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Abstract
The use of Bayesian statistics to support regulatory evaluation of medical devices began in the late 1990s. We review the 
literature, focusing on recent developments of Bayesian methods, including hierarchical modeling of studies and subgroups, 
borrowing strength from prior data, effective sample size, Bayesian adaptive designs, pediatric extrapolation, benefit-risk 
decision analysis, use of real-world evidence, and diagnostic device evaluation. We illustrate how these developments were 
utilized in recent medical device evaluations. In Supplementary Material, we provide a list of medical devices for which 
Bayesian statistics were used to support approval by the US Food and Drug Administration (FDA), including those since 
2010, the year the FDA published their guidance on Bayesian statistics for medical devices. We conclude with a discussion 
of current and future challenges and opportunities for Bayesian statistics, including artificial intelligence/machine learning 
(AI/ML) Bayesian modeling, uncertainty quantification, Bayesian approaches using propensity scores, and computational 
challenges for high dimensional data and models.

Keywords Prior Information · Hierarchical Bayesian modeling · Bayesian adaptive designs · Benefit-risk decision analysis · 
Real-world evidence · Diagnostic test accuracy

Introduction

This paper is aimed at providing for non-statisticians an 
accounting on the use of Bayesian statistics in medical 
device clinical studies conducted for regulatory purposes. 
Our primary emphasis will be on the period after 2010, the 
year the Food and Drug Administration (FDA) issued their 
guidance document “Use of Bayesian Statistics in Medi-
cal Device Clinical Trials” [1]. Our paper updates the 2011 
report [2] After describing a brief early history, we discuss 
Bayesian developments in borrowing from prior information, 

exchangeability, effective sample size, dynamic borrowing, 
pediatric extrapolation, benefit-risk assessment, real-world 
evidence, diagnostic applications, and illustrating concepts 
with recent medical device examples. In the Supplementary 
Material, we provide a recent list of FDA-approved medical 
devices for which Bayesian studies were submitted in sup-
port of approval.

For a parameter such as a treatment effect or a safety 
endpoint, the Bayesian approach combines prior informa-
tion (prior distribution) with information from the newly 
observed data through the likelihood function to obtain the 
posterior distribution for the parameter, where the likelihood 
function is a mathematical model that provides information 
about the parameter from the new data alone. The Bayes-
ian approach provides an alternative to the frequentist (non-
Bayesian) approach, which does not incorporate any prior 
information. By incorporating prior information, posterior 
estimates of parameters are often (but not always) more pre-
cise than frequentist estimates.
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Brief Early History

In the late 1990s, the FDA Center for Devices and Radiolog-
ical Health (CDRH) started to consider the use of Bayesian 
statistics in medical device clinical trials. Early success of 
the Bayesian initiative has been described in several publica-
tions [3–6]. The four of us, then in the Division of Biosta-
tistics in CDRH, were the primary writing team for drafting 
the FDA guidance, which was finalized in 2010 by CDRH 
and the Center for Biologics Evaluation and Research. The 
guidance distinguishes two basic approaches: (1) borrowing 
information (data) from past studies using hierarchical Bayes 
or other methodologies and (2) designing a Bayesian adap-
tive study usually with no prior information but rather rely-
ing on accumulating data within the clinical study to poten-
tially make preplanned changes to the design. For making 
statistical inferences, the guidance outlines using posterior 
probabilities for trial success (e.g., superiority or non-inferi-
ority) rather than frequentist p-values and Bayesian credible 
intervals as opposed to the frequentist confidence intervals.

Two key messages in the guidance are that Bayesian 
approaches require preplanning, and when using prior stud-
ies, the appropriateness of prior studies needs to be evalu-
ated and agreed upon by the FDA. An entirely subjective 
prior, that is, a prior based entirely on expert opinion, is 
discouraged because expert opinion is more susceptible 
to generating disagreement among stakeholders than data 
from prior studies. The guidance explicitly states “device 
approval could be delayed or jeopardized if FDA advisory 
panel members or other clinical evaluators do not agree with 
the opinions used to generate the prior.”

Borrowing Prior Information

Prior information may play an important role in evaluating 
medical devices. Medical devices often advance rapidly as 
in coronary devices [7]. Prior information from a previous 
study may be leveraged.

Bayesian methods are particularly well suited to combin-
ing information from different data sources [8]. The guid-
ance focused on borrowing from prior information based on 
hierarchical modeling, but more recently developed Bayes-
ian methods may also be used. We review hierarchical mod-
els and describe additional borrowing methods.

Bayesian Hierarchical Modeling and Exchangeability

A typical Bayesian hierarchical model across studies 
assumes that participants within a study are exchange-
able and that, at a higher hierarchical level, the studies are 

exchangeable with each other. Units, whether they are stud-
ies, participants within a study, or subgroups (see Bayesian 
Subgroup Analysis), are exchangeable if the probability of 
observing any particular set of outcomes on those units is 
invariant to any re-ordering of the units. Consider multiple 
studies of the performance of the same or similar devices. If 
all participants across the studies were exchangeable, then 
the data from these separate studies could be completely 
pooled together as if all participants were coming from the 
same population. However, this is inadvisable since there are 
always differences among studies even if the protocols are 
quite similar. For an example of exchangeability of trials for 
an adverse event, all trials could be considered exchangeable 
if the adverse event rate for any trial is no more likely to be 
larger or smaller than that of the other trials. Consequently, 
exchangeability of studies is not reasonable if, for example, 
a new device under study is expected to perform better than 
previously studied devices. It is important to highlight that 
the assessment of exchangeability requires both clinical and 
statistical expertise. In addition, hierarchical modeling usu-
ally assumes that each study has an underlying performance 
parameter, e.g., a mean, coming from a super-population of 
means that itself has an overall mean and standard devia-
tion. A hierarchical model “shrinks” the estimated mean 
from a primary study toward the means from prior studies 
by borrowing strength from these studies, which increases 
precision of estimation. Borrowing increases as the standard 
deviation of the means decreases (assuming all other aspects 
of the shrinkage estimate are equal). However, when only a 
few prior studies are available, the estimate of the standard 
deviation of the means can be unstable.

The prior and current studies may not be exchangeable if 
their baseline covariates differ. However, the studies might 
still be exchangeable if conditioned on the covariates. See 
Pennello and Thompson [4] for an example using a hypo-
thetical device for coronary plaque reduction.

Several approved devices listed in the Supplementary 
Material used Bayesian hierarchical models. For example, to 
assess non-inferiority of a drug-eluting coronary stent com-
pared to another coronary stent with respect to 12-month tar-
get lesion failure (TLF) rate, a Bayesian hierarchical model 
was used to borrow data from two prior trials [9]. The model 
included a bias parameter between the TLF rates in the two 
prior trials and the TLF rate of the current trial, in each 
treatment group, to reflect the potential for different primary 
endpoint results from the current compared to prior trials. 
The model also adjusted for age, diabetes, history of PCI, 
ischemic status, and LVEF to mitigate the effect of possible 
differences among the 3 studies. The posterior mean TLF 
event rate at 12 months was 6.32% in the treatment group 
compared to 8.90% in the control group (with 95% CI on 
the difference: −5.47% to 0.13%). The posterior probabil-
ity that the difference in 12-month TLF rates was less than 
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the pre-specified margin of 3.85% was 100.0%, which was 
greater than 97.5% pre-specified criteria for success.

Power Prior

In the Bayesian power prior approach, the likelihood func-
tion for the prior data is raised to a power “alpha” between 
0 and 1 representing how much the prior data will be dis-
counted, where 1 represents no discounting (complete bor-
rowing) and 0 represents complete discounting (no borrow-
ing) [10]. Alpha can be fixed before the observing the new 
data (static borrowing), or dynamic where it adapts to the 
similarity between the new and prior datasets.

As an example, Ye et al. [11] reanalyzed the US study 
of 686 subjects from the approved placental immunoassay 
diagnostic device for spontaneous preterm delivery by incor-
porating 511 prior subjects from a supplementary European 
study reported in the Summary of Safety and Effectiveness 
(SSED) [12] using a power prior approach. The posterior 
mean of alpha was 0.216, corresponding to information bor-
rowed from approximately 511*0.216 = 111 prior subjects. 
The posterior mean of sensitivity and specificity were 49.9% 
and 98.0%, respectively, which were similar to the estimates 
without borrowing, but more precise.

Commensurate Priors

Commensurate prior methods [13, 14] use hierarchical 
models with a commensurability parameter to control bor-
rowing from prior sources. The prior on the mean (or other 
parameter of interest) of the current data is centered around 
the mean of the prior data to represent a bias between the 
historical and current populations. A “spike and slab” prior 
[15] on the commensurability parameter is used to favor the 
current information when there is evidence of heterogeneity 
by specifying only a spike of probability that the prior and 
current data sources are homogeneous.

The power and commensurate prior methods may be 
applicable when there is only one prior study, as it may 
be easier to provide a prior distribution on a bias or power 
parameter versus a between-study variance as for the hier-
archical model.

Effective Sample Size

In Bayesian statistics, the effective sample size ( ESS ) for a 
parameter (e.g., device effect) is the size of the data that the 
Bayesian analysis effectively used to estimate the parameter 
based on its posterior distribution. Malec [16] defined ESS as 
the sample size N times the ratio of the posterior variances 
of the parameter when its prior information is ignored vs. 
when it is utilized. This definition is natural because under 
common data sampling designs the variance of an estimator 
is approximately inversely proportional to sample size. ESS 
was calculated for the rate of major adverse cardiovascular 
events of a coronary stent to quantify how much data the 
Bayesian model might borrow from the prior information 
on previous generation stents [4, 17, 18].

To illustrate, consider data on the successful placement 
of three versions of the intracranial stent [19] as prior infor-
mation for a hypothetical fourth generation stent to be stud-
ied in N = 60 patients (Table 1). A hierarchical model was 
implemented in the freely available software OpenBUGS 
(https:// www. mrc- bsu. cam. ac. uk/ softw are/ bugs/ openb 
ugs/). The OpenBUGS code for the intracranial stent data 
is provided (Supplementary Material). Based on the vari-
ance of a binomial proportion, the ESS for the proportion 
of successfully placed  4th generation stents can be defined 
as (posterior mean)*(1- posterior mean)/(posterior vari-
ance). For a study of size N = 60 , when the sample pro-
portion for the  4th generation stent is 40/60, the posterior 
mean and standard deviation are 0.6712 and0.05258 , yield-
ingESS = 0.6712(0.3288)∕0.052582 = 79.8 , which rounds 
to 80 . Based on this ESS , the sample size that is effectively 
borrowed from the prior, known as the prior effective sam-
ple size, is PESS = ESS − N = 80 − 60 = 20 , the difference 

Table 1  Effective sample 
size (ESS) and prior effective 
sample size (PESS) for 
successful placement rate of 
4th generation intracranial 
stent under hierarchical model 
borrowing strength from data on 
three previous generation stents

N = study size; X = number of successful placements; Pct = 100*X/N; ESS = Mean*(100−Mean)/Std2; 
PESS = ESS−N; Std = standard deviation

Data Posterior

Stent N X Pct. Mean Std ESS PESS

4th 60 NA NA 65.8 16.9 NA 8
4th 60 40 66.7 73.5 4.9 81 20
4th 60 30 50.0 52.9 6.2 66 6
3rd 56 42 75.0
2nd 59 37 62.7
1st 8 6 75.0

https://www.mrc-bsu.cam.ac.uk/software/bugs/openbugs/
https://www.mrc-bsu.cam.ac.uk/software/bugs/openbugs/
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between ESS and the actual sample size N (Table 1,  2nd row). 
If instead the sample proportion is 30/60, then the posterior 
mean and standard deviation are 0.5291 and0.06162 , yield-
ingESS = 0.5291(0.4709)∕0.061622 = 65.6 , which rounds 
to 66 , and PESS = 66 - 60 = 6 (Table  1,  3rd row). The 
expected value of PESS at the outset, denotedE(PESS) , may 
be important to calculate at the planning stage of a Bayesian 
study. For the  4th generation stent, E(PESS) is obtained from 
the posterior distribution of the success proportion by desig-
nating the number of successfully placed stents as missing 
(“NA”) in the OPENBugs code. The posterior distribution 
is then really the prior distribution (sometimes called the 
prior predictive distribution) because it is based on the prior 
data alone from the earlier generation stents. In this case, the 
posterior mean and standard deviation are 0.6577 and0.1697 , 
y i e l d i n gE(PESS) = 0.6577(0.3423)∕0.16972 = 7.8176  , 
which rounds to 8 . (Table  1, 1st row).  E(PESS) is the 
amount of borrowing expected from the prior distribution 
at the outset, but will likely differ from the actual PESS after 
the data are observed. Definitions of PESS at the outset have 
been proposed based on Fisher information and have shown 
promise [20, 21].

Dynamic Borrowing

Bayesian models that permit dynamic borrowing from prior 
information allow a trialist to adapt the amount of borrowing 
based on similarity between the prior historical data and data 
from accrued subjects. This contrasts with static borrowing 
which pre-specifies the amount of borrowing before begin-
ning the current study, such as with a fixed alpha parameter 
in the power prior approach [22]. If the current study results 
end up being different from the historical study results, 
dynamic borrowing allows an adjustment to the amount bor-
rowed to avoid potentially biased study conclusions.

The methods discussed in Bayesian Hierarchical Mod-
eling and Exchangeability, Power Prior and Commensurate 
Priors can be considered as dynamic borrowing approaches 
or extended to incorporate dynamic borrowing. Hierarchical 
models, in general, can be viewed as dynamic borrowing 
because the amount borrowed is influenced by parameters 
that are updated based on similarity of current study data 
with prior study data. For power priors, if a non-degenerate 
prior distribution is placed on the alpha parameter, then dis-
counting (i.e., lack of borrowing) is based on its posterior 
distribution given current and prior data [10]. However, most 
dynamic approaches to power priors have empirically esti-
mated the alpha parameter based on similarity of current 
and prior data [22]. Similarity could be determined at an 
interim look or at the end of the study, and can incorporate 
constraints or additional information based on clinical input 
or regulatory consideration [23–25]. Commensurate priors 
can also be extended to incorporate dynamic borrowing for 

purpose of optimizing the number of subjects randomized to 
a current control group by assessing the similarity of current 
control with the historical controls [26].

Baseline covariates can be included with all these meth-
ods. Kotalik et al. [27] illustrate how to do dynamic borrow-
ing in the presence of treatment effect heterogeneity where 
covariates that modify a device effect are differentially dis-
tributed across studies.

Pediatric Extrapolation

Medical device trials in pediatric populations may be dif-
ficult to conduct due to recruitment difficulties, ethical con-
siderations, and variable age range for the defined pediatric 
population. While device performance may be similar in 
adult and pediatric populations, outcome differences may 
exist. If outcome data are available in both pediatric and 
adult subjects, then a Bayesian approach can be used to bor-
row strength from the adult data to estimate device perfor-
mance in the pediatric population, while recognizing pos-
sible differences among the populations. This borrowing is 
commonly referred to as “pediatric extrapolation” because 
for some variables (e.g., age, weight, height) the adult dis-
tribution will overlap little or not at all with the pediatric 
distribution.

The FDA Guidance “Leveraging Existing Clinical Data 
for Extrapolation to Pediatric Uses of Medical Devices” 
[28] includes advice for extrapolating from adult to pediat-
ric populations, with an appendix that describes the use of 
Bayesian hierarchical modeling. Bayesian methods for bor-
rowing from adult data should consider differences in age-
related variables. If the device treatment effect on a pediatric 
population is of lower (or higher) magnitude than on adults 
due to the pediatric population having different levels of 
one or more covariates that influences the treatment effect, 
treatment-by-covariate interactions may be modeled. A pro-
portional interactions model [29] could be used where some 
of the interactions have the same proportionality across the 
covariates to simplify model fitting.

An example where pediatric extrapolation was used to 
support device approval is a vagus nerve stimulator that was 
approved for children aged 4 to 11 years with partial onset 
epilepsy. The company had an indication for patients 12 and 
older. The main prospective study was limited to 30 subjects 
aged 4–11 years. Evaluation of effectiveness used a simple 
two-level hierarchical model that borrowed strength from four 
prior studies of the device on patients ranging in age from 4 to 
adult, but these prior studies contained limited data on patients 
who were 4 to 11 [30]. The primary effectiveness endpoint 
was the proportion of patients with at least a 50% reduction in 
frequency of seizures after 12 months of treatment. The model 
attenuated the effect in the main study from the observed 
responder rate of 47% down to 39%, with a tighter credible 
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interval, illustrating the borrowing strength of the hierarchical 
model. The outlying 47% rate was shrunk toward the overall 
rate, making it appear closer to the other estimated rates.

Bayesian Subgroup Analysis

The sample estimate of a treatment effect will vary with each 
sample. Thus sample estimates of treatment effects within sub-
groups will tend to have more variation than the actual treat-
ment effects [31]. In frequentist analysis, this extra variation 
can lead to an abundance of false declarations of significant 
differences between subgroups in the sample effect when the 
actual treatment effect differences are zero. In Bayesian hier-
archical subgroup analysis [32, 33] this unwanted extra varia-
tion is reduced, reducing the proportion of falsely significant 
differences. For subgroups in a one-way array (i.e., defined by 
a single factor), the subgroup treatment effects are assumed 
exchangeable, which enables borrowing of strength, leading 
to posterior means that shrink the sample estimates of the sub-
group effects toward the overall effect. In a decision analysis 
framework, if the losses are 0, 1, and A (0 < A < 1) , for mak-
ing a correct decision, an incorrect decision, and no decision 
on the sign of the difference in treatment effect between two 
subgroups, then the resulting Bayes procedure controls at A 
the proportion of incorrect sign declarations, known as the 
directional false discovery rate [34]. For subgroups defined 
by multiple factors, main factor effects and factor interaction 
effects are separately modeled as exchangeable, resulting in 
posterior means that shrink the sample estimates according to 
the evidence of variation in each set of effects [35].

Bayesian hierarchical subgroup analysis can be used 
to adjust an exploratory subgroup finding for multiplicity 
before utilizing that finding as prior information in a con-
firmatory study of that subgroup [5]. This approach was 
taken in the Acute Myocardial Infarction with HyperOxymic 
Therapy (AMIHOT) II trial to confirm the subgroup with 
anterior acute myocardial infarction (AMI) identified in 
AMIHOT I [36]. The subgroup identified in AMIHOT I was 
considered exploratory. AMIHOT II was then conducted in 
that subgroup only to confirm the therapeutic effect. In AMI-
HOT II, the prior distribution on the therapeutic effect in the 
subgroup was taken to be the posterior distribution in AMI-
HOT I based on a hierarchical model across all subgroups 
considered in that trial.

Bayesian Adaptive Design and Predictive 
Modeling

The second major approach discussed in the FDA guidance 
is the Bayesian adaptive design to make preplanned changes 
based on accumulating data. Chow and Chang [37] review 
frequentist and Bayesian adaptive designs for clinical trials. 

Hobbs and Carlin [38] review Bayesian adaptive designs 
for drug and device trials. In order for an adaptive design 
to work well, subjects should not be recruited too quickly 
because there may be no time to make adaptations.

A Bayesian adaptive design, where the adaptation for 
sample size reassessment is to increase the sample size, 
provides an opportunity to get the sample size right for 
the targeted power. Whereas most fixed sample size trials 
rarely achieve the desired sample size (either too small or too 
large), a Bayesian adaptive design can adopt a Goldilocks 
approach [39]. In a Bayesian adaptive approach to sample 
size re-estimation, interim results are used to modify the 
sample size based on observed results. Sample size re-esti-
mation can be based on the predictive distribution not only 
for subjects already in the trial who have not yet reached 
the requisite follow-up time for the outcome, but also for 
subjects yet to be recruited. While the advantage of adaptive 
designs can be clear-cut, a potential disadvantage of sizing 
the trial to exactly its optimal sample size is that it leaves no 
room for error, missing data or for adjudication differences 
after the trial has been stopped; thus, it is advisable to inten-
tionally slightly overpower the study.

An advantage of a Bayesian adaptive design is that it is 
sometimes possible to build a model with accumulating data 
on intermediate and final endpoints that have been observed 
in the study to predict (via predictive distribution) unob-
served final outcomes with a predictive model using inter-
mediate outcomes. Piecewise exponentials are often used 
to model the primary outcome using time-dependent inter-
mediate ones [40].

A contrast of the similarities and differences between 
Bayesian designs and general adaptive designs [41] provided 
the impetus for the development of the FDA guidance on 
adaptive designs for medical devices [42].

For an electrosurgical ablation system [43], a Bayesian 
adaptive design was used in the pivotal study for sample 
size re-estimation at interim looks. The study was fully 
Bayesian in that statistical evaluation of primary outcomes 
was performed using Bayesian methodology for all analy-
ses (interim, for sample size determination, and final). At 
each planned interim look (with maximum sample size of 
100), the predictive probabilities of meeting the primary 
safety and effectiveness endpoints at the end of the trial 
were used to decide whether to stop patient accrual, stop 
the trial for futility, or continue enrolling subjects. After 
the first interim look, there were 55 subjects for safety and 
50 for the effectiveness analysis. The predictive probabil-
ity of meeting the 30-day safety endpoint was 100%, and 
of meeting the 6-month effectiveness endpoint when all 
50 subjects were followed to 6 months was 98.8%. Thus, 
accrual was stopped. The final analyses were based on the 
posterior probability of meeting the endpoints, using all 
enrolled subjects’ information.



458 Therapeutic Innovation & Regulatory Science (2023) 57:453–463

1 3

A Bayesian adaptive design was also utilized for a novel 
carotid sinus stimulator that delivers resynchronization 
therapy to reduce symptoms of heart failure in  patients44. 
The trial Baroreflex Activation Therapy (BAT) in Patients 
with Heart Failure and Reduced Ejection Fraction Ineligi-
ble for Resynchronization Therapy (BeAT-HF) consisted 
of two phases: expedited and extended. The expedited 
phase supported approval of the device based on BAT 
meeting the safety performance goal of major adverse 
neurological & cardiac (MANCE) event free rate > 85%, 
BAT plus medical management (MM) being superior 
to MM alone in the three intermediate, symptom end-
points of N-terminal pro–B-type natriuretic peptide (NT-
proBNP), Minnesota Living with Heart Failure Question-
naire (MLWHF), and quality of life (QOL) at six months 
follow-up, and a 55% predictive probability of superiority 
in a 2-year composite of heart failure morbidity and car-
diovascular mortality (HFM&CVM). The extended phase 
of the trial, designed to show superiority of BAT plus MM 
to MM alone in a 2-year composite endpoint, incorporated 
a Bayesian adaptive sample size algorithm based on the 
predictive probability of passing the HFM&CVM hypoth-
esis test [45].

Diagnostic Devices and Bayesian Statistics

Binary diagnostic devices (tests) render (without loss of gen-
erality) either a positive or negative test result, indicating 
likely presence or absence of a medical condition, e.g., a 
disease. The pre-test (prior) probability of disease is called 
the disease prevalence. The post-test (posterior) probability 
of disease is called the predictive value of the test. Sensi-
tivity is the probability that the test is positive in diseased 
subjects. Specificity is the probability that the test is nega-
tive in non-diseased subjects. Bayes Theorem determines 
the positive and negative predictive values ( PPV ,NPV  ) of 
the test from sensitivity, specificity, and prevalence. More 
generally, Bayes Theorem determines the predictive value 
of any type of test output for any type of disease state (e.g., 
binary, polychotomous, continuous).

In diagnostic test accuracy studies, the test result may be 
missing or disease status may be unverified for some sub-
jects [46]. When such data are missing, data augmentation 
can be used to simplify Bayesian calculation of the posterior 
distribution via Gibbs sampling [47, 48], assuming the data 
are missing at random. Pennello [49] developed Bayesian 
models and Gibbs sampling algorithms for evaluating diag-
nostic test accuracy when disease status is missing not at 
random.

Diagnostic tests can be intended to predict the future as 
exemplified by the diagnostic test to predict spontaneous 
preterm delivery mentioned earlier [12].

Bayesian Benefit‑Risk Assessments

According to the final guidance released by the FDA in 2019 
[50], benefit-risk regulatory assessments for market approval 
of medical devices involve several factors including mag-
nitude of treatment effects, probabilities of adverse events, 
uncertainty, and patient perspectives. In Bayesian decision 
analysis, the consequences of factors are quantified by utili-
ties and the choice to use or not use a medical device for a 
population is the one that provides the maximum expected 
utility, where the expectation is taken over the posterior dis-
tribution. Fu et al. [51] propose how to quantify a medical 
product’s benefit-risk within a Bayesian decision analysis 
framework in which prior uncertainties are incorporated.

In the design of a clinical trial in emergency medicine, 
Lewis and Berry [52] used a Bayesian decision-theoretic 
approach with group sequential methods to balance benefit 
versus risk. In a review of Bayesian methods in regulatory 
science, Rosner [53] argues for the use of Bayesian decision 
theory in clinical research, including early considerations 
of its use.

The values that patients place on benefits and risks of 
treatments are patient preference information. The FDA 
guidance on voluntary submission of patient preference 
information for inclusion in decision summaries and device 
labeling [54] cites the ISPOR Task Force Report [55] on 
statistical methods for discrete choice experiments, in which 
a hierarchical Bayes approach is described for estimating 
individual patient preferences when available preference 
information is insufficient.

For post-market surveillance of medical device safety, 
Hatfield et al. [56] proposed a Bayesian decision-theoretic 
framework with hierarchical modeling of safety data to for-
malize the process of trading off real-world costs and ben-
efits of regulatory actions that may be taken in response to 
device safety problems.

The clinical utility of a diagnostic device (medical 
test) depends on the clinical consequences of correct and 
incorrect test classifications of disease status (presence or 
absence) and possibly of testing itself (e.g., from an inva-
sive test procedure or imaging induced radiation exposure). 
Decision curve analysis [58–60], relative utility curve [61], 
and net benefit [62] are measures of clinical utility that have 
been developed based on considering a rule-in threshold for 
the risk of disease above which treatment would be recom-
mended according to clinical guidelines [57]. The rule-in 
risk threshold is the risk at which the expected benefit and 
expected cost (non-monetary harm) of referring untreated 
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subjects for treatment are thought to be equal based on the 
clinical consequences (which may otherwise be intangible to 
quantify). Conversely, a rule-out risk threshold may also be 
considered and defined as the risk at which the expected ben-
efit and expected cost of withholding treatment from those 
scheduled to receive it are thought to be equal. Rule-in and 
rule-out risk thresholds are likely to not apply to everyone, 
but utility measures based on risk thresholding may nonethe-
less be useful for approximating the net benefit of a test in a 
given clinical application.

For a binary test based on applying a threshold to an 
underlying continuous or ordinal score, the receiver operat-
ing characteristic (ROC) curve is a plot of the test’s sensitiv-
ity vs. 1-specificity as the threshold is varied. The decision 
of where to place the threshold on the ROC curve to maxi-
mize expected utility is fundamentally a Bayesian decision-
theoretic exercise depending on the benefits and costs of 
accurate and inaccurate classifications, respectively [63].

Bayesian FDA Submission Activity (2011–
2021)

A list through 2010 of publicly available FDA documents 
concerning FDA Bayesian submissions is available in 
Campbell [2]. In the Supplementary Material, we provide 
an updated list of FDA Summaries of Safety and Effective-
ness (SSEDs) for original PreMarket Applications (PMA) 
and PMA Supplements (PMASs) that mentioned Bayesian 
methodology. For some Bayesian studies submitted to the 
FDA, the Bayesian methods are not described in the SSED 
but the use of Bayesian methods for their FDA submission 
are described in publications or other publicly available 
information as demonstrated in Campbell [2]. Based on our 
list, FDA approved 16 medical devices from 1998 to 2010 
based on PMAs and PMASs for which Bayesian studies 
were submitted [2].  Since 2010, we identified an additional 
31 medical devices approved by FDA based on PMAs and 
PMASs that relied on Bayesian methodology. For publicly 
available original PMAs, 14 occurred before 2011, and 23 
after 2010. Whereas there were only two publicly identified 
PMASs for the period from 1999 to 2010, there have been 8 
PMASs since. This trend shows more Bayesian PMAs and 
significantly more PMASs since the 2011 report [2].

There were only 2 hierarchical Bayes and no Bayesian 
adaptive PMAs pre-2011, but there were at least 8 Bayes-
ian adaptive designs and 6 hierarchical Bayes PMAs after 
2010. So again, the trend shows an increase for both designs 
but more so for Bayesian adaptive. Some of the power prior 
activity was for choosing a fixed (static) discount factor for 
the prior information rather than having it updated using 
current data.

Concerning adaptive Bayesian designs, Yang et al. [64] 
reported 75 Bayesian submissions out of a total of 251 adap-
tive designs for the period from January 2007 to May 2013. 
Here submissions could be multiple ones for an Investiga-
tional Device Exemption (IDE), PMA, PMA Supplement, 
510(k) (Premarket Notification) or Humanitarian Device 
Exemption (HDE)) or a pre-submission request for one of 
these. Of 251, 32 were completed studies (PMAs, PMASs, 
510(k)s), of which 14 were Bayesian. There were 225 Origi-
nal PMA submissions (adaptive and not) during this time 
period, of which 17 were adaptive and 8 adaptive Bayes-
ian. Of these 75 Bayesian designs, most (76%) used non-
informative priors.

Of 15 PMAs and PMASs that have been approved as of 
April 15, 2022 through the FDA’s Breakthrough Designation 
Program [65], which began in 2017 and is the successor to 
the Expedited Access pathway of 2015, six were Bayesian 
[44, 66–70]

Label Expansion by Using Real–World 
Evidence

Regarding the FDA Guidance on using real-world evidence 
in regulatory decisions for medical devices [71] there have 
been many submissions that have used real-world evidence 
[72]. In particular, Bayesian hierarchical models have been 
used in at least two examples for label expansion: (1) indi-
cations for a drug-eluting coronary stent to patients with 
diabetes mellitus using data from four clinical trial databases 
as the source of prior information [73], and (2) expansion 
of an indication for an implanted autonomic nerve simula-
tor for epilepsy [30] where effectiveness was based on a 
hierarchical model in which a Japanese regulatory-mandated 
post-approval study served as the source of observed current 
data (30 patients), and data from five previous trials as the 
sources of prior information.

If a medical device that is considered for an indication is 
already on the market for a different indication, safety data 
from real-world use of the device for the approved indication 
may be leveraged to build a prior distribution for safety for 
the new indication.

The Present and the Future

With regard to medical device trials for regulatory purposes, 
there has been continued use of Bayesian statistics in general 
and an increase in the use of Bayesian adaptive trial designs 
with non-informative priors for sample size reassessment. 
Bayesian statistics in concert with propensity score meth-
odology may play an important role in the use of real-world 
evidence (RWE). Bayesian methods in regulatory science 
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are reviewed by Campbell [74] and Rosner [53]. An increas-
ing emphasis is being placed on teaching medical students 
Bayesian reasoning for evidence-based medicine [75, 76].

There has been NIH funding for Bayesian medical device 
trials that started with the Adaptive Designs Accelerating 
Promising Trials Into Treatments (ADAPT-IT) initiative 
[77].

While propensity score methodology has proven quite 
useful to augment clinical trials with other data or to use 
real-world evidence [78] to build a control group for a sin-
gle–arm study, Bayesian methods have been developed to 
borrow strength differentially for stratification. The propen-
sity scores-integrated power prior approach uses both pro-
pensity score stratification and power priors to integrate real-
world data into a single-arm clinical study or to augment a 
two-arm trial. When prior and current populations are differ-
ent at baseline, the propensity score approach utilizing Dir-
ichlet priors for propensity quantiles allows for borrowing 
more data from the prior study when there is more overlap 
between the two data sources within a stratum [79, 80].

There is now the tantalizing possibility of using virtual 
patients (stochastic engineering) generated from in-silico 
models of lead failures [81] and using phantoms to provide 
prior information for use in clinical trials [82–84], both 
supported by The Medical Device Innovation Consortium 
(MDIC), a public–private partnership among industry, non-
profit organizations, and federal agencies including the FDA 
[85]. In 2015, the MDIC virtual patient working group col-
laborated with FDA to demonstrate how to implement the 
virtual patient framework in a mock trial design and IDE 
submission to assess fatigue fracture in a hypothetical new 
ICD lead. Prior information was generated using an in-silico 
model of lead fracture, which was constructed using past 
information from similar ICD leads. Details about the mock 
submission can be found at https:// mdic. org/ proje ct/ virtu al- 
patie nt- vp- model/.

With regard to the Breakthrough Devices Program [65] 
and Humanitarian Device Exemptions [86] for rare diseases 
using medical devices, Bayesian methods may be utilized to 
confidently predict longer-term effectiveness and safety for 
the former [45] and “probable benefit” for the latter.

More generally, since 2010, the use of Bayesian methods 
in drug and biologic trials has increased; one example in bio-
logics is the recent BNT162b2 COVID-19 Vaccine Phase 3 
Trial [87]. In their Complex Innovative Design Initiative for 
drug and biologics, FDA has chosen for the Pilot Program 
several Bayesian proposals [88].

The use of Bayesian methods may also be an aid for Data 
Monitoring Committees (DMCs or DSMBs) for monitoring 
ongoing frequentist as well as well as Bayesian trials [89].

Diagnostics are increasingly being designed for polychoto-
mous classification (more than 2 categories, possibly ordered). 
For example, in patients with chronic hepatitis C, real-time 

shear wave elastography (SWE) and transient elastography 
(TE) were considered for classification of METAVIR liver 
fibrosis stages F0–1, F2, F3, or F4 [90]. Bayesian models and 
computation algorithms for analyzing nominal or ordinal poly-
chotomous data have been developed [91, 92].

Bayesian credible intervals for parameters may be based 
on highest posterior density, or central posterior probability. 
Rice and Ye [93] (2022) proposed a unified view of Bayesian 
credible intervals for single and multiple parameters that may 
be adopted in future.

While the vast interest in artificial intelligence/machine 
learning (AL/ML) has led to an explosion in regulatory sub-
missions of diagnostic devices based on AI/ML, especially 
imaging diagnostics [94], many non-Bayesian ML models lack 
uncertainty quantification of model output [95]. An advan-
tage of Bayesian ML models is that they automatically provide 
uncertainty quantification of model output through the poste-
rior distribution. Unfortunately, since current computational 
algorithms for fitting fully Bayesian ML models have not been 
satisfactory, strong priors may be necessary [95]. Nonethe-
less, Bayesian belief networks (BNs) may provide probability 
interpretations of associations and conditional independence 
among variables, which are not provided by non-Bayesian ML 
models. BNs have been developed to predict LVAD mortality 
using the INTERMACS device database [96] to predict suc-
cessful wound healing following combat-related trauma based 
on predictive biomarker data from serum and wound effluent 
[97] and to predict health outcomes in war wounded for clini-
cal decision support [98].

Bayesian statistical software has become more available 
and includes STAN, FACTS, SAS PROCs, R packages, and 
Python libraries. In addition, user-friendly Bayesian interfaces 
have been created to make Bayesian analysis accessible, such 
as BEANZ for subgroup analysis [99].

The National Science Foundation, in stating that the field 
of statistics is at a crossroads, cited nonparametric Bayesian 
methods as a great development and Bayesian computation 
as useful in a wide range of applications because it accom-
modates complex modeling [100].

The future for Bayesian statistics in clinical trials gener-
ally and in medical device trials in particular has never been 
brighter.

Acknowledgements 
The authors acknowledge the assistance of Dr. Xuefeng Li of CDRH 
in helping to provide publicly available information about Bayesian 
PMA submissions.

Author contributions 
All authors contributed to the conception and design of the manuscript. 
All authors contributed sections and provided comment, input, and 
edits for the manuscript.

https://mdic.org/project/virtual-patient-vp-model/
https://mdic.org/project/virtual-patient-vp-model/


461Therapeutic Innovation & Regulatory Science (2023) 57:453–463 

1 3

Funding 
No source of funding was provided for this manuscript.

Data availability 
All data generated or analysed during this study are included in this 
published article (and its supplementary information files).

Declarations 

Conflict of interest 
Gregory Campbell is an independent statistical and regulatory consult-
ant for medical devices and pharmaceutical products. Telba Irony is 
currently an employee of Janssen Pharmaceutical Companies of John-
son & Johnson, receiving salary and equities. Gene Pennello and Laura 
Thompson declare no conflict of interest.

Supplementary Information
The online version contains supplementary material available at https:// 
doi. org/ 10. 1007/ s43441- 022- 00495-w.

References

 1. U.S. Food and Drug Administration. The Use of Bayesian Statis-
tics in Medical Device Clinical Trials: Guidance for Industry and 
Food and Drug Administration Staff, 2010. http:// www. fda. gov/ 
Medic alDev ices/ Devic eRegu latio nandG uidan ce/ Guida nceDo 
cumen ts/ ucm07 1072. htm. Accessed 2 Aug 2022.

 2. Campbell G. Bayesian statistics in medical devices: Innovation 
sparked by FDA. J Biopharm Stat. 2011;21:871–87.

 3. Campbell G. The experience in the center for devices and 
radiological health with Bayesian strategies. Clin Trials J. 
2005;2:359–63.

 4. Irony T, Simon R. Application of Bayesian methods to medical 
device trials. In: Becker KM, Whyte JJ, editors. Clinical evalua-
tion of medical devices, principles and case studies. 2nd ed. New 
York: Humana Press; 2006. p. 99–116.

 5. Pennello GA, Thompson L. Experience with reviewing Bayesian 
medical device trials. J Biopharm Stat. 2008;18(1):81–115.

 6. Bonangelino P, Irony T, Liang S, Li X, Mukhi V, Ruan S, Xu Y, 
Yang X, Wang C. Bayesian approaches in medical device clini-
cal trials: a discussion with examples in the regulatory setting. J 
Biopharm Stat. 2011;21(5):938–53.

 7. O’Malley AJ, Normand S-LT. Statistics: keeping pace with the 
medical technology revolution. Chance. 2003;16(4):41–4. https:// 
doi. org/ 10. 1080/ 09332 480. 2003. 10554 874.

 8. National Research Council. Combining information: statisti-
cal issues and opportunities for research. Washington, DC: 
The National Academies Press; 1992. https:// doi. org/ 10. 17226/ 
20865.

 9. U.S. Food and Drug Administration, Center for Devices and 
Radiological Health, "PMA P170030 FDA Summary of Safety 
and Effectiveness Data," Available at https:// www. acces sdata. 
fda. gov/ cdrh_ docs/ pdf17/ P1700 30B. pdf. Accessed 2 Aug 2022.

 10. Ibrahim JG, Chen M-H. Power prior distributions for regression 
models. Stat Sci. 2000;15(1):46–60.

 11. Ye K, Han Z, Duan Y, Bai T. Normalized power prior Bayesian 
analysis. 2022; arXiv: 2204. 05615 [stat.ME]. Accessed at arXiv: 
2204. 05615.

 12. U.S. Food and Drug Administration, Center for Devices and 
Radiological Health, "PMA P160052 FDA Summary of Safety 
and Effectiveness Data," Available at https:// www. acces sdata. 
fda. gov/ cdrh_ docs/ pdf16/ P1600 52B. pdf. Accessed 2 Aug 2022.

 13. Hobbs BP, Carlin BP, Mandrekar SJ, et al. Hierarchical com-
mensurate and power prior models for adaptive incorpora-
tion of historical information in clinical trials. Biometrics. 
2011;67(3):1047–56.

 14. Hobbs BP, Sargent DJ, Carlin BP. Commensurate priors for incor-
porating historical information in clinical trials using general and 
generalized linear model. Bayesian Anal. 2012;7(3):639–74.

 15. Mitchell TJ, Beauchamp JJ. Bayesian variable selection in linear 
regression. J Amer Statist Assoc. 1988;83(404):1023–32.

 16. Malec D. A closer look at combining data among a small number 
of binomial experiments. Stat Med. 2001;20:1811–24.

 17. O’Malley AJ, Normand SL, Kuntz RE. Sample size calculation 
for a historically controlled clinical trial with adjustment for 
covariates. J Biopharm Stat. 2002;12(2):227–47.

 18. O’Malley AJ, Normand SL, Kuntz RE. Application of models for 
multivariate mixed outcomes to medical device trials: coronary 
artery stenting. Stat Med. 2003;22(2):313–36.

 19. Kadhhodayan Y, Somogyi CT, Cross DT, et al. Technical, angi-
ographic and clinical outcomes of neuroform 1, 2, 2 treo and 
3 devices in stent-assisted coiling of intracranial aneurysms. J 
Neurointerv Surg. 2012;4:368–74.

 20. Morita S, Thall PF, Müller P. Determining the effective sample 
size of a parametric prior. Biometrics. 2008;64:595–602.

 21. Neuenschwander B, Weber S, Schmidli H, O’Hagan A. Pre-
dictively consistent prior effective sample sizes. Biometrics. 
2020;76(2):578–87.

 22. Viele K, Berry S, Neuenschwander B, et al. Use of historical con-
trol data for assessing treatment effects in clinical trials. Pharm 
Stat. 2014;13(1):41–54.

 23. Thompson L, Chu J, Xu J, et al. Dynamic borrowing from a sin-
gle prior data source using the conditional power prior. J Biop-
harm Stat. 2021;31(4):403–24.

 24. Jiang L, Nie L, Yuan Y. Elastic priors to dynamically borrow 
information from historical data in clinical trials. Biometrics. 
2021. https:// doi. org/ 10. 1111/ biom. 13551.

 25. Psioda M, Ibrahim J. Bayesian clinical trial design using his-
torical data that inform the treatment effect. Biostatistics. 
2019;20(3):400–15.

 26. Hobbs BP, Carlin BP, Sargent DJ. Adaptive adjustment of the 
randomization ratio using historical control data. Clin Trials J. 
2013;10:430–40.

 27. Kotalik A, Vock D, Donny E, et  al. Dynamic borrowing in 
the presence of treatment effect heterogeneity. Biostatistics. 
2021;22(4):789–804.

 28. U.S. Food and Drug Administration. Leveraging Existing Clini-
cal Data for Extrapolation to Pediatric Uses of Medical Devices: 
Guidance for Industry and Food and Drug Administration Staff, 
2016. https:// www. fda. gov/ regul atory- infor mation/ search- fda- 
guida nce- docum ents/ lever aging- exist ing- clini cal- data- extra polat 
ion- pedia tric- uses- medic al- devic es. Accessed 23 Aug 2022.

 29. Kovalchik SA, Varadhan R, Weiss CO. Assessing heterogeneity 
of treatment effect in a clinical trial with the proportional interac-
tions model. Stat Med. 2013;32(28):4906–23.

 30. U.S. Food and Drug Administration, Center for Devices and 
Radiological Health, "PMA P970003/S207 FDA Summary of 
Safety and Effectiveness Data," Available at https:// www. acces 
sdata. fda. gov/ cdrh_ docs/ pdf/ p9700 03s20 7b. pdf. Accessed 3 Aug 
2022.

https://doi.org/10.1007/s43441-022-00495-w
https://doi.org/10.1007/s43441-022-00495-w
http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm071072.htm
http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm071072.htm
http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm071072.htm
https://doi.org/10.1080/09332480.2003.10554874
https://doi.org/10.1080/09332480.2003.10554874
https://doi.org/10.17226/20865
https://doi.org/10.17226/20865
https://www.accessdata.fda.gov/cdrh_docs/pdf17/P170030B.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf17/P170030B.pdf
http://arxiv.org/abs/hep-th/2204.05615
http://arxiv.org/abs/2204.05615
http://arxiv.org/abs/2204.05615
https://www.accessdata.fda.gov/cdrh_docs/pdf16/P160052B.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf16/P160052B.pdf
https://doi.org/10.1111/biom.13551
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/leveraging-existing-clinical-data-extrapolation-pediatric-uses-medical-devices
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/leveraging-existing-clinical-data-extrapolation-pediatric-uses-medical-devices
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/leveraging-existing-clinical-data-extrapolation-pediatric-uses-medical-devices
https://www.accessdata.fda.gov/cdrh_docs/pdf/p970003s207b.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf/p970003s207b.pdf


462 Therapeutic Innovation & Regulatory Science (2023) 57:453–463

1 3

 31. Gelman A, Hill J, Yajima M. Why we (usually) don’t have 
to worry about multiple comparisons. J Res Educ Eff. 
2012;5(2):189–211.

 32. Alosh M, Fritsch K, Huque M, et al. Statistical considerations 
on subgroup analysis in clinical trials. Stat Biopharm Res. 
2015;7(4):286–303.

 33. Henderson NC, Louis TA, Wang C, Varadhan R. Bayesian 
analysis of heterogeneous treatment effects for patient-centered 
outcomes research. Health Serv Outcomes Res Methodol. 
2016;16(4):213–33.

 34. Lewis C. Thayer DT A loss function related to the FDR for 
random effects multiple comparisons. J Stat Plan Inference. 
2004;125:49–58.

 35. Pennello G, Rothmann M. Bayesian subgroup analysis with 
hierarchical models. In: Menon S, Peace KE, chen D-G, 
editors. Biopharmaceutical applied statistics symposium. 
Springer: Biostatistical Analysis of Clinical Trials; 2019.

 36. US. Food and Drug Administration, Center for Devices and 
Radiological Health, "PMA P170027 FDA Summary of Safety 
and Effectiveness Data," Available at https:// www. acces sdata. 
fda. gov/ cdrh_ docs/ pdf17/ P1700 27B. pdf. Accessed 3 Aug 
2022.

 37. Chow SC, Chang M. Adaptive design methods in clinical 
trials–a review. Orphanet J Rare Dis. 2008. https:// doi. org/ 10. 
1186/ 1750- 1172-3- 11.

 38. Hobbs BP, Carlin BP. Practical Bayesian design and analy-
sis for drug and device clinical trials. J Biopharm Stat. 
2008;18(1):54–80.

 39. Broglio KR, Connor JT, Berry SM. Not too big, not too small: 
a goldilocks approach to sample size selection. J Biopharm 
Stat. 2014;24(3):685–705.

 40. Berry SM, Carlin BP, Lee JJ, et al. Bayesian adaptive methods 
for clinical trials. Boca Raton, FL: CRC Press; 2011.

 41. Campbell G. Similarities and differences of Bayesian designs 
and adaptive designs for medical devices: a regulatory view. 
Stat Biopharm Res. 2013;5:356–68.

 42. U.S. Food and Drug Administration. 2016. Adaptive Designs 
for Medical Device Clinical Studies: Guidance for Industry and 
Food and Drug Administration Staff. Available at https:// www. 
fda. gov/ downl oads/ medic aldev ices/ devic eregu latio nandg uidan 
ce/ guida ncedo cumen ts/ ucm44 6729. pdf. Accessed 2 Aug 2022.

 43. U.S. Food and Drug Administration, Center for Devices and 
Radiological Health, "PMA P100045 FDA Summary of Safety 
and Effectiveness Data," Available at https:// www. acces sdata. 
fda. gov/ cdrh_ docs/ pdf10/ P1000 46B. pdf. Accessed 2 Aug 
2022.

 44. U.S. Food and Drug Administration, Center for Devices and 
Radiological Health, "PMA P180050 FDA Summary of Safety 
and Effectiveness Data," Available at https:// www. acces sdata. 
fda. gov/ cdrh_ docs/ pdf18/ P1800 50b. pdf. Accessed 2 Aug 2022.

 45. Zile MR, Abraham WT, Lindenfeld J, Weaver FA, Zannad F, 
Graves T, Rogers T, Galle EG. First granted example of novel 
FDA trial design under expedited access pathway for premarket 
approval: BeAT-HF. Am Heart J. 2018;204:139–50.

 46. Campbell G, Pennello G, Yue L. Missing data in the regulation 
of medical devices. J Biopharm Stat. 2011;21(2):180–95.

 47. Tanner M. Tools for statistical inference: methods for the explo-
ration of posterior distributions and likelihood functions. 3rd ed. 
Springer; 1996.

 48. Little R, Rubin D. Statistical analysis with missing data. 3rd ed. 
Wiley; 2019.

 49. Pennello GA. Bayesian analysis of diagnostic test accuracy when 
disease state is unverified for some subjects. J Biopharm Stat. 
2011;21:954–70.

 50. U.S. Food and Drug Administration. Factors to Consider 
When Making Benefit-Risk Determinations in Medical Device 

Premarket Approval and De Novo Classifications: Guidance for 
Industry and Food and Drug Administration Staff. 2019. Avail-
able at https:// www. fda. gov/ media/ 99769/ downl oad. Accessed 
2 Aug 2022.

 51. Fu B, Li X, Scott J, He W. A new framework to address chal-
lenges in quantitative benefit-risk assessment for medical prod-
ucts. Contemp Clin Trials. 2020;95:106073. https:// doi. org/ 10. 
1016/j. cct. 2020. 106073.

 52. Lewis RJ, Berry DA. Group-sequential clinical trials: a classical 
evaluation of Bayesian decision-theoretic designs. J Amer Statist 
Assoc. 1994;89:1528–34.

 53. Rosner GL. Bayesian methods in regulatory science. Stat Biop-
harm Res. 2020;12(2):130–6. https:// doi. org/ 10. 1080/ 19466 315. 
2019. 16688 43.

 54. U.S. Food and Drug Administration. Patient Preference Infor-
mation–Voluntary Submission, Review in Premarket Approval 
Applications, Humanitarian Device Exemption Applications, and 
De Novo Requests, and Inclusion in Decision Summaries and 
Device Labeling: Guidance for Industry, Food and Drug Admin-
istration Staff, and Other Stakeholders, 2016. Available at https:// 
www. fda. gov/ media/ 92593/ downl oad. Accessed 2 Aug 2022.

 55. Hauber AB, González JM, Groothuis-Oudshoorn CG, Prior T, 
Marshall DA, Cunningham C, IJzerman MJ, Bridges JF. Statis-
tical methods for the analysis of discrete choice experiments: a 
report of the ISPOR conjoint analysis good research practices 
task force. Value Health. 2016;19(4):300–15. https:// doi. org/ 10. 
1016/j. jval. 2016. 04. 004.

 56. Hatfield LA, Baugh CM, Azzone V, et al. Regulator loss func-
tions and hierarchical modeling for safety decision making. Med 
Decis Mak. 2017;37(5):512–22.

 57. Pepe MS, Janes H, Li CI, Bossuyt PM, Feng Z, Hilden J. 
Early-phase studies of biomarkers: what target sensitivity and 
specificity values might confer clinical utility? Clin Chem. 
2016;62(5):737–42.

 58. Vickers AJ, Elkin EB. Decision curve analysis: a novel 
method for evaluating prediction models. Med Decis Mak. 
2006;26(6):565–74.

 59. Kerr KF, Brown MD, Zhu K, Janes H. Assessing the clinical 
impact of risk prediction models with decision curves: guidance 
for correct interpretation and appropriate use. J Clin Oncol. 
2016;34(21):2534–40.

 60. Kerr KF, Marsh TL, Janes H. The importance of uncertainty and 
opt-in v. opt-out: best practices for decision curve analysis. Med 
Decis Mak. 2019;39(5):491–2.

 61. Baker SG. Putting risk prediction in perspective: relative utility 
curves. J Natl Cancer Inst. 2009;101(22):1538–1542. Erratum 
in: J Natl Cancer Inst. 2014;106(11):dju337.

 62. Marsh TL, Janes H, Pepe MS. Statistical inference for net 
benefit measures in biomarker validation studies. Biometrics. 
2020;76(3):843–52.

 63. Zweig MH, Campbell G. Receiver-operating characteristic 
(ROC) plots: a fundamental evaluation tool in clinical medi-
cine. Clin Chem. 1993;39(4):561–577. Erratum in: Clin Chem. 
1993;39(8):1589.

 64. Yang X, Thompson L, Chu J, et al. Adaptive design practice at 
the Center for Devices and Radiological Health (CDRH), January 
2007 to May 2013. Therap Innov Reg Sci. 2016;50(6):710–7.

 65. U.S. Food and Drug Administration. Breakthrough Devices Pro-
gram: Guidance for Industry and Food and Drug Administration 
Staff, December 2018. Available at https:// www. fda. gov/ regul 
atory- infor mation/ search- fda- guida nce- docum ents/ break throu 
gh- devic es- progr am. Accessed 24 Aug 2022.

 66 U.S. Food and Drug Administration, Center for Devices and 
Radiological Health, "PMA P180007 FDA Summary of Safety 
and Effectiveness Data," Available at https:// www. acces sdata. 
fda. gov/ cdrh_ docs/ pdf18/ P1800 07b. pdf. Accessed 2 Aug 2022.

https://www.accessdata.fda.gov/cdrh_docs/pdf17/P170027B.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf17/P170027B.pdf
https://doi.org/10.1186/1750-1172-3-11
https://doi.org/10.1186/1750-1172-3-11
https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm446729.pdf
https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm446729.pdf
https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm446729.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf10/P100046B.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf10/P100046B.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf18/P180050b.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf18/P180050b.pdf
https://www.fda.gov/media/99769/download
https://doi.org/10.1016/j.cct.2020.106073
https://doi.org/10.1016/j.cct.2020.106073
https://doi.org/10.1080/19466315.2019.1668843
https://doi.org/10.1080/19466315.2019.1668843
https://www.fda.gov/media/92593/download
https://www.fda.gov/media/92593/download
https://doi.org/10.1016/j.jval.2016.04.004
https://doi.org/10.1016/j.jval.2016.04.004
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/breakthrough-devices-program
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/breakthrough-devices-program
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/breakthrough-devices-program
https://www.accessdata.fda.gov/cdrh_docs/pdf18/P180007b.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf18/P180007b.pdf


463Therapeutic Innovation & Regulatory Science (2023) 57:453–463 

1 3

 67. U.S. Food and Drug Administration, Center for Devices and 
Radiological Health, "PMA P180036 FDA Summary of Safety 
and Effectiveness Data," Available at https:// www. acces sdata. 
fda. gov/ cdrh_ docs/ pdf18/ P1800 36b. pdf. Accessed 2 Aug 2022.

 68. U.S. Food and Drug Administration, Center for Devices and 
Radiological Health, "PMA P190016 FDA Summary of Safety 
and Effectiveness Data," Available at https:// www. acces sdata. 
fda. gov/ cdrh_ docs/ pdf19/ P1900 16b. pdf. Accessed 2 Aug 2022.

 69. U.S. Food and Drug Administration, Center for Devices and 
Radiological Health, "PMA P210034 FDA Summary of Safety 
and Effectiveness Data," Available at https:// www. acces sdata. 
fda. gov/ cdrh_ docs/ pdf21/ P2100 34b. pdf. Accessed 2 Aug 2022.

 70. U.S. Food and Drug Administration, Center for Devices and 
Radiological Health, "PMA P170019 FDA Summary of Safety 
and Effectiveness Data," Available at https:// www. acces sdata. 
fda. gov/ cdrh_ docs/ pdf17/ P1700 19b. pdf. Accessed 2 Aug 2022.

 71. U.S. Food and Drug Administration (2017). The Use of Real 
World Evidence to Support Regulatory Decision-Making: 
Guidance for Industry and Food and Drug Administration Staff. 
Available at https:// www. fda. gov/ regul atory- infor mation/ search- 
fda- guida nce- docum ents/ use- real- world- evide nce- suppo rt- regul 
atory- decis ion- making- medic al- devic es. Accessed 2 Aug 2022.

 72. U.S. Food and Drug Administration (2021). Center for Devices and 
Radiological Health. Examples of Real-World Evidence (RWE) 
Used in Medical Device Regulatory Decisions. Available at https:// 
www. fda. gov/ media/ 146258/ downl oad. Accessed 2 Aug 2022.

 73. U.S. Food and Drug Administration, Center for Devices and 
Radiological Health, "PMA P070015/S128 and P110019/S075 
FDA Summary of Safety and Effectiveness Data," Available at 
https:// www. acces sdata. fda. gov/ cdrh_ docs/ pdf11/ P1100 19S07 
5B. pdf. Accessed 2 Aug 2022.

 74. Campbell G. Regulatory acceptance of Bayesian statistics. In: 
Lesaffre E, Baio G, Boulanger B, editors. Bayesian methods in 
pharmaceutical research. Boca Raton: CRC Press; 2020. p. 41–51.

 75. Kurzenhäuser S, Hoffrage U. Teaching Bayesian reasoning: an 
evaluation of a classroom tutorial for medical students. Med 
Teach. 2002;24(5):516–21.

 76. Sedlmeier P, Gigerenzer G. Teaching Bayesian reasoning in less 
than two hours. J Exp Psych. 2001;130:380–400.

 77. Meurer WJ, Lewis RJ, Tagle D, et al. An overview of the adaptive 
designs accelerating promising trials into treatments (ADAPT-
IT) project. Ann Emerg Med. 2012;60(4):451–7.

 78. Yue L. Regulatory considerations in the design of comparative 
observational studies using propensity scores. J Biopharm Stat. 
2012;22:1272–9.

 79. Wang C, Li H, Chen WC, et al. Propensity score-integrated 
power prior approach for incorporating real-world evidence in 
single-arm clinical studies. J Biopharm Stat. 2019;29(5):731–48.

 80. Li H, Chen WC, Wang C, Lu N, Song C, Tiwari R, Xu Y, Yue 
LQ. Augmenting both arms of a randomized controlled trial 
using external data: an application of the propensity score-inte-
grated approaches. Stat Biosci. 2022;14(1):79–89.

 81. Haddad T, Himes A, Thompson L, et al. Incorporation of stochas-
tic engineering models as prior information in Bayesian medical 
device trials. J Biopharm Stat. 2017;27(6):1089–103.

 82. Badano A. In silico imaging clinical trials: cheaper, faster, better, 
safer, and more scalable. Trials. 2021. https:// doi. org/ 10. 1186/ 
s13063- 020- 05002-w.

 83. Jang KJ, Pant YV, Zhang B, et al. Robustness evaluation of com-
puter-aided clinical trials for medical devices. In: Proceedings 
of 10th ACM/IEEE International Conference on CyberPhysical 
Systems, April 16–18, 2019, Montreal, QC, Canada. ACM, New 
York, NY 2019;163–173. Accessed at dl.acm.org/doi/https:// doi. 
org/ 10. 1145/ 33025 09. 33110 58

 84. Badano A, Graff CG, Badal A, et  al. Evaluation of digi-
tal breast tomosynthesis as replacement of full-field digital 

mammography using an in silico imaging trial. JAMA Netw 
Open. 2018;1(7):e185474.

 85. Medical Device Innovation Consortium. Incorporation of stochas-
tic engineering models as prior information in Bayesian medical 
device trials. 2018 Dec. Available at https:// mdic. org/ news/ incor 
porat ion- of- stoch astic- engin eering- models- as- prior- infor mation- 
in- bayes ian- medic al- device- trials/. Accessed 23 Aug 2022.

 86. U.S. Food and Drug Administration. Humanitarian Device 
Exemption. Available at https:// www. fda. gov/ medic al- devic es/ 
prema rket- submi ssions- selec ting- and- prepa ring- corre ct- submi 
ssion/ human itari an- device- exemp tion. Accessed 23 Aug 2022.

 87. Polack F, Thomas S, et al. Safety and efficacy of the BNT162b2 
mRNA Covid-19 vaccine. N Engl J Med. 2020;383:2603–15.

 88. U.S. Food and Drug Administration. Complex Innovative Design 
Pilot Program Trial Design Case Studies. Available at https:// 
www. fda. gov/ drugs/ devel opment- resou rces/ compl ex- innov ative- 
trial- design- meeti ng- progr am. Accessed 2 Aug 2022.

 89. Fayers PM, Ashby D, Parmar MK. Tutorial in biostatis-
tics Bayesian data monitoring in clinical trials. Stat Med. 
1997;16(12):1413–30. https:// doi. org/ 10. 1002/ (sici) 1097- 
0258(19970 630) 16.

 90. Ferraioli G, Tinelli C, Zicchetti M, et al. Reproducibility of real-
time shear wave elastography in the evaluation of liver elasticity. 
Eur J Radiol. 2012;81(11):3102–6.

 91. Albert JH, Chib S. Bayesian analysis of binary and polychoto-
mous response data. J Amer Statist Assoc. 1993;88:669–79.

 92. Johnson VE, Albert JH. Ordinal data modeling. Springer; 1999.
 93. Rice K, Ye L. Expressing regret: a unified view of credible inter-

vals. Am Stat. 2022. https:// doi. org/ 10. 1080/ 00031 305. 2022. 
20397 64.

 94. Benjamens S, Dhunnoo P, Meskó B. The state of artificial intel-
ligence-based FDA-approved medical devices and algorithms: an 
online database. Npj Digit Med. 2020;3(1):18. https:// doi. org/ 10. 
1038/ s41746- 020- 00324-0.

 95. Dunson DB. Statistics in the big data era: Failures of the 
machine. Stat Probab Lett. 2018;136:4–9.

 96. Loghmanpour NA, Kanwar MK, Druzdzel MJ, et al. A new 
Bayesian network-based risk stratification model for predic-
tion of short-term and long-term LVAD mortality. ASAIO J. 
2015;61(3):313–23.

 97. Forsberg JA, Potter BK, Wagner MB, et al. Lessons of war: 
turning data into decisions. EBioMedicine. 2015;2(9):1235–42. 
Accessed at https:// walte rreed. trica re. mil/ Health- Servi ces/ Speci 
alty- Care/ Murtha- Cancer- Center/ Ortho paedic- Oncol ogy/ Jonat 
han- Agner- Forsb erg- MD. Accessed 23 Aug 2022.

 98. Stojadinovic A, Eberhardt J, Brown TS, et al. Development of a 
Bayesian model to estimate health care outcomes in the severely 
wounded. J Multidiscip Healthc. 2010;3:125–35.

 99. Wang C, Louis T, Weiss C, et al. Beanz: an R package for Bayes-
ian analysis of heterogeneous treatment effect with graphical user 
interface. J Stat Softw. 2018;85(7):1–31.

 100. He X, Madigan C, Wellner J, et al. (2019). Statistics at a cross-
roads: Who is for the challenge? NSF Workshop report. National 
Science Foundation. https:// www. nsf. gov/ mps/ dms/ docum 
ents/ Stati stics_ at_a_ Cross roads_ Works hop_ Report_ 2019. pdf. 
Accessed 23 Aug 2022.

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://www.accessdata.fda.gov/cdrh_docs/pdf18/P180036b.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf18/P180036b.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf19/P190016b.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf19/P190016b.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf21/P210034b.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf21/P210034b.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf17/P170019b.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf17/P170019b.pdf
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/use-real-world-evidence-support-regulatory-decision-making-medical-devices
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/use-real-world-evidence-support-regulatory-decision-making-medical-devices
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/use-real-world-evidence-support-regulatory-decision-making-medical-devices
https://www.fda.gov/media/146258/download
https://www.fda.gov/media/146258/download
https://www.accessdata.fda.gov/cdrh_docs/pdf11/P110019S075B.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf11/P110019S075B.pdf
https://doi.org/10.1186/s13063-020-05002-w
https://doi.org/10.1186/s13063-020-05002-w
https://doi.org/10.1145/3302509.3311058
https://doi.org/10.1145/3302509.3311058
https://mdic.org/news/incorporation-of-stochastic-engineering-models-as-prior-information-in-bayesian-medical-device-trials/
https://mdic.org/news/incorporation-of-stochastic-engineering-models-as-prior-information-in-bayesian-medical-device-trials/
https://mdic.org/news/incorporation-of-stochastic-engineering-models-as-prior-information-in-bayesian-medical-device-trials/
https://www.fda.gov/medical-devices/premarket-submissions-selecting-and-preparing-correct-submission/humanitarian-device-exemption
https://www.fda.gov/medical-devices/premarket-submissions-selecting-and-preparing-correct-submission/humanitarian-device-exemption
https://www.fda.gov/medical-devices/premarket-submissions-selecting-and-preparing-correct-submission/humanitarian-device-exemption
https://www.fda.gov/drugs/development-resources/complex-innovative-trial-design-meeting-program
https://www.fda.gov/drugs/development-resources/complex-innovative-trial-design-meeting-program
https://www.fda.gov/drugs/development-resources/complex-innovative-trial-design-meeting-program
https://doi.org/10.1002/(sici)1097-0258(19970630)16
https://doi.org/10.1002/(sici)1097-0258(19970630)16
https://doi.org/10.1080/00031305.2022.2039764
https://doi.org/10.1080/00031305.2022.2039764
https://doi.org/10.1038/s41746-020-00324-0
https://doi.org/10.1038/s41746-020-00324-0
https://walterreed.tricare.mil/Health-Services/Specialty-Care/Murtha-Cancer-Center/Orthopaedic-Oncology/Jonathan-Agner-Forsberg-MD
https://walterreed.tricare.mil/Health-Services/Specialty-Care/Murtha-Cancer-Center/Orthopaedic-Oncology/Jonathan-Agner-Forsberg-MD
https://walterreed.tricare.mil/Health-Services/Specialty-Care/Murtha-Cancer-Center/Orthopaedic-Oncology/Jonathan-Agner-Forsberg-MD
https://www.nsf.gov/mps/dms/documents/Statistics_at_a_Crossroads_Workshop_Report_2019.pdf
https://www.nsf.gov/mps/dms/documents/Statistics_at_a_Crossroads_Workshop_Report_2019.pdf

	Bayesian Statistics for Medical Devices: Progress Since 2010
	Abstract
	Introduction
	Brief Early History
	Borrowing Prior Information
	Bayesian Hierarchical Modeling and Exchangeability
	Power Prior
	Commensurate Priors
	Effective Sample Size
	Dynamic Borrowing
	Pediatric Extrapolation
	Bayesian Subgroup Analysis

	Bayesian Adaptive Design and Predictive Modeling
	Diagnostic Devices and Bayesian Statistics
	Bayesian Benefit-Risk Assessments
	Bayesian FDA Submission Activity (2011–2021)
	Label Expansion by Using Real–World Evidence
	The Present and the Future
	Acknowledgements 
	Anchor 20
	References




