the subformulae
on all possible assignments. Instead, we have implemented
an equivalent top-down algorithm where we start from the top
and work our way down and evaluate the subformulae on only
those assignments that are propagated down from the samples
for the top-level formula. For the P operator, we only consider
box constraints. Thus, integral can be evaluated on each
dimension using the incomplete beta function and multiplied,
to obtain the n-dimensional integrals required for calculating
the Bayes’ factor. We compare our Bayesian approach with
our own implementation of the Frequentist approach based

on the SPRT method [10]. Note that, there are no publicly
available probabilistic model checkers for HyperPCTL* for
us to compare with.

Our verification results are summarized in Table II and Table
III for Formula ψca (Equation 2) and Formula ψgoal (Equation
3), respectively, wherein we report the verification time in
seconds and number of samples required for deduction of
the satisfiability of the topmost probabilistic formula. Note
that, the reported time and number of samples are the average
values over multiple (50) runs of the same experiment. All
experiments are performed on a machine having macOS Big
Sur with Quad-Core Intel Core i7 2.8GHzˆ 1 Processor and
16GB RAM. We run each formula for at most 30 minutes and
terminate the model-checker if it cannot provide a decision by
that time.

Table I compares the Bayesian approach for different pri-
ors which are obtained by instantiating the Beta distribution
parameters a and b. We used the uniform (a “ b “ 1), a
left-skewed (a “ 5, b “ 2), a right-skewed (a “ 2, b “ 5)
and a bell-shaped (a “ b “ 2) distribution as Beta priors.
For α “ β “ 0.01, we verified the nested Formula ψgoal

(Equation 3) describing collision free goal reaching for the first
robot. We used different values of n, while keeping K “ 8,
θ1 “ 0.5 and θ2 “ 0.5 fixed. Also for n “ 4, 8, we moved
the goal of the first robot to grid position p1, 1q, so that the
formula is satisfied. We observe that, the choice of prior affects
the verification time and number of samples required by the
topmost formula (averaged over 50 runs) in a minor manner.
We use uniform prior for further comparison with SPRT, so
that all parameter values are equally probable. Note that, a
non-null indifference region always exists for SPRT (measured
by the parameter ε) and like Bayesian, it also provides Type-
I and Type-II guarantees for the correctness of a verification
result [10].

The collision avoidance formula ψca (Equation 2) depends
on 3 parameters: n (grid size), K (bound for the until operator)
and θ (probability threshold). In Table II, we varied n and K
for different error bounds α, β and kept θ “ 0.5 fixed, as
threshold value has little bearing on the verification time and
required number of samples (from our observations as well
as existing work on Bayesian SMC for Continuous Stochastic
Logic [2]). We would like to note two main observations from
Table II:

1) For non-nested formula, SPRT could not decide within
time limit (30 minutes) whether collision probability
lies below the threshold θ when collision probability
was exactly 0. This is because we can only separate
H0 from H1 using SPRT when Θ̄ does not lie in the
indifference region (see [10]) and that is not true here.
If the test region is D “ r0, θs, then the indifference
region, however small it might be, will always contain 0.
Bayesian method does not have this problem, and it was
able to provide inference in all the cases where SPRT
failed. This shows a benefit of the Bayesian approach.

2) In those cases where both methods provided inference,
Bayesian approach examined fewer samples and termi-

nated in shorter time in most of the cases as compared
to the SPRT approach. This shows Bayesian approach
is much more scalable than SPRT even for non-nested
formulae. Note that, the inference provided by the two
approaches always agree.

The collision free goal reaching formula for the first robot,
ψgoal (Equation 3), depends on 4 parameters: n (grid size),
K (bound for until operator), θ1 (probability threshold for the
topmost probabilistic formula) and θ2 (probability threshold
for the probabilistic subformula ψnocol). In Table III, we varied
n and K for different error bounds α, β and kept θ1 “ 0.3
and θ2 “ 0.5 fixed for the same reasons as mentioned before.
Also for n “ 4, 8, we moved the goal of the first robot
to grid position p0, 1q, so that the formula is satisfied. We
see that, the performance of SPRT is much worse for nested
probabilistic formula as the verification never completes within
the stipulated time limit (30 minutes) for any n, K and pα, βq.
The derogatory performance for the nested case is expected,
since, the verification time and the corresponding number of
samples grow exponentially with the nesting depth. Note that,
SPRT was not tested on any nested HyperPCTL* formula in
[10] as well. Thus, our evaluation demonstrates that Bayesian
approach is superior to the Frequentist SMC for verification of
hyperproperties and scales reasonably well for nested formulae
as well.

IX. CONCLUSION

In this paper, we have developed a recursive statistical
model checking algorithm for verifying discrete-time proba-
bilistic hyperproperties on discrete-time Markov chains. Our
broad approach consisted of mapping the HyperPCTL* verifi-
cation problem to an n-dimensional hypotheses testing prob-
lem. We designed an algorithm based on random sampling
followed by Bayes’ test for non-nested HyperPCTL* formula,
and extended it to the nested cases through a recursive
algorithm that exploits an approximate Bayes’ test. Finally,
we used our algorithm to verify probabilistic hyperproperties
like collision avoidance and collision free goal reaching on the
grid world robot navigation scenarios. We compared the per-
formance of our algorithm against the SPRT based algorithm
discussed in [10] and showed that our algorithm performs
better both in verification time and number of required samples
for inference; a stark difference arises when we consider
nested formulae.

For future work, we would like to develop a verification
algorithm based on Bayes’ test for hyperproperties over contin-
uous time. Another interesting research direction would be to
incorporate unbounded temporal (until) operators. This would
enable the verification of unbounded probabilistic hyperprop-
erties using light-weight methods such as Bayesian SMC.

ACKNOWLEDGMENT

This work was partially supported by NSF CAREER Grant
No. 1552668 and NSF Grant No. 2008957.

Uniform prior Left-skewed prior Right-skewed prior Bell-shaped prior
n Samples Time Samples Time Samples Time Samples Time Status
4 40.64 0.893 63.04 1.371 46.08 0.985 62.08 1.342 TRUE
6 8.96 0.713 16.0 1.254 9.44 0.757 8.96 0.731 FALSE
8 121.6 8.933 207.68 15.401 124.8 9.354 170.24 12.573 TRUE
10 8.0 1.889 16.0 3.311 8.0 1.807 8.0 1.788 FALSE

TABLE I. Performance of HyProVer for different Beta priors

n (α, β) K HyProVer SPRT (ε “ 0.01) SPRT (ε “ 0.001) Status
Samples Time Samples Time Samples Time HyProVer SPRT

4 0.01, 0.01 3 19.68 0.019 256.0 0.147 2048.0 0.994 TRUE TRUE
6 0.01, 0.01 3 8.0 0.049 - ą 1800 - ą 1800 TRUE UNDECIDED
8 0.01, 0.01 3 8.0 0.136 - ą 1800 - ą 1800 TRUE UNDECIDED
10 0.01, 0.01 3 8.0 0.309 - ą 1800 - ą 1800 TRUE UNDECIDED
4 0.001, 0.001 3 33.92 0.027 471.04 0.253 4096.0 1.979 TRUE TRUE
6 0.001, 0.001 3 16.0 0.059 - ą 1800 - ą 1800 TRUE UNDECIDED
8 0.001, 0.001 3 16.0 0.151 - ą 1800 - ą 1800 TRUE UNDECIDED
10 0.001, 0.001 3 16.0 0.329 - ą 1800 - ą 1800 TRUE UNDECIDED
4 0.01, 0.01 8 3817.6 3.270 3604.48 3.784 38666.24 33.261 FALSE FALSE
6 0.01, 0.01 8 33.12 0.117 348.16 0.849 4096.0 8.887 TRUE TRUE
8 0.01, 0.01 8 11.84 0.169 225.28 2.054 2048.0 9.131 TRUE TRUE
10 0.01, 0.01 8 8.0 0.336 - ą 1800 - ą 1800 TRUE UNDECIDED
4 0.001, 0.001 8 8785.92 7.452 6144.0 6.203 64880.64 55.780 FALSE FALSE
6 0.001, 0.001 8 56.64 0.164 512.0 1.195 4096.0 8.889 TRUE TRUE
8 0.001, 0.001 8 21.12 0.204 256.0 2.310 2048.0 8.916 TRUE TRUE
10 0.001, 0.001 8 16.0 0.382 - ą 1800 - ą 1800 TRUE UNDECIDED

TABLE II. SMC of collision avoidance formula

n (α, β) K HyProVer SPRT (ε “ 0.01) SPRT (ε “ 0.001) Status
Samples Time Samples Time Samples Time HyProVer SPRT

4 0.01, 0.01 3 40.32 0.216 - ą 1800 - ą 1800 TRUE UNDECIDED
6 0.01, 0.01 3 16.0 0.278 - ą 1800 - ą 1800 FALSE UNDECIDED
8 0.01, 0.01 3 27.68 0.604 - ą 1800 - ą 1800 TRUE UNDECIDED
10 0.01, 0.01 3 16.0 0.951 - ą 1800 - ą 1800 FALSE UNDECIDED
4 0.001, 0.001 3 57.28 0.580 - ą 1800 - ą 1800 TRUE UNDECIDED
6 0.001, 0.001 3 32.0 0.935 - ą 1800 - ą 1800 FALSE UNDECIDED
8 0.001, 0.001 3 62.72 2.096 - ą 1800 - ą 1800 TRUE UNDECIDED
10 0.001, 0.001 3 32.0 2.593 - ą 1800 - ą 1800 FALSE UNDECIDED
4 0.01, 0.01 8 34.24 0.730 - ą 1800 - ą 1800 TRUE UNDECIDED
6 0.01, 0.01 8 18.56 1.439 - ą 1800 - ą 1800 FALSE UNDECIDED
8 0.01, 0.01 8 33.76 2.386 - ą 1800 - ą 1800 TRUE UNDECIDED
10 0.01, 0.01 8 16.0 3.318 - ą 1800 - ą 1800 FALSE UNDECIDED
4 0.001, 0.001 8 53.76 1.125 - ą 1800 - ą 1800 TRUE UNDECIDED
6 0.001, 0.001 8 33.92 2.646 - ą 1800 - ą 1800 FALSE UNDECIDED
8 0.001, 0.001 8 53.44 3.730 - ą 1800 - ą 1800 TRUE UNDECIDED
10 0.001, 0.001 8 32.0 6.316 - ą 1800 - ą 1800 FALSE UNDECIDED

TABLE III. SMC of collision free goal reaching formula for first robot

REFERENCES

[1] D. Sadigh, K. Driggs-Campbell, A. Puggelli, W. Li, V. Shia, R. Bajcsy,
A. Sangiovanni-Vincentelli, S. S. Sastry, and S. Seshia, “Data-driven
probabilistic modeling and verification of human driver behavior,” in
2014 AAAI Spring Symposium Series, 2014.

[2] R. Lal, W. Duan, and P. Prabhakar, “Bayesian statistical model checking
for continuous stochastic logic,” in 2020 18th ACM-IEEE International
Conference on Formal Methods and Models for System Design (MEM-
OCODE). IEEE, 2020, pp. 1–11.

[3] M. R. Clarkson, B. Finkbeiner, M. Koleini, K. K. Micinski, M. N. Rabe,
and C. Sánchez, “Temporal logics for hyperproperties,” in International
Conference on Principles of Security and Trust. Springer, 2014, pp.
265–284.

[4] T.-H. Hsu, C. Sánchez, and B. Bonakdarpour, “Bounded model checking
for hyperproperties,” in International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems. Springer, 2021,
pp. 94–112.

[5] Y. Wang, S. Nalluri, and M. Pajic, “Hyperproperties for robotics: Plan-
ning via hyperltl,” in 2020 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2020, pp. 8462–8468.

[6] S. Agrawal and B. Bonakdarpour, “Runtime verification of k-safety
hyperproperties in hyperltl,” in 2016 IEEE 29th Computer Security
Foundations Symposium (CSF). IEEE, 2016, pp. 239–252.

[7] M. R. Clarkson and F. B. Schneider, “Hyperproperties,” Journal of
Computer Security, vol. 18, no. 6, pp. 1157–1210, 2010.

[8] B. Finkbeiner, C. Hahn, M. Stenger, and L. Tentrup, “Monitoring
hyperproperties,” in International Conference on Runtime Verification.
Springer, 2017, pp. 190–207.

[9] B. Finkbeiner and C. Hahn, “Deciding hyperproperties,” arXiv preprint
arXiv:1606.07047, 2016.

[10] Y. Wang, S. Nalluri, B. Bonakdarpour, and M. Pajic, “Statistical model
checking for hyperproperties,” in 2021 IEEE 34th Computer Security
Foundations Symposium (CSF). IEEE, 2021, pp. 1–16.

[11] B. Köpf and D. Basin, “An information-theoretic model for adaptive
side-channel attacks,” in Proceedings of the 14th ACM conference on
Computer and communications security, 2007, pp. 286–296.

[12] J. W. Gray III, “Toward a mathematical foundation for information flow
security,” Journal of Computer Security, vol. 1, no. 3-4, pp. 255–294,
1992.

[13] C. Dwork, A. Roth et al., “The algorithmic foundations of differential
privacy.” Found. Trends Theor. Comput. Sci., vol. 9, no. 3-4, pp. 211–
407, 2014.

[14] M. Kwiatkowska, G. Norman, and D. Parker, “Prism 4.0: Verification of
probabilistic real-time systems,” in International conference on computer
aided verification. Springer, 2011, pp. 585–591.

[15] C. Dehnert, S. Junges, J.-P. Katoen, and M. Volk, “A storm is coming:
A modern probabilistic model checker,” in International Conference on
Computer Aided Verification. Springer, 2017, pp. 592–600.

[16] B. Finkbeiner, C. Hahn, and H. Torfah, “Model checking quantitative
hyperproperties,” in International Conference on Computer Aided Veri-
fication. Springer, 2018, pp. 144–163.

[17] Y. Wang, M. Zarei, B. Bonakdarpour, and M. Pajic, “Statistical verifica-
tion of hyperproperties for cyber-physical systems,” ACM Transactions
on Embedded Computing Systems (TECS), vol. 18, no. 5s, pp. 1–23,
2019.

[18] E. Clarke, A. Donzé, and A. Legay, “Statistical model checking of
mixed-analog circuits with an application to a third order δ- σ mod-
ulator,” in Haifa Verification Conference. Springer, 2008, pp. 149–163.

[19] R. Grosu and S. A. Smolka, “Monte carlo model checking,” in Inter-
national Conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2005, pp. 271–286.

[20] M. G. Merayo, I. Hwang, M. Núnez, and A. Cavalli, “A statistical
approach to test stochastic and probabilistic systems,” in International
Conference on Formal Engineering Methods. Springer, 2009, pp. 186–
205.

[21] D. E. Rabih and N. Pekergin, “Statistical model checking using perfect
simulation,” in International Symposium on Automated Technology for
Verification and Analysis. Springer, 2009, pp. 120–134.

[22] K. Sen, M. Viswanathan, and G. Agha, “Statistical model checking
of black-box probabilistic systems,” in International Conference on
Computer Aided Verification. Springer, 2004, pp. 202–215.

[23] ——, “On statistical model checking of stochastic systems,” in Interna-
tional Conference on Computer Aided Verification. Springer, 2005, pp.
266–280.

[24] H. L. Younes and R. G. Simmons, “Probabilistic verification of discrete
event systems using acceptance sampling,” in International Conference
on Computer Aided Verification. Springer, 2002, pp. 223–235.

[25] S. Basu, A. P. Ghosh, and R. He, “Approximate model checking of pctl
involving unbounded path properties,” in International Conference on
Formal Engineering Methods. Springer, 2009, pp. 326–346.

[26] Q. Cappart, C. Limbrée, P. Schaus, J. Quilbeuf, L.-M. Traonouez,
and A. Legay, “Verification of interlocking systems using statistical
model checking,” in 2017 IEEE 18th International Symposium on High
Assurance Systems Engineering (HASE). IEEE, 2017, pp. 61–68.

[27] D. Henriques, J. G. Martins, P. Zuliani, A. Platzer, and E. M. Clarke,
“Statistical model checking for markov decision processes,” in 2012
Ninth international conference on quantitative evaluation of systems.
IEEE, 2012, pp. 84–93.

[28] P. Zuliani, A. Platzer, and E. M. Clarke, “Bayesian statistical model
checking with application to stateflow/simulink verification,” Formal
Methods in System Design, vol. 43, no. 2, pp. 338–367, 2013.

[29] E. M. Clarke, T. A. Henzinger, H. Veith, R. Bloem et al., Handbook of
model checking. Springer, 2018, vol. 10.

[30] C. Baier and J.-P. Katoen, Principles of model checking. MIT press,
2008.

[31] M. Y. Vardi, “Automatic verification of probabilistic concurrent finite
state programs,” in 26th Annual Symposium on Foundations of Computer
Science (SFCS 1985). IEEE, 1985, pp. 327–338.

[32] A. Abate, J.-P. Katoen, J. Lygeros, and M. Prandini, “Approximate model
checking of stochastic hybrid systems,” European Journal of Control,
vol. 16, no. 6, pp. 624–641, 2010.

[33] F. Ciesinski and M. Größer, “On probabilistic computation tree logic,”
in Validation of Stochastic Systems. Springer, 2004, pp. 147–188.

[34] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton, “Verifying continuous
time markov chains,” in International Conference on Computer Aided
Verification. Springer, 1996, pp. 269–276.

[35] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen, “Model-checking
algorithms for continuous-time markov chains,” IEEE Transactions on
software engineering, vol. 29, no. 6, pp. 524–541, 2003.

[36] D. Bustan, S. Rubin, and M. Y. Vardi, “Verifying ω-regular properties
of markov chains,” in International Conference on Computer Aided
Verification. Springer, 2004, pp. 189–201.

[37] H. Hermanns, B. Wachter, and L. Zhang, “Probabilistic cegar,” in
International Conference on Computer Aided Verification. Springer,
2008, pp. 162–175.

[38] S. K. Jha, E. M. Clarke, C. J. Langmead, A. Legay, A. Platzer,
and P. Zuliani, “A bayesian approach to model checking biological
systems,” in International conference on computational methods in
systems biology. Springer, 2009, pp. 218–234.

[39] J. Bogdoll, L. M. Ferrer Fioriti, A. Hartmanns, and H. Hermanns,
“Partial order methods for statistical model checking and simulation,” in
Formal Techniques for Distributed Systems. Springer, 2011, pp. 59–74.

[40] K. G. Larsen and A. Skou, “Bisimulation through probabilistic testing,”
Information and computation, vol. 94, no. 1, pp. 1–28, 1991.

[41] G. Agha and K. Palmskog, “A survey of statistical model checking,”
ACM Transactions on Modeling and Computer Simulation (TOMACS),
vol. 28, no. 1, pp. 1–39, 2018.

[42] A. Legay, B. Delahaye, and S. Bensalem, “Statistical model checking:
An overview,” in International conference on runtime verification.
Springer, 2010, pp. 122–135.

[43] B. Barbot, S. Haddad, and C. Picaronny, “Coupling and importance
sampling for statistical model checking,” in International Conference
on Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 2012, pp. 331–346.

[44] S. Hadjis and S. Ermon, “Importance sampling over sets: A new
probabilistic inference scheme.” in UAI, 2015, pp. 355–364.

[45] A. Wald, “Sequential tests of statistical hypotheses,” The annals of
mathematical statistics, vol. 16, no. 2, pp. 117–186, 1945.

[46] S. Peyronnet, R. Lassaigne, and T. Herault, “Apmc 3.0: Approximate
verification of discrete and continuous time markov chains,” in Third
International Conference on the Quantitative Evaluation of Systems-
(QEST’06). IEEE, 2006, pp. 129–130.

	I Introduction
	II Related Works
	III Preliminaries
	IV HyperPCTL* Verification Problem
	IV-A Discrete-time Markov Chain
	IV-B HyperPCTL* Logic
	IV-B1 Syntax of HyperPCTL*
	IV-B2 Semantics of HyperPCTL*

	IV-C The Model Checking Problem

	V Case Study: Grid World
	V-A DTMC Modeling
	V-B Collision Avoidance
	V-C Collision Free Goal Reaching

	VI Hypothesis Testing
	VI-A Multidimensional Hypothesis Testing
	VI-B Bayesian Hypothesis Testing
	VI-C Approximate Bayesian Hypothesis Testing
	VI-D Hypothesis Testing by SPRT

	VII Statistical Model Checking
	VII-A Verifying Non-nested Probabilistic Formula
	VII-B Verifying Nested Probabilistic Formula
	VII-B1 Overview
	VII-B2 Error Propagation
	VII-B3 The Recursive Algorithm BayesSMC

	VIII Experimental Evaluation
	IX conclusion
	References

